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Abstract. To avoid grabbing the unintentional user motion in a video sequence, video stabilization techniques
are used to obtain better-looking video for the final user. We present a low power rototranslational solution,
extending our previous work specifically addressed for translational motion only. The proposed technique
achieves a high degree of robustness with respect to common difficult conditions like noise perturbations, illu-
mination changes, and motion blurring. Moreover, it is also able to cope with regular patterns, moving objects
and it is very precise, reaching about 7% of improvement in jitter attenuation, compared to previous results.
Overall performances are competitive also in terms of computational cost: it runs at more than 30 frames∕s
with VGA sequences, with a CPU ARM926EJ-S at just 100 MHz clock frequency. © 2018 SPIE and IS&T [DOI:
10.1117/1.JEI.27.5.051224]
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1 Introduction
In video processing, it is really important to enhance frame
by frame quality to obtain the best possible output for final
user. Different enhancement techniques have been proposed,
such as, for example, exposure correction1 and noise reduc-
tion.2 Apart from the application of these kinds of process-
ing, it is vital to stabilize the video to avoid unpleasant video
shaking effects.

Video stabilization techniques can be grouped in two
main categories: direct-3 and feature-based methods.4 The
former approaches estimate the unknown parameters through
global minimization criteria based on direct image informa-
tion usually exploiting assumptions such as brightness con-
stancy as a starting point. Some techniques (block based)
split the image into blocks and the relative motion5 is com-
puted comparing blocks of consecutive frames. Matching is
then performed within a search window minimizing a proper
error function like the partial distortion elimination,6 mean
absolute difference,7 or universal image quality index.8

A compounding algorithm to detect the global motion vector
is then applied.

Feature-based methods first compute a sparse set of
features in the input image and then estimate the motion
parameters from their matching. Recent papers have mainly
adopted speeded-up robust features (SURF),9 scale-invariant
feature transform (SIFT),10,11 and Kanade–Lucas–Tomasi
techniques.12 Even if there is no need to process the whole
image, the disadvantage of feature based methods is that they
are strictly dependent on feature point extraction step13 in
terms of accuracy and execution time.

In order to achieve a satisfying degree of robustness, algo-
rithms based on features extraction and matching usually

exploit reliable features (e.g., SIFT14 and SURF15) and robust
estimators (e.g., RANSAC16). These design choices, usually,
do not allow real-time performances. Also block-based tech-
niques are slow essentially because the whole image should
be processed, in a block-by-block fashion, especially if
features’ extraction and matching are complex.

The goal of this paper is to present a robust rototransla-
tional system, which is very flexible and low-cost, achieving
very low power consumption, so suitable also for in-
expensive and small video cameras. To reach this goal, the
proposed technique is partially inspired by our previous
work,17 based on the usage of characteristic curves. This
work has been also extended to cope with regular patterns,
moving objects and to achieve subpixel precision. Moreover,
the proposed rototranslational algorithm should obtain at
least equal quality compared to the reference translational
one,17 without increasing complexity.

In order to estimate rotational movements, both character-
istic curves and block based algorithms have been exploited.
Typically, video stabilization approaches based on block
matching, taking into account the limited block size and the
high frame rate, assume only a translational motion for each
block. This information, coming from different spatial loca-
tions in the frame, is then used to compute (through Least
Squares) the global motion vector (e.g., two translations, one
zoom factor, and one rotation in the similarity model).18,19

This methodology, just filtering out outliers, generally
works pretty well. Due to the good properties of the integral
projection, in our approach, it has been used as a local
motion estimator replacing block matching algorithm in
Ref. 20. Additional filters have been also designed to
cope with moving objects, to increase robustness of the
whole system.
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This paper is structured as follows: in Sec. 2, the proposed
method is shown; in Secs. 2.1 and 2.2, the block motion esti-
mation and the parameters extraction are described. Then,
the experimental results are reported in Sec. 3, followed by
simulation results in Sec. 4. Finally, conclusions are sketched
in Sec. 5.

2 Proposed Algorithm
The proposed algorithm is fundamentally distributed in two
steps, as shown in Fig. 1. The first step, named block motion
estimation, splits the frame into blocks, extracts and matches
features, to obtain some measures and translational motion
vectors blocks by blocks; whereas the second step, denoted
parameters extraction, after the application of different filters
to the set of motion vectors, paints out the global rototransla-
tional transformation parameters, taking into account the
estimated computation error.

The following sections, respectively, Secs. 2.1 and 2.2,
will explain these two main steps in detail.

2.1 Block Motion Estimation
This step estimates the motion vectors from the incoming
frames, dividing them into blocks. Moreover, it calculates
some measures used in the following parameter extraction
step. In the next subsections, four substeps will be explained:
frame division into blocks, feature extraction, signal process-
ing, and matching.

2.1.1 Frame division into blocks

Before the application of the proposed schema, the first thing
to do is to split the incoming frames into blocks. It is a very
delicate and important aspect, which will heavily impact the
whole work. The number of blocks obtained is really impor-
tant because the block should be big enough to allow effec-
tive motion estimation (in the first step) and small enough to
have a considerable number of motion vectors to allow a
good parameter extraction (in the second step).

For what concerns the estimation, the dimension of the
block depends also from the searching window we want to
use (that is the maximum allowed movement in the two
directions). In fact, in the optimized matching phase (see
Sec. 2.1.4), we can divide each dimension of the block in
three parts, as indicated in Fig. 2.

The first and last parts of the block dimension are not used
in the motion estimation, so only some pixels are used.
Subjective experiments with different pixels used for match-
ing (8, 16, 32, and 64) have been made. In these experiments,
we noted that the “pixel used for matching” should be at least
32. Moreover, we considered, from subjective experiments,
that at least 5% of the image dimension is acceptable for
“searching window,” so we obtained the data shown in
Table 1.

If these parameters are acceptable for a reliable estima-
tion, it is not the case of the parameter extraction. The num-
ber of blocks obtained (30 to 35) is too low for good
functionality. For this reason, it is necessary to have more
blocks, so more motion vectors are estimated. In our imple-
mentation, we use overlapped blocks with two parameters:
ShiftX and ShiftY , which represent the number of pixel to
shift starting from the origin of the frame to obtain the new
block, respectively, in horizontal and vertical direction. The
total number of blocks “BlockNumber” can be computed
using the following formula:
EQ-TARGET;temp:intralink-;e001;326;200

BlockNumberX ¼ ½ðWidth − BlockSizeXÞ∕ShiftX� þ 1;

BlockNumberY ¼ ½ðHeight − BlockSizeYÞ∕ShiftY � þ 1;

BlockNumber ¼ BlockNumberX · BlockNumberY; (1)

where Width and Height are the horizontal and vertical
dimensions of the frame, while BlockSizeX and BlockSizeY

Fig. 1 Proposed algorithm: first step calculates motion vectors block by block; second step computes the
global rototranslational transformation parameters.

Fig. 2 Ideal vertical division of a dimension of a block.
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are the horizontal and vertical dimensions of the block. After
various experiments, we empirically found that the number
of blocks to allow parameter extraction step works well is at
least 200. So, considering this additional constraint and
Eq. (1), we obtained final data listed in Table 2.

2.1.2 Feature extraction

This block computes the chosen integral projection features17

along the horizontal and vertical dimensions. For the sake of
simplicity, let us assume that we have two gray-scale frames,
captured with two successive captures, where M and N are
the horizontal and vertical dimensions and pij is the pixel
value in position ði; jÞ. The characteristics curves, also called
integral projections, along the horizontal and vertical dimen-
sions (for each of the two consecutive frames), are, respec-
tively, defined as in Ref. 17:

EQ-TARGET;temp:intralink-;e002;63;412ChðjÞ ¼
1

N

XN

i

pij; CvðiÞ ¼
1

M

XM

j

pij: (2)

2.1.3 Feature filtering

This block deals with the problems to reduce the scene
change illumination and motion blur effects. A simple global
normalization not always handles these problems correctly.
In the characteristics curves, the effect of the illumination
change is a shift, which can be removed by filtering them
with a high-pass filter. On the other hand, to avoid mismatch
when motion blur is present, we should apply a low-pass
filter to remove highest frequencies. Combining the two
effects (illumination changes and motion blur), a band-pass
filter (BPF) is a good choice. In this way, a second-order IIR
filter has been chosen, to obtain a good tradeoff between

implementation cost and results. The cutoff frequencies of
the filter were fixed to w1 ¼ 0.01 Hz and w2 ¼ 0.20 Hz
as in Ref. 17.

2.1.4 Matching

In order to properly evaluate the motion occurring between
consecutive frames F1 and F2, the shift along the axes
(offh; offv) of both Ch and Cv curves can be calculated as
follows:

EQ-TARGET;temp:intralink-;e003;326;489

PhðsÞ ¼
1

M − jsj
XminðM−s;MÞ

j¼maxð1;−sÞ
jCF1

h ðjÞ − CF2

h ðjþ sÞj;

offh ¼ fs 0∶Phðs 0Þ ¼ min PhðsÞg; (3)

EQ-TARGET;temp:intralink-;e004;326;415PvðsÞ ¼
1

N − jsj
XminðN−s;NÞ

i¼maxð1;−sÞ
jCF1

v ðiÞ − CF2
v ðiþ sÞj;

offv ¼ fs 0∶Pvðs 0Þ ¼ min PvðsÞg:
(4)

The term s is the search window size and represents the
maximum retrievable displacement (see Ref. 17).

Two innovative steps have been added at this step: regular
patterns feature and subpixel estimation. In the case of regu-
lar patterns, the chosen features can have regular behavior
and in the related matching curve, we can obtain many local
minima, as shown in Fig. 3. A good choice is to take the
lower minimum (in absolute value), to avoid too much move-
ment following the patterns.

A better pattern handling is obtained considering two suc-
cessive minimums on the matching curve (min1 and min2)

Table 1 Ideal block dimensions to allow a good motion estimation.

Sequence type Sequence dims Searching window Block dims Block number

VGA 640 × 480 32 × 32 96 × 96 6 × 5 ¼ 30

>VGA <SVGA >640 × 480 <800 × 600 40 × 40 112 × 112 ≥30 ≤35

SVGA 800 × 600 40 × 40 112 × 112 7 × 5 ¼ 35

>SVGA <HDTV >800 × 600 <1280 × 720 64 × 64 160 × 160 ≥32 ≤35

HDTV 1280 × 720 64 × 64 160 × 160 8 × 4 ¼ 32

Table 2 Ideal block dimensions to allow good motion estimation and a good parameter extraction.

Sequence type Sequence dims Search window Block dims Shift Block number

VGA 640 × 480 32 × 32 96 × 96 32 × 32 17 × 12 ¼ 204

>VGA <SVGA >640 × 480 <800 × 600 40 × 40 112 × 112 ≥32 × 32 ≤40 × 40 ≥204

SVGA 800 × 600 40 × 40 112 × 112 40 × 40 18 × 13 ¼ 234

>SVGA <HDTV >800 × 600 <1280 × 720 64 × 64 160 × 160 ≥40 × 40 ≤48 × 48 ≥234

HDTV 1280 × 720 64 × 64 160 × 160 48 × 48 23 × 12 ¼ 276
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and the maximum (max1) composed between these two min-
imums. The percentage P is calculated as follows:

EQ-TARGET;temp:intralink-;e005;63;496P ¼ ðjmin1 −min2jÞ∕max1 −minðmin1;min2Þ: (5)

If the percentage P is less than a threshold T, the selected
minimum will be the one with the lower position (in absolute
value), otherwise, the selected new minimum will be nor-
mally selected (the minimum between min1 and min2). This
way avoids wrong local minima selections. Experimental
results demonstrate that a good value for T is 0.15.

Subpixel estimation is really important to improve the
final results of the algorithm. To increase the precision of the
matching, obtaining a float precision instead of integer pre-
cision, we consider three points in the matching: the chosen
minimum and the previous and following integer value. With
these three points, we perform a parabolic interpolation and
the new minimum is computed with subpixel accuracy from
the obtained parabola.

Considering the three points A ¼ ðx1; y1Þ, B ¼ ðx2; y2Þ,
and C ¼ ðx3; y3Þ, the problem is to determine the coefficients
a, b, c of the equation of the parabola y ¼ ax2 þ bxþ c
passing for the points A, B, C. Considering that we are only
interested in calculation of Vx, that is the vertex X of the
parabola, with some optimizations, we obtain:

EQ-TARGET;temp:intralink-;e006;63;245

Vx ¼ −b∕ð2 · aÞ
¼ ðx1 · t1 þ x2 · t2 þ x3 · t3Þ∕½2 · ðt1 þ t2 þ t3Þ�;

t1 ¼ x1 · ðy3 − y2Þ; t2 ¼ x2 · ðy1 − y3Þ;
t3 ¼ x3 · ðy2 − y1Þ: (6)

So, the total operations to calculate Vx are further
reduced: 7 sums, 1 shift, 6 multiplications, and 1 division.

Just to show an example, if we consider the three points:
A ¼ ðx1; y1Þ ¼ ð−5; 5111Þ, B ¼ ðx2; y2Þ ¼ ð−4;4259Þ, and
C¼ðx3;y3Þ¼ð−3;4259Þ, we obtain V ¼ ðVx; VyÞ ¼ ð−3.5;
4152.5Þ, that is exactly on the middle of the points B and C,
since they have the same y-coordinate, as indicated in Fig. 4.

2.2 Parameters Estimation
Starting from local motion vectors, through simple and
fast rejection rules, our algorithm computes interframe trans-
formation parameters. Global motion between consecutive
frames is estimated considering a two-dimensional (2-D)
similarity model (two shifts, a rotation angle, and a zoom
factor), usually a good trade-off between effectiveness and
complexity. In the following subsections, five substeps will
be explained: prefiltering, history filter, histogram filter,
reliable estimation, and error computation.

2.2.1 Prefiltering

Local motion estimator typically computes many wrong
motion vectors. To filter out these vectors, not useful for
global motion estimation, we make use of the following
considerations:

• Local motion vectors usually have similar values in
their neighborhood (motion continuity). It is the neigh-
borhood similarity index already used in Ref. 20.

• The matching should be reliable. IP_ErrorX, IP_ErrorY
values, calculated using the matching error value pro-
vided by the local estimator based on integral projec-
tions, have to be low (effective match).

• Local motion vectors referred to homogeneous blocks
are not reliable. The DispX and DispY values, calcu-
lated as the difference between maximum and mini-
mum value of the integral projection curves, have to
be low.

The aforementioned rules have been derived after an
exhaustive experimental phase devoted to achieve a suitable
trade-off between overall complexity and real-time con-
straints. Both IP_ErrorX, IP_ErrorY , and the inhomogeneity
indexes (DispX and DispY) have been already computed
during the curve matching phase.

2.2.2 History filter

Due to moving objects in the scene, there are vectors that must
be deleted in order to have a good interframe parameters

Fig. 3 Matching in the case of a frame with regular patterns
(s ¼ ½−32;32�).

Fig. 4 Vertex of the parabola, where points B and C have the same
y -coordinate.
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estimation, so we need the “history filter” module to use
previous frames information (see Ref. 20).

2.2.3 Histogram filter

This step improves the robustness of the proposed approach
in presence of moving objects in the scene. Due to the limited
amount of rotation and zoom factor involved in the mobile
applications, motion vector components, and translational
parameters should have close values. Considering a 2-D
histogram of motion vector components, the vectors typi-
cally have the behavior depicted in Fig. 5: motion vectors
are very close together.

In presence of big moving objects, the 2-D histogram con-
tains multiple peaks, as depicted in Fig. 6. However, only one
peak corresponds to the camera motion, the other one is
related to a moving object entering in the scene. The histo-
gram filter finds the highest peak in the 2-D histogram and
filters out all the vectors too far from it (a threshold based on
the maximum rotation and scale allowed sets the closeness).
The remaining vectors (Vhf) are then propagated to the
robust estimator module.

2.2.4 Reliable estimation

Global motion between adjacent frames can be estimated
with a 2-D similarity model. Outliers can be still present
also at this step, so we need a simple way to remove
them. Least squares method does not perform well when
there is a large portion of outliers in the total number of
features, as in this case. However, outliers can be identified,

filtered out of the estimation process, resulting in better
accuracy.

In order to obtain real-time performances, we have imple-
mented a fast rejection technique, as indicated in Fig. 7:

• Starting from Vhf values, it computes a first least
squares estimation of the interframe transformation
parameters ðλ1; θ1; Tx1; Ty1Þ.

• Distance filter. Motion vectors of which components
along x and y axes are too far from the translational
values ðTx1; Ty1Þ previously computed are filtered out.
Due to the limited amount of rotation and zoom factor
involved in the mobile applications, motion vector
components, and translational parameters should have
close values.

• Error filter based on the difference between the esti-
mated and measured motion vectors considering both
Euclidean (E1) and angle-based distance (E2) (see
Ref. 20 for details).

According to the error E1 and E2, all Vd elements are
sorted in increasing order and filter out a percentage with
high error value. On the remaining Vs elements, another least
squares estimation is then performed to obtain transforma-
tion parameters ðλ; θ; Tx; TyÞ.

2.2.5 Error computation

Euclidean distance is used to fill the error matrix. This metric
is simple to compute and able to efficiently distinguish
between vectors belonging to objects entering in the scene
and vectors describing the scene movements (see Ref. 20 for
details).

3 Experimental Results
About 100 video sequences were tested in subjective manner.
Videos have been taken at different resolutions (QVGA,
VGA, 720p), with different source sensors (smartphones,
digital cameras) and in different conditions (artificial and
natural light). Moreover, critical conditions have been also
taken into consideration like noise distortions, sudden illu-
mination changes, motion blur, moving objects, and regular
patterns.

Objective measures have been applied to some of these
sequences. The objective quality parameters used (jitter and
divergence) have been suggested in Ref. 21. The jitter
measure evaluates the ability to reduce the high frequency

Fig. 5 An example of 2-D histogram computed from motion vector
components.

Fig. 6 Motion vectors histogram (a) before and (b) after histogram filter application.
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vibrations of the sequence and it should be as bigger as pos-
sible; while the divergence measure evaluates the ability of
the system to follow the user intentional motion and it should
be as lower as possible.

To obtain the jitter and divergence measures, we need to
have the motion trajectories of the original (N) and stabilized
(S) video sequences. The motion trajectory is defined as the
one dimensional sequence comprising the values of a single
motion parameter (e.g., horizontal translation or vertical
translation) for each video frame with respect to the first
frame. At this point, we can calculate the low and high fre-
quency components of each motion trajectory, by a digital
filtering. For this purpose, we used the following MATLAB
code sequence, where X stands either for original (N) or sta-
bilized (S) video sequences, while L andH represent, respec-
tively, the low and high frequency components of the two
motion trajectories:

EQ-TARGET;temp:intralink-;e007;63;447

XL ¼ filtfiltðh;1; XÞ; %Low frequency component;

XH ¼ X −XL; %High frequency component;

h ¼ fir1½2 � roundðFÞ;2∕F; ‘low’�; %F ¼ video frame rate:

(7)

The jitter attenuation and the divergence are calculated,
respectively, by the following formulas:

EQ-TARGET;temp:intralink-;e008;63;357Jitter ¼ 10 log 10

P
iðNH½i�Þ2P

i
ðSH½i�Þ2 ; (8)

EQ-TARGET;temp:intralink-;e009;63;305Divergence ¼ 1

#frames

X

i

jSL½i� − NL½i�j: (9)

Table 3 shows a comparison between the translational
method17 and the proposed rototranslational method. We
can note that, apart to handle the rotational movement, we
obtain a mean improvement of 7.14% in jitter and a mean
improvement of divergence of 1.27% for the test sequences.
It is important to underline that in this objective comparison
just translation is considered, so it is not obvious to obtain
better results with the rototranslational approach.

Just to show a graphical comparison between results
obtained with translational and rototranslational algorithm,
let us consider a sequence with slow horizontal panning.

In Figs. 8 and 9, the original curves represent the real
original MVs, the Original Y low curves represent the ideal
panning filter response, and the BPF curves represent the
translational and rototranslational solutions. The BPF curves
should be as close as possible to the ideal Original Y low
curves. In these two figures, the X-axes represent the frame
numbers of the sequence, while Y-axes represent the residual
motion, calculated as difference between real and obtained
motions.

In particular, in Fig. 8, it is evident that no good perfor-
mance is reached. The rototranslational version is shown in
Fig. 9. The numerical results obtained with rototranslational
algorithm are the following: JitterX ¼ 3.58; DivergenceX ¼
1.06; JitterY ¼ 5.18; DivergenceY ¼ 0.09. This indicates
that graphically and numerically, we obtain enough good
ability of the system to reduce the high frequency vibrations
and good ability to follow the user intentional motion. Even
if, in Fig. 9, still some fluctuations remain, they are in
a limited pixel range [−0.5, 1.5] compared to Fig. 8, of
which pixel range is [−2.5, 1.5]. The improvement for the
proposed rototranslational algorithm is considerable and its
DivergenceY value is really low (0.09).

To show the image stabilization quality obtained, just
consider Fig. 10 as an example. In this video, there is an evi-
dent unintentional movement. Figure 11 shows that both the
outputs obtained with the translational method,17 on the left,
and the proposed method, on the right, performs a really

Fig. 7 Robust estimationmodule schema. Starting from V f vector, it produces the final interframe param-
eters ðλ; θ; T x ; T y Þ.

Table 3 Jitter and divergence results of translational and rototransla-
tional approaches.

JitterX JitterY Div.X Div.Y Jitter% Div.%

Transl. 5.9260 5.8602 2.6591 2.0050 — —

Rototransl. 6.4388 6.1890 2.6048 1.9566 þ7.14% −1.27%
Fig. 8 Graphical representation of the translational algorithm curve
compared to the original and ideal one, in the case of a sequence
with slow panning.
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good video stabilization, but on the right, we can note less
video hand shaking.

More input video and video stabilization results obtained
with translational method17 and with the proposed method on
different sequences are available in Ref. 22.

4 Simulation Results
To demonstrate that the proposed algorithm is a low power
consumption solution, suitable for inexpensive and small
video cameras, we executed it with a CPU ARM926EJ-S at
just 100-MHz clock frequency. Simulation results are listed
in Table 4. It shows simulation results obtained running the
proposed algorithm with VGA (640 × 480) sequences, com-
paring them with the translational method.17

It is important to note that the features added to the pro-
posed algorithm, which improve a lot the quality of the final
video stabilization, are really light compared to the reference
translational algorithm and, with VGA sequences, we can
reach more than 30 frames∕s.

Moreover, it is to consider that the algorithm was just
written in ANSI-C, without any specific platform optimiza-
tion, obtaining high frames per second with just 100-MHz
clock frequency. Since “idle and wait states,” that is, the
number of cycles where bus is idle and busy, are big enough
for sequential and nonsequential cycles, that is the number of
sequential and nonsequential access to memory, there is a lot
of margin of improvement to speed up the proposed algo-
rithm for a specific platform.

5 Conclusion
A low-cost rototranslational algorithm for video stabilization
has been developed, so easily used for real-time processing
with the following characteristics, in common with the
related translational algorithm: robust to noise distortions
(IP used); robust to illumination changes (signal processing
block), and not distracted by motion blur (signal processing
block). In addition, apart from the fundamental role to
correct rotations in the scene, we also added the following

Fig. 10 Input video sequences with evident unintentional movement
(Video 1, MPEG-4, 668 KB [URL: https://doi.org/10.1117/1.JEI.27.5
.051224.1]).

Fig. 9 Graphical representation of the proposed algorithm curve com-
pared to the original and ideal one, in the case of a sequence with
slow panning.

Fig. 11 Output videos obtained with translational (left) and proposed algorithm (right) (Video 2, MPEG-4,
816 KB [URL: https://doi.org/10.1117/1.JEI.27.5.051224.2]).

Table 4 ARM ARM926EJ-S simulation results.

Algorithm Seq NonSeq Idle Wait states Total Time (ms) FPS

Translational 81,366 12,763 2,952,970 106,892 3,153,991 31.54 31.7

Proposed 83,938 15,205 3,026,308 114,347 3,239,798 32.39 30.9
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characteristics: not distracted by regular patterns (regular
patterns feature added) and very precise (subpixel estimation
feature added).

It achieves significant improvements subjectively and
objectively compared with state of translational algorithm,
reaching about 7% of improvement in jitter attenuation and
about 1% of improvement in divergence.

Moreover, simulation results show that the proposed,
not-optimized algorithm runs at more than 30 frames∕s
with VGA sequences, with a simple ARM926EJ-S, at just
100-MHz clock frequency, obtaining similar performance
compared to the reference translational algorithm.

Future work will be devoted to explore other transforma-
tions (i.e., homography) to handle more complex scenes
and different kinds of distortions, trying not to increase
performance.
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