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We present a unified system for vehicle tracking and classification which has been developed with a
data-driven approach on real-world data. The main purpose of the system is the tracking of the vehicles
to understand lane changes, gates transits and other behaviors useful for traffic analysis. The discrimina-
tion of the vehicles into two classes (cars vs. trucks) is also required for electronic truck-tolling. Both
tracking and classification are performed online by a system made up of two components (tracker and
classifier) plus a controller which automatically adapts the configuration of the system to the observed
conditions. Experiments show that the proposed system outperforms the state-of-the-art algorithms
on the considered data.
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1. Introduction

Video traffic monitoring is a popular application domain in
Computer Vision. In this context, algorithms are often designed
to detect, re-identify, count, track or classify vehicles (Bas,
Tekalp, & Salman, 2007; Hsieh, 2006; Zhou, Gao, & Zhang, 2007),
while others are designed to improve the safety of the driver
(Aouaouda, Chadli, Boukhnifer, & Karimi, 2014; Aouaouda, Chadli,
& Karimi, 2014; Dahmani, Chadli, Rabhi, & El Hajjaji, 2013; Saifia,
Chadli, Karimi, & Labiod, 2014). We tackle the specific tracking
and classification tasks presenting a unified system for the online
tracking and classification of vehicles. The system has been
designed and tested to work with real-world data acquired by
Q-Free1 and can be used for a series of traffic-related applications
ranging from road charging to law enforcement, electronic toll col-
lection and truck tolling.

Many approaches to visual object tracking are available in the
literature (Arnold et al., 2013; Maggio & Cavallaro, 2011). Each
strategy is formulated by making assumptions on the application
domain and choosing a suitable object representation and a
frame-by-frame localization procedure. A method to update the
target representation during the tracking is usually required, espe-
cially when the target is subject to geometric and photometric
transformations (pose changes, deformations, illumination
changes, etc.) (Maggio & Cavallaro, 2011). The most straightfor-
ward approach is probably the Template Matching, where the
object is assumed to be rigid and it is represented as an image
patch (the template) (Maggio & Cavallaro, 2011; Yilmaz, Javed, &
Shah, 2006). If no pose changes are considered, the object is
searched in the neighborhood of the last known position by max-
imizing a chosen similarity function (e.g., Sum of Squared
Differences (SSD), Normalized Cross Correlation (NCC), etc.)
between the template and candidate image patches. If pose
changes are considered, the Lucas–Kanade affine tracker can be
used (Baker, Gross, Ishikawa, & Matthews, 2004; Lucas & Kanade,
1981). In this case the pose changes are modeled as a set of affine
transformations and the target is localized by estimating the trans-
formation parameters which maximize the Sum of Squared
Differences (SSD) between the template and the transformed ver-
sion of the candidate. In other approaches the object is represented
as a set of local feature points which are tracked independently
(Maggio & Cavallaro, 2011; Tomasi & Kanade, 1991). This allows
the algorithm to naturally deal with the object deformations since
no global rigid coherence is required among the key-points. In
order to track each key-point, the sparse optical flow can be com-
puted assuming that the changes of the pixel intensities are about
entirely due to motion and not to possible lighting changes in the
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scene (brightness constancy assumption Horn & Schunck, 1981).
The Lucas–Kanade optical flow algorithm (Lucas & Kanade, 1981)
is often used to compute the optical flow. It requires the
key-points to satisfy both spatial and temporal coherence con-
straints. In Tomasi and Kanade (1991) it is stated a criterion to
choose which points may be selected as key-points in order to
improve the performances of the tracker (specifically corners or
points taken from a highly textured area of the image). In some
cases the set of feature points can be directly ‘‘tracked’’ for specific
application contexts (e.g., video stabilization (Battiato, Gallo,
Puglisi, & Scellato, 2007), human computer interaction (Farinella
& Rustico, 2008), traffic conflict analysis (Battiato, Cafiso, Di
Graziano, Farinella, & Giudice, 2013)). In Comaniciu, Ramesh, and
Meer (2003a) and in Bradski (1998) the object is represented by
describing the image region in which it is contained as a n-bins his-
togram in the hue feature space. The object is then localized by
maximizing a similarity function between the object representa-
tion of the current frame and the representation of the target can-
didate with respect to its position. In Bradski (1998) the CAMShift
algorithm is proposed. A probability image is built back-projecting
the target object hue histogram onto the current frame in order to
obtain a map of the most probable object positions. The object is
localized searching for local maxima of the probability map in
the neighborhood of the last known position of the target using
the Mean-Shift procedure (Comaniciu, Ramesh, & Meer, 2003b;
Fukunaga & Hostetler, 1975). In Comaniciu et al. (2003a) the
Kernel Based Object Tracking method is presented. A similarity
measure based on the Bhattacharyya coefficient is derived. This
measure provides a similarity score between the representation
of the target object and the one of the candidate found at a given
position. The localization is performed by maximizing the similar-
ity measure with respect to the target candidate position using the
Mean-Shift procedure. Other methods consider an extended
appearance model and solve the tracking task as a classification
problem: Arnold et al. (2013), Kalal, Matas, and Mikolajczyk
(2009, 2012) and Hare, Saffari, and Torr (2011). In Kalal et al.
(2012) TLD is proposed, a hybrid approach capable of tracking
the object, learning its appearance and detecting it after its even-
tual disappearance from the scene. The tracker component is a
Lucas–Kanade based tracker which tracks a set of feature points
obtained using a regular grid constructed over the target object.
The trajectory in the feature space is modeled by two parallel pro-
cesses that extend and refine an online model (the learning compo-
nent). A detector component runs in parallel with the tracker in
order to enable re-initialization after its failure.

This paper is the extension of our previous work (Battiato et al.,
2014) where a first version of the algorithm for vehicle tracking
was presented. Here we discuss the tracking algorithm in more
details and provide a comparative analysis with respect to the
state-of-the-art. Moreover we add a module for online vehicle clas-
sification and integrate the two components into a unified system
for traffic monitoring purposes.

The rest of the paper is organized as follows: in Section 2 we
provide an overview of the system and analyze the reference data.
Sections 3 and 4 present the proposed tracking and classification
components respectively. In Section 5 we discuss the controller
component. In Section 6 we report the experimental settings and
discuss the results. Section 7 draws the conclusions.
2 The plate detection and recognition module is already commercialized by Q-Free.
2. System overview and reference data

The goal of the proposed system is to correctly track the vehi-
cles during their transit through the road. We also want to classify
the vehicles into two main classes: tall vehicles (e.g., trucks, buses,
etc.) and short vehicles (e.g., cars, vans, etc.). We assume that the
detection of the vehicles is performed by an external module based
on plate detection and recognition plus background/foreground
segmentation.2 Both tracking and classification are performed
online on real-world data. The system is composed of two main com-
ponents: a tracker and a classifier. The tracker is based on template
matching and is augmented with four additional modules tailored to
cope with the specific variabilities exhibited by the data. The classi-
fier is based on a supervised machine learning technique trained on a
dataset containing both real and artificial examples in order to con-
sider a number of variabilities during the learning process. A con-
troller is introduced to optimize the performances of the tracker
by turning the modules on or off on the basis of the feedback
received by them. Fig. 1 shows the overall schema of the proposed
system. The tracker component consists of four modules plus the
classic template matching technique which is used to obtain an ini-
tial estimate of the bounding box of the vehicle. The output of the
tracker component is used to update the template and to keep track
of the vehicle position. The classifier component extracts an image
patch of the vehicle from the current frame using the estimated
bounding box. This is done once in the whole vehicle transit as
explained in Section 4. Finally, the controller optimizes the perfor-
mances of the tracker component by enabling or disabling each
module on the basis of the estimated trajectories (current and past
positions) and the predicted class.

The overall components have been designed using a data driven
approach, hence an analysis of the application context is necessary
before discussing the details of the developed system in the next
sections. The reference data consists in video sequences related
to real video traffic monitoring which have been acquired by
Q-Free. The sequences exhibit high variability in terms of lighting
changes, contrast changes and distortion.

Specifically the input data are the result of a preprocessing
stage on sequences originally acquired through cameras mounted
on the top of the road. The preprocessing stage produces a normal-
ized, low resolution representation of the scene where the distance
between neighboring pixels is constant in the real world. An exam-
ple of the preprocessing results is shown in Fig. 2. The sequences
have been acquired in different places and under different lighting,
weather and environment conditions and are identified by a key-
word summarizing the main variabilities that the system should
cope with, namely: LOW C ONTRAST, LIGHT C HANGES, LEADING S HADOWS,
STOP AND GO + TURN, RAIN and STOP AND GO. These sequences are con-
sidered for both tracking and classification. Three more sequences
are introduced for classification purposes only and are identified
by the keywords: SEQUENCE 1, SEQUENCE 2, SEQUENCE 3. These sequences
are useful to learn new variabilities for the classification and allow
to get a larger number of examples of tall vehicles. In order to per-
form quantitative evaluations, the sequences have been manually
labeled, annotating for each vehicle transit the number of the start-
ing frame, the initial bounding box, the number of the final frame
and the vehicle class. Specifically each transit Ti is associated to a
label li, where li ¼ 1 for the short vehicles (e.g., cars), while li ¼ 2
for the tall vehicles (e.g., trucks).

Table 1 shows the number of vehicles which have been labeled
in each sequences and the corresponding classes. It should be
noted that the ratio between the number of tall vehicles and the
number of short ones is approximately equals to 1 : 5, while ideally
we would like to work with a balanced (i.e., 1 : 1 ratio) set. The
effects of using a balanced dataset are discussed in Section 6. The
overall data contain 1208 vehicle transits in total.

In analyzing the application context, we highlight the following
relevant characteristics of the reference data:



Fig. 1. Diagram of the proposed system.

Fig. 2. The preprocessing stage.

Table 1
The number of vehicles labeled in each sequence and their related classes.

Sequence # Short # Tall

LOW CONTRAST 231 15
LIGHT CHANGES 238 19
LEADING SHADOWS 160 23
STOP AND GO 95 7
STOP AND GO + TURN 109 18
RAIN 162 15
SEQUENCE 1 12 3
SSEQUENCE 2 12 3
SEQUENCE 3 0 86
Total per class 1019 189
Total 1208
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� Grayscale sequences: all the sequences are grayscale, which
makes color-based representations unfeasible.

� Distortion: the vehicles are subject to distortion as show in
Fig. 3(a).

� Rigidity of the vehicles: despite the presence of the distor-
tion, the vehicles are rigid objects in the real world.

� Artifacts: light reflections cause the appearance of artifacts
in the form of white spots on the vehicles as shown in
Fig. 3(b).
� Geometric and photometric variabilities: the sequences are
subject to lighting and contrast changes (Fig. 3(c)).
Moreover the appearance of the vehicles can rapidly
change due to perspective reasons especially for tall vehi-
cles (Fig. 3(d)).

� Slow scenes: in some cases the motion of the vehicles is very
slow, which makes a template updating strategy necessary
in order to avoid the propagation of a drifted version of the
template.

3. Tracker component

The proposed tracking algorithm (see Fig. 1) is based on the
general template matching schema. At the initialization step, the
plate detection module returns the bounding box of the frontal
part of the current vehicle, then the template is extracted as a part
of the current frame and the object position is set to the center of
the bounding box (see Fig. 9(a) for a visual example). At each frame
a local exhaustive search is performed: a search window is cen-
tered at the object last known position and a number of candidates
centered at each point of the search window and having the same
size as the template are extracted. The object position is then set to
the one which maximizes the similarity score between the target
template and the candidate one according to a selected similarity



Table 2
Table of symbols related to the tracking component.

Parameter Description

Ti ith vehicle transit
f i ith frame in a video sequence
tm Threshold on the similarity score used to activate the

multicorrelation module
tu Threshold on the similarity score used to activate the selective

update module
M Foreground mask
t Threshold used to compute the initial foreground mask
sM Size of the median filter used to remove noise from the

foreground mask
sd Size of the ellipsoidal structuring element used to perform the

dilation operation on the foreground mask
d Minimum foreground percentage

Fig. 3. Variabilities exhibited by the data. (a) Object distortion: the figure shows the appearance of the same vehicle in the left and in the right parts of the scene. (b) Artifacts
in the form of spots due to the appearance of light reflections on the vehicles. (c) Light and contrast changes: the figure shows the effects of illumination changes on two
different vehicles in two near frames of the same sequence. (d) Perspective changes: the figure shows how the appearance of a given vehicle changes due to perspective.
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measure. We use this general schema (Maggio & Cavallaro, 2011)
as a baseline and augment it considering different modules which
can be dynamically switched on or off by a controller. Each module
is designed to cope with one of the variabilities discussed in
Section 2. In the following we briefly summarize the modules
and motivate their introduction:

� The ‘‘multicorrelation’’ module is introduced to cope with par-
tial occlusion due to the appearance of artifacts in the form of
white spots on some parts of the vehicles.
� The ‘‘template drift refinement’’ module is introduced to cope

with the template drift caused by the presence of distortion,
light, contrast and perspective changes.
� The ‘‘background subtraction’’ module is introduced to cope

with the sudden changes of appearance due to perspective
variations.
� The ‘‘selective update’’ module is introduced to cope with the

template drift issued by the continuous update of the target
representation in slow scenes.

The proposed algorithm can be summarized by the following
steps:

1. perform a regular template matching search to get an initial
guess of the vehicle bounding box;

2. if the similarity score is under a given threshold tm, use the mul-
ticorrelation method to reduce the influence of the artifacts (see
Section 3.1);

3. refine the position to correct the template drift caused by the
distortion (see Section 3.2);

4. refine the position to correct the template drift caused by the
perspective changes (see Section 3.3);

5. if the similarity score is under a given threshold tu, update the
vehicle representation (selective update). This prevents from
storing a wrong representation of the object in the scenes char-
acterized by slow motion (see Section 3.4).

In the following sections we summarize the scope of each mod-
ule used to extend the basic template matching procedure provid-
ing the related details. In order to help the reader to keep track of
the mathematical symbols and parameters used in this section, we
provide Table 2.
3.1. Multicorrelation

The presence of artifacts (see Fig. 3(b)) contributes to radical
changes of the appearance of the vehicles between consecutive
frames. In such cases the similarity between the current instance
of the object and its representation can be low, thus making the
template matching based tracker less accurate and possibly lead-
ing to a failure. An example of this problem is shown in Fig. 4(a).
In order to avoid the influence of the artifacts, we act as if it were
an occlusion problem introducing an alternative way to compute
the similarity between two image patches. Fig. 5 summarizes
schematically such computation: both the template and the candi-
date image patches are divided into nine regular blocks. A similar-
ity score is computed between each pair of corresponding blocks
and the final score is obtained by averaging the nine subwindows
similarity values. An analysis of the similarity values highlighted
that when this issue arises, the similarity measure computed in
the regular way tends to be lower than a given threshold tm. So
we use the multicorrelation similarity measure only when the reg-
ular similarity score is under the given threshold. Fig. 4(a) shows
the effects of the artifacts on the baseline algorithm and the result
of the proposed technique.
3.2. Template drift refinement module

The presence of light, perspective, contrast changes and distor-
tion, together with the continuous update of the template, cause
the template drift problem in the form of the progressive inclusion
of the background into the template. This effect is shown in the top
row of Fig. 4(b). In order to reduce the template drift, a module to
refine the position of the vehicle is introduced (see Fig. 6). The
refinement is based on the observation that the vehicle is stretched
horizontally by effect of the distortion introduced in the prepro-
cessing stage (see Fig. 3(a)). According to this assumption, we
adopt the following strategy: given the current frame and the tem-
plate found at the previous frame, we search for a version of the
object at a smaller horizontal scale, obtaining a smaller tracking
box. The smaller tracking box is properly enlarged backward to
fit the dimensions of the original template in order to enclose more



Fig. 6. The template drift refinement procedure.

Fig. 5. The multicorrelation procedure.

Fig. 4. The issues tackled by the introduced modules (top) and the results of the proposed techniques (bottom). (a) Artifacts and multicorrelation. (b) Template drift and
refinement. (c) Perspective issues and background subtraction based refinement. (d) Slow motion scenes and selective update.
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information. An exhaustive search of the object at different hori-
zontal scales would make the algorithm much slower, so, in order
to speed up the computation, we first perform a regular search (i.e.,
without any refinement) in order to obtain an initial guess.
Afterwards we consider a number of candidates (which we call
cuts) obtained by discarding the rightmost pixels (the ones which
are more likely to contain background information) and search for
the best match with horizontally-scaled versions of the template.
The best match identifies both the right scale factor and the correct
position. The described method can be summarized as follows:

1. Initial guess: a regular search (i.e., without any refinement) is
performed in order to obtain a first guess of the position of
the vehicle.

2. Cuts: for each scale factor in a given range, a cut is obtained by
discarding the rightmost pixels from the initial guess in order to
build a candidate of width equal to
cut width ¼ initial guess width � scaling factor.

3. Similarity: the similarity scores between the x-scaled templates
and the cuts are computed.

4. Best match: the best match identifies a narrower bounding box
(the background pixels are removed).

5. Bounding box enlargement: in order to enclose more informa-
tion, the narrower bounding box is enlarged including the left-
most pixels to fit the original bounding box dimensions.

Fig. 6 shows a schema of such computation.

3.3. Background subtraction module

When tracking tall vehicles, the perspective issue shown in
Fig. 4(c) arises: the radical change of the appearance of the vehicle



7268 S. Battiato et al. / Expert Systems with Applications 42 (2015) 7263–7275
in consecutive frames leads to the progressive inclusion of the
background inside the template model up to a possible failure of
the tracker. In order to correct this behavior we perform a back-
ground aware position refinement on the basis of a rough back-
ground subtraction technique based on the subtraction of
subsequent frames. In order to identify the background pixels,
we build a foreground mask using the following simple procedure:

� Let f i be the current frame and let f i�1 be the previous frame.
Compute:
Df ¼ jf i � f i�1j: ð1Þ
� Let t 2 0;255½ � be a given threshold. Compute the initial fore-
ground mask as following:
Mðx; yÞ ¼
255 if Df ðx; yÞ > t

0 otherwise

�
: ð2Þ
Fig. 7. Background subtraction refinement.
� Apply a median filter of size sM to M in order to remove noise
(e.g., rain);
� Apply a morphological dilation with an ellipsoidal structuring

element of size sd to M in order to fill the holes in the mask.

Note that the foreground mask is not perfect but it is already
useful for the case (see Fig. 7). The second stage consists in moving
the tracking box backwards using the information coming from the
foreground mask in order to exclude the background pixels. We
define a foreground region as an area in the foreground mask
which has at least N � d non-zero pixels, where N is the total num-
ber of pixels in the region and d 2 0;1½ � is the minimum foreground
percentage. To refine the tracking box position we use the follow-
ing procedure:

1. Let d 2 0;1½ � be the minimum foreground percentage and let M
be the foreground mask corresponding to the current tracking
box.

2. Consider the rightmost p-pixels wide column of the M mask and
let N be the total number of pixels in the considered row.
� If the row contains less than d � N non zero values, the

tracking box is shifted p pixel backward in the horizontal
direction, go to step 1.

� Otherwise stop.

Fig. 7 shows an example of such procedure.

3.4. Selective update module

The continuous update of the vehicle representation (i.e., the
template) induces the template drift problem in those sequences
in which the motion is slow. The problem is similar to the one
tacked in Section 3.2 but it is caused by a different variability. An
example of this problem is shown in Fig. 4(d). Since the vehicles
move very slowly and considering that appearance of the vehicle
between two consecutive frames changes slightly, a shifted version
of the template still returns a high similarity score, while the con-
tinuous update favorites the propagation of a wrong representa-
tion of the vehicle. In order to correct this behavior, we update
the object representation only when it is significantly different
from the old one, i.e., when the similarity score is lower than a
fixed threshold tu. Fig. 4(d) shows the results of the proposed
module.

4. Classifier component

The vehicle classification is tackled as a linear classification
problem where the data consists of image patches extracted during
the tracking according to the estimated bounding box of the vehi-
cle. Specifically the classification is performed when the vehicle
approaches the central part of the scene, where the perspective
variabilities discussed in Section 2 are less significant. Fig. 8 shows
a general schema of the training/classification pipeline which is
briefly presented in the following, whereas the details are dis-
cussed in the next sections. In order to build the classifier, a train-
ing set is obtained considering the image patches extracted from
the input sequences discussed in Section 2. To make the learning
procedure more robust, the training set is augmented by generat-
ing artificial image patches aimed at introducing translation, per-
spective, rotation and photometric variabilities. The patches are
normalized to the training set mean patch size and the HOG
(Histogram of Oriented Gradients) features are extracted Dalal
and Triggs (2005). The dimensionality of the feature vectors is
reduced through the Principal Component Analysis (PCA)
Hotelling (1933). The Linear Discriminant Analysis Fisher (1936)
is performed on the PCA reduced data to project the samples to
the most discriminant dimension. This unidimensional feature is
aggregated to the image patch height in pixels, obtaining a
two-dimensional vector. A new LDA projection is hence performed
on the two-dimensional data and the projected populations are
modeled as distinct unidimensional Gaussian distributions. In the
classification step, the sample is projected using the previously
learned PCA and LDA bases and is aggregated to the image height
feature as in the training phase. The Mahalanobis distances
(Mahalanobis, 1936) between the projected sample and the
Gaussian distributions related to the two classes are computed.
The sample is assigned to the class giving the smallest distance
according to the Maximum A Posteriori (MAP) criterion. Table 3
reports a list of the symbols used in this section.
4.1. Data extraction, augmentation and normalization

The image patches for the classification step are automatically
extracted from the video frames during the tracking. Since we track
the front part of the vehicle (see Section 3), we can assume that
meaningful information is contained on the left of the tracking
box. On the basis of this assumption an image extraction window
is obtained enlarging the tracking box backwards. Specifically,
the window has the same height as the tracking box but it is three
times larger (see Fig. 9(a) and (b)). In order to make the training



Fig. 8. The training/classification pipeline.
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phase robust to some variabilities and in order to get more data,
we augment the dataset, which is a common practice in machine
learning (Shotton, Johnson, & Cipolla, 2008). For each transit we
introduce four variabilities: perspective, translation, rotation and
photometric transformations. The perspective variabilities are
obtained extracting for each transit three image patches when
the center of the extraction window is found approximately on
the vertical central line of the scene and when it is found before
or after that line at a uniform step ps (see Fig. 9(g)). The translation
variabilities are obtained extracting 8 additional patches for any
previously extracted patch shifting the window by pt pixels in
the main directions: top-left, top, top-right, right, bottom-right,
bottom, bottom-left, left (see Fig. 9(c)). The rotation variabilities
are obtained by extracting two additional patches for any previ-
ously extracted patches (including the ones related to perspective
and translation variabilities) rotating the extraction window about
its center by �pr degrees (see Fig. 9(d)). The photometric variabil-
ities are obtained extracting two additional patches for any previ-
ously extracted patch (including all the other variabilities) after

photometric processing: Iph1;2
i ¼ ðpaÞ

�1Ii � pb (see Fig. 9(e) and (f)).
The combination of all the variabilities allows to obtain 99 patches
per each vehicle labeled in the dataset. All the patches are resized
to the training set mean patch size s.
4.2. Feature extraction

The feature extraction step allows to obtain a representation of
the vehicle which is suitable for describing the main characteristics
of the vehicle class. In order to obtain robustness to misalignment,
the HOG (Histogram of Oriented Gradients) features are considered
Dalal and Triggs (2005). In the HOG extraction process the input
image is divided into blocks of a given size (cellSize parameter)
and the histograms of the gradient orientations are computed for
each block. A post-processing procedure which considers contrast
normalization is employed. The HOG features provide a represen-
tation of the object which is robust to misalignment since local
spatial information is lost, but valuable global spatial information
is still considered. The output of the HoG feature extraction is a
table of histograms (one per block) which is properly reshaped to
a vector x ½n� 1�.

4.3. Training chain

In this section we discuss the training chain, which is the pro-
cess used to learn the parameters of the classifier: the normaliza-
tion size s, the PCA bases and bias W1; b1, the LDA bases and
bias W2; b2, the LDA bases and bias W3; b3, the means and vari-
ances of the Gaussian distributions l1; l2; r1; r2. The training
chain is represented in the left part of Fig. 8.

After the feature extraction, the Principal Component Analysis
(PCA) (Hotelling, 1933) is used to reduce the dimensionally of
the HOG feature vectors. This is done by computing the matrix
W1 ½n�m� and the vector b ½m� 1� which are used to project the
vectors xi into the m principal components:

yi ¼WT
1xi þ b1 ð3Þ

the number of the principal components m can be obtained by
choosing how much variability (i.e., information) to discard.

The Linear Discriminant Analysis (LDA) (Fisher, 1936) is then
used on the reduced vectors yi to project them to the most discrim-
inant dimension, i.e., the dimension which maximizes the
between-class variance and minimizes the within-class variance.



Table 3
Table of symbols related to the classifier component.

Parameter Description

p Width of the portion of the tracking box to be checked by the
foreground subtraction module at each iteration

ps Distance from the central line at which the image patches
related to the perspective variability are extracted

pt Number of pixels by which the extraction window is shifted in
the main directions in order to extract the image patches related
to the translation variability

pr Number of degrees by which the image is rotated in order to
extract the image patches related to the rotation variability

pa; pb Parameters of the photometric processing performed to extract
the image patches related to the photometric variability

s Training set mean patch size
W1; b1 Learned PCA bases and bias
W2; b2 Learned LDA bases and bias
hi The height of the extracted image patch
W3; b3 Learned LDA bases and bias after aggregating the PCA-LDA

projected sample with the patch height
l1; r1 Estimated mean and variance of the Gaussian distribution

modeling the ‘‘short vehicles’’ population
l2;r2 Estimated mean and variance of the Gaussian distribution

modeling the ‘‘long vehicles’’ population
xi The extracted image samples
yi The image samples projected to the PCA space
zi The image samples projected to the PCA-LDA space
pi The PCA-LDA projected samples aggregated with the patch

height
qi The samples aggregated with the patch height projected to the

final LDA space
li The label associated to the image sample. li ¼ 1 if the image

patch depicts a ‘‘short vehicle’’, li ¼ 2 otherwise
P1; P2 The unidimensional populations of labeled projected samples
~W; ~b Combined PCA-LDA bases and biases

d1; d2 Mahalanobis distance from the sample to the two Gaussian
populations
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The outputs of the LDA analysis are the matrix W2 ½m� 1� and the
bias b2 ½1� 1�. Since LDA is a supervised procedure, the data labels
li corresponding to the reduced feature vectors yi are involved. The
projection to the most discriminative LDA dimension is performed
using the formula:
zi ¼WT
2yi þ b2: ð4Þ
It should be noted that the result of this projection consists in uni-
dimensional features zi since LDA projects the data to a k� 1
dimensional space, where k is the number of classes (k ¼ 2 in our
case).

Meaningful information is encoded in the image patch size. This
information depends on the way the detection of the vehicle is per-
formed. Assuming that the plate position is used as a starting point
and that a segmentation technique is used to infer the initial
bounding box, the image patch height is dependent on the vehicle
frontal width. We use this information to get a better separation of
the classes. To do so we simply concatenate the most
Fig. 9. Data extraction (white) and augmentation (yellow). (a) Original tracking box. (b)
Photometric variabilities. (g) Perspective variabilities. (For interpretation of the referen
article.)
discriminative LDA features zi and the respective patch height hi,
obtaining the two dimensional features pi ¼ ðzi;hiÞ.

The Linear Discriminant Analysis is again applied in order to
project the pi data to the most discriminant LDA dimension of
the new two dimensional feature space:

qi ¼WT
3pi þ b3; ð5Þ

where W3 ½2� 1� and b3 ½1� 1� are computed using LDA and con-
sidering the labels li.

Two unidimensional populations P1 ¼ fqijli ¼ 1gi and
P2 ¼ fqijli ¼ 2gi are defined. In order to be able to classify new
instances, a probability model is built fitting two Gaussian distri-
butions Gðl1;r1Þ and Gðl2;r2Þ to the data. The probability of a
given sample qi to belong to class j is then assumed as:

pðq ¼ qijclass ¼ jÞ ¼ Gðlj;rjÞ: ð6Þ

The Gaussian distributions parameters (namely, means l1; l2 and
variances r1; r2) are estimated through Maximum Likelihood
(ML) Bilmes (1998). Fig. 10(a) shows the pseudocode for the train-
ing process.
4.4. Classification chain

The classification algorithm operates on image patches
extracted from the video stream. Although in the data extraction
process (Section 4.1) three instances are extracted for each transit
and then augmented, here we classify the vehicle using just the
patch extracted from the left part of the scene (see Fig. 9(g)).
Motivations for this choice are supplied in Section 6.

When a new image patch I is extracted, it is first resized to the
size s (see Section 4.1). The HOG features are then extracted and
the x feature vector is obtained. The feature vector is then pro-
jected directly to the PCA-LDA space using the expression:

z ¼WT
2ðW

T
1xþ b1Þ þ b2 ¼ ~WT xþ ~b; ð7Þ

where ~W ¼WT
2 �W

T
1 and ~b ¼WT

2b1 þ b2.
The z value is hence concatenated with the image patch height h

and the two-dimensional p ¼ ðz;hÞ vector is projected to the final
LDA space:

q ¼WT
3pþ b3: ð8Þ

The classification is performed applying the Maximum A
Posteriori (MAP) criterion over the probability model defined in
(6) using the Bayes rule:

pðclass ¼ jjqÞ ¼
pðclass ¼ jÞ � Gðlj;rjÞ

pðqÞ ; j ¼ 1;2: ð9Þ

The MAP criterion assigns the vector p to the class j for which
pðclass ¼ jjpÞ is maximum. Since we assume uniform priors
i:e:; pðclass ¼ jÞ ¼ 1

2 ; j ¼ 1;2
� �

the inference can be summarized as
follows:
Extraction window. (c) Translation variabilities. (d) Rotation variabilities. (e) and (f)
ces to color in this figure legend, the reader is referred to the web version of this



Table 4
Table of symbols related to the controller component.

Parameter Description

y0; y1 Positions of the vehicle in the last frame and in the previous one
respectively

d Estimated displacement of the vehicle
t1; t2 Thresholds on the speed of the vehicle used by the controller to

activate the modules

Fig. 10. Training (a) and classification (b) procedures.
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classðqÞ ¼ arg max
j

Glj ;rj
ðqÞ: ð10Þ

It should be noted that, taking the logarithms, discarding a constant,
squaring and dealing with a change of sign, the above expression is
equivalent to:

classðqÞ ¼ arg min
j
M2ðq;lj;rjÞ ð11Þ

where M2ðq;lj;rjÞ ¼
ðq�ljÞ

2

rj
is the square Mahalanobis distance

between the sample q and the Gaussian distribution Gðlj;rjÞ.
Fig. 10(b) shows the pseudocode for the classification process.

5. Controller

In this Section we discuss the controller component. Table 4
reports a list of symbols using in this section.

During the experiments we found that the performances of
some modules depend on the speed of the tracked vehicles. This
is mainly due to the dependence of the operations involved in
the specific modules on the way the information changes between
consecutive frames. Moreover the background subtraction module
has been introduced specifically to deal with perspective issues
related to the tall vehicles. In order to maximize the performances
of the overall system on the data, we distinguish between
high-speed (60 km/h or more) and low-speed (less than 60 km/h)
transits and introduce a controller component which dynamically
enables or disables the multicorrelation and selective update mod-
ules depending on the estimated speed. The background subtrac-
tion module is activated only when a tall vehicle is detected. To
get a rough estimation of the vehicle speed at each frame we esti-
mate the displacement of the vehicle as d ¼ ky1 � y0k2, where y1 is
the last known position and y0 is the previous one. We then define
two thresholds:

� t1 used to activate the multicorrelation module when d > t1;

� t2 used to activate the selective update module when d < t2.

The performances of the template drift and refinement module
are found to be independent from the speed of the vehicle.

6. Experimental settings and results

All the experiments have been performed on the dataset intro-
duced in Section 2 (see Table 1). When the first frame of a given
vehicle transit is processed, the labeled tracking box is used to ini-
tialize the tracker component. The tracker is then executed in the
subsequent frames till the last frame of the transit. The perfor-
mances of the tracker are assed by manually annotating whether
the tracking is successful or not and, in the latter case, annotating
also the first frame of failure. The classification is performed once
during the transit of the vehicle according to what discussed in
Section 6.2. The performances of the classifier are assessed using
k-fold cross validation techniques.
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6.1. Tracker component

The parameters of the tracking algorithm have been tuned in
order to maximize the performances on the reference data. The
Normalized Cross Correlation is used as similarity measure for
the template matching, the search window size dimensions are
20 px� 12 px, in order to handle vehicles with a maximum hori-
zontal speed of 381 km/h and a maximum vertical speed of
32 km/h. The exhaustive search is performed using an asymmetri-
cal window (forward only) in order to reduce the computation (the
vehicles can only move forward or stay still). Since in the given
context a scaling factor equals to 0.02 corresponds to less than
1 px and considering in most cases the best scaling factor is in
the range ½0:90;1�, the scaling factors are taken form this range
at step of 0.02. Both the multicorrelation and the selective update
thresholds are set to tm ¼ tu ¼ 0:8. The background subtraction
refinement parameters are set to: t ¼ 4; sm ¼ 7; sd ¼ 5; d ¼ 0:2,
while p is set to p ¼ 1. The two controller displacement thresholds
are set to t1 ¼ t2 ¼ 10 px which correspond to the speed of 60 km/
h.

The quantitative evaluations of the performances of the track-
ing algorithm are obtained by manually marking each tracked
transit either as ‘‘successful’’ or ‘‘failed’’ according to the visually
assessed performances. We have also annotated the first frame of
failure. In order to analyze the performances of the tracker compo-
nent, two evaluation measures are used:

Transit Based Accuracy (TBA):
focused on the ability to correctly track the vehicle in all the frames
of his transit. This measure is defined as:
TBA ¼ 1
N

XN�1

i¼0

stðTiÞ ð12Þ
where N is the total number of transits, fTigi2 0;N�1½ � are the transits
and
stðTiÞ ¼
1 if the tracking has no errors
0 otherwise

�
; ð13Þ
Longevity Based Accuracy (LBA):
focused on the tracker longevity, i.e., the mean transit percentage
correctly tracked before a possible failure. This measure is defined
as:
LBA ¼ 1
N

XN�1

i¼0

slðTiÞ; ð14Þ
where N and Ti are defined as above,

slðTiÞ ¼
mi

ni
; ð15Þ

mi is the number of frames in which the vehicle is tracked correctly
in transit Ti and ni is the total number of frames in Ti.

We compare the performances of the proposed tracker module
with the ones of some relevant approaches discussed in Section 1,
namely, CAMshift (Bradski, 1998), Kernel Based Object Tracking
(Comaniciu et al., 2003a), Lucas–Kanade optical flow (Lucas &
Kanade, 1981) and Tracking Learning Detection (TLD) (Kalal et
al., 2009). The CAMShift algorithm gives poor results since the ini-
tialization step in the intensity domain fails as shown in Fig. 11(b).
This is due to the simplicity of the probability image which does
not ensure the maximization of the similarity measure between
the target representation and the candidate one. The
Kernel-Based Object Tracking algorithm (Comaniciu et al., 2003a)
succeeds in the initialization step as shown in Fig. 11(c) but fails
in the tracking as shown in Fig. 12(a) and (b). Both CAMShift and
Kernel-Based Object Tracking do fail in the gradient orientations
feature space since the similarity measure is not a smooth function
(no gradient based optimizations are possible) as shown in
Fig. 11(a). The Lucas–Kanade optical flow approach (Lucas &
Kanade, 1981) gives poor results as shown in Fig. 12(c) due to
the violation of the brightness constancy and the spatial coherence
constraints caused by the varying light, contrast condition and by
the object distortion. Finally, Tracking Learning Detection (Kalal
et al., 2009) fails in the last frames of the transits due to the sudden
change of appearance as shown in Fig. 12(d). It should be noted
that, even if a learning component is included in the TLD algorithm,
it cannot cope with previously unseen appearances due to the large
changes of appearance caused by distortion and perspective
changes.

Fig. 13 shows the results of the proposed approach for each
sequence (identified by its relative keyword as described in
Section 2) and the global accuracy according to the TBA and the
LBA measuring methods. The introduction of the two measuring
methods can be justified observing that they measure two different
qualities of the tracker. In the STOP and ROTATION sequences, it can be
noticed that the TBA values are consistently lower than the related
LBA values. This happens because the tracker correctly tracks the
object for the most part of the scene (obtaining a high LBA score)
systematically failing in the last frames of the transit due to poor
lighting. Fig. 14 compares the results of the proposed technique
with respect to the results of a standard template matching pipe-
line (as described in Section 1), the TLD algorithm and a tracker
based on the estimation of the optical flow for multiple feature
points using the Lucas Kanade algorithm. The results are related
to the LBA measurement method in order to have a fair comparison
since the TBA methods yields low results for the competitor algo-
rithms. The results of the TLD algorithm are related to the imple-
mentation in Nebehay (2012). A video showing the results of the
compared algorithms can be found at the following link: http://
iplab.dmi.unict.it/download/VehicleTracking.avi.

6.2. Classifier component

In the classification experiments a standard implementation of
the HOG extraction algorithm is used (Vedaldi & Fulkerson, 2010)
setting the parameter cellSize ¼ 6. For the augmentation step we
set the perspective extraction step ps ¼ 20 px, the translation
pt ¼ 1 px, the rotation step r ¼ 1	 and the photometric processing
values a ¼ 1:2; b ¼ 10. The discarded variability in the PCA com-
putation amounts to the 10%.

The robustness and generalizability of the classifier are assessed
with respect to the original data and to the introduced variabilities
(i.e., the augmented patches) using k-fold cross validation tests.
Moreover we analyze the effect of using balanced data, changing
the position where the data is extracted in the scene and consider-
ing the patch height. Hence we consider both the proposed pipe-
line and a simplified one which does not make use of the patch
height information. Similarly we consider both the discussed data-
set and an unbalanced dataset obtained removing a number of tall
vehicle instances in order to get a tall-to-short vehicles ratio
approximately equals to 1 : 10. We perform 10-fold tests on the
data and evaluate the per-class accuracy considering both the orig-
inal (not augmented) instances and all the variabilities which have
been introduced artificially by augmentation.

Fig. 15(a) shows the accuracy values for the classifier on the
unbalanced set (i.e., ratio 1 : 10) when no patch height information
is exploited. It can be noted that the accuracy values for the tall
vehicles are consistently low. We argue that this is due to the
unbalanced nature of the dataset. Fig. 15(b) shows the results for

http://iplab.dmi.unict.it/download/VehicleTracking.avi
http://iplab.dmi.unict.it/download/VehicleTracking.avi


Fig. 11. (a) A detail of the plot of the Bhattacharya coefficients for a given search. (b) The CAMShift probability image approach in the initialization step. (c) The Kernel-Based
Object Tracking approach in the initialization step.

Fig. 12. Example of the failures of the compared trackers. (a) Kernel Based Object Tracking in the intensity space. (b) Kernel Based Object Tracking in the edges orientation
space. (c) Lucas–Kanade optical flow. (d) Tracking Learning Detection.

Fig. 13. The results of the proposed technique on the sequences identified by corresponding keywords according to the LBA and TBA measures.
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the same classifier when the input dataset has a tall-to-short vehi-
cles ratio approximately equals to 1 : 5 (i.e., the dataset discussed
in Section 2). A comparison between Fig. 15(a) and (b) highlights
the effect of balancing the dataset and how even better results
could be achieved if more data concerning tall vehicles was
available.

In both Fig. 15(a) and (b), the accuracy values relative to the
perspective variabilities are higher than the ones relative to the



Fig. 14. The results of the proposed technique (PS) vs a standard template matching pipeline (TM), the TLD algorithm (TLD) and a tracker based on the Lucas–Kanade optical
flow on multiple feature points (LK). The results are related to the LBA measurement.

Fig. 15. The diagrams show the results of a series of 10-fold tests on the data. Different color shades indicate different datasets. (a) The accuracy values of the classifier on the
unbalanced dataset when no patch height is considered. (b) The accuracy values of the classifier on the balanced dataset when no patch height is considered. (c) A detail of the
perspective accuracy of (b) for the different perspective variabilities. (d) The accuracy values for the proposed pipeline exploiting the size information.
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original instances for the tall vehicles. This behavior can be
explained looking at Fig. 15(c), where a detailed comparison
between the accuracy related to instances extracted in different
parts of the scene is shown (see Fig. 9(g)). The best accuracy value
is found when the patches are extracted from the left part of the
scene, which means that in that point, due to perspective reasons,
the appearances of vehicles are more discriminative.

Finally, Fig. 15(d) shows the results of the proposed pipeline
(including the feature related to the image patch height) on the
balanced dataset. An increment in the tall vehicles classification
accuracy approximately equals to +2% can be inferred comparing
Fig. 15(d) and (b).

7. Conclusion

In this paper we have proposed an integrated system for vehicle
tracking and classification suitable for traffic monitoring purposes.
The tracking component is based on the template matching
method augmented to be able to cope with a series of challenging
conditions related to real word sequences such as high variability
in perspective, light and contrast changes, object distortions and
artifacts in the scene. The effectiveness of our approach has been
demonstrated through a series of experiments in critical conditions
and comparisons with standard and recent techniques. The classi-
fication component is built on the basis of a training set derived
from the reference data. In order to get more data for the training
phase, the dataset is augmented with artificially introduced
patches. The performances of the classifier have been tested con-
sidering the real variabilities and the artificial ones, as well as with
respect to the variation of different parameters. A controller has
been introduced to optimize the performances of the tracker com-
ponent on the basis of the feedback received by the other modules.
The results show that our system outperforms the state-of-the-art
algorithms on the considered application domain. Future works
could be devoted to test the tracker component on additional
sequences including new variabilities (e.g., occlusion). The speed
of the tracker could also be improved substituting the exhaustive
search mechanism by a meanshift-like optimization algorithm in
order to enable real time tracking of multiple vehicles. Moreover,
the binary classifier presented in Section 4 could be extended to
a multi-class scenario coping with the following classes: cars, vans,
trucks, buses and motorbikes. Finally, the performances of the clas-
sifier could be improved gathering a new dataset comprising a bal-
anced number of examples for each considered class.
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