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A B S T R A C T

This paper presents a framework for road traffic safety analysis. It is based on a stereo-vision system that,
after being installed on-board of public transportation vehicles, collects data of what happens in front of a
moving vehicle. The collected data are analysed throughout a process that acquire raw GPS information,
video sequences and stereo-based depth maps to compute the surrogate safety measures. These
measures are obtained by exploiting the Traffic Conflict Technique in conjunction with computer vision
algorithms and a cascade of classifiers. The safety measures are then used for further analysis in order to
identify dangerous locations in which an intervention is needed to improve the safety level and prevent
accidents. Experiments performed in a real urban environment confirm the effectiveness of the
framework.
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1. Introduction

Road accidents are one of the leading causes of death, therefore
road safety is a crucial and a delicate matter for national
governments to be solved. Over the last years, governments have
launched a series of initiatives with the intention to significantly
reduce road accidents by acting directly on the three basic
interacting elements of the road: the human behaviour, the
vehicles security features and the road infrastructure. Human
behaviour is the most difficult to deal with, because it can be
predicted only to a limited extend. The improvements in vehicle
safety are dependent on the implementation of new technologies
and security features by the manufacturers. Finally the road
infrastructure has a key role in safety influencing both human
behaviour and vehicles performances. Relevant road infrastructure
factors include the quality of the road illumination, the presence
and the readability of signs and road markings as well as the
quality of the paving [1]. Road safety is hence the final outcome of
regulations and prevention techniques that, acting on the above
mentioned three basic elements, make roads more secure. A
method to objectively measure the safety level of a road may help
to choose the most effective intervention. The research for such a
measure motivated many studies. All of these can be divided into
two main categories: those based on the analysis of statistical data
of accidents [1] and those based on road users analysis and inter-
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operation, called naturalistic studies [2]. Most of the statistical
studies are performed by evaluating crash data collected over a
long period of time. They focus on rigorous statistical models and
can tell something about the level of safety only after a certain
number of events has already occurred. However the naturalistic
studies can find the causes that can lead to an accident in order to
prevent it. The actual difficulty in naturalistic studies is to collect
and access the data needed for a good output. Current technologies
offer the opportunity to collect data continuously with networks of
cameras, wireless sensor networks and on-board monitoring
systems. The framework presented in this paper can automatically
collect data, while moving on board of a vehicle, and locate
dangerous places for road users in order to send alarms to experts
and allow a prompt intervention to improve the safety level of the
location. To this aim, the framework is composed of a video-based
on-board monitoring system that exploits the model of the Traffic
Conflict Technique (TCT) to compute safety measures in conjunc-
tion with computer vision techniques and classification algo-
rithms. This framework mounted properly on a public bus
transportation system, which runs every day the same roads,
can create a distributed moving sensor network which continu-
ously collects data directly on the field. Compared to other
solutions of the state of the art, the proposed approach provides
more information relative to pre-crash and crash events than what
is currently available, it is less expensive. Moreover it allows to
investigate with few sensors a very large territory and it has safety
risk detection with real-time capabilities. Finally it is not based on
the analysis of the driver behaviour, but it focuses only on the
interaction between road users, making it less intrusive with
respect to privacy issues.
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Fig. 1. The Heinrich Triangle describes crash events in terms of injury severity and
near crash or potential crash events in terms of risk. Events at the base of the
triangle happen more frequently.
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The paper is organised as follows. The state of the art techniques
related to traffic analysis approaches are discussed in Section 2. We
then introduce the reader to the Traffic Conflict Technique
fundamentals in Section 3. The proposed framework is described
in Section 4. Section 5 discusses the experimental results obtained
considering real data collected in the city of Catania – Italy. Finally,
conclusion and directions for future works are given in Section 6.

2. Related work

Efforts to reduce risks and improve safety on roads are made
through many strategies that typically involve processes of driver
screening and selection, driver training, vehicle maintenance and
road safety inspections in addition to the statistical analysis of
accident data.

While those approaches have had some success, they are slow
and very expensive and often they fail to have a sufficiently broad
and reactive view of the reality in order to swiftly identify
problems for road safety and thus to prevent accidents [1].
Naturalistic studies have demonstrated to be more reactive in
identifying problems for safety [2] and nowadays technologies
offer the opportunity better results with systems that can detect
problems with safety and automatically trigger an intervention to
solve it. It is possible to differentiate between those systems based
on static positioned sensors (single or multiple) and those based on
sensors mounted on board of vehicles.

In [3,4] many techniques were presented, mostly focused on
driver behaviour analysis. Their studies give the inspiration for a
possible broad classification of all analysis techniques into: Real-
Time techniques, able to identify a safety issue at current time and
non Real-Time ones, able to collect and analyse data from
numerous samples.

Based on the devices exploited, it is possible to further classify
the state of the art techniques into: fixed-position sensor networks
and on-board systems.

There is a huge number of studies that use networks of sensors
placed in critical positions, specifically to study the traffic flow or
the vehicles behaviour [5–8]. These studies use various techniques
to collect and analyse video data exploiting the TTC model [6–8] in
order to identify pre-crash situations. They are very reliable and
have a limited cost. However the positioning factor is crucial
because these systems allow you to monitor only areas that already
are thought to be dangerous therefore do not help to identify high-
risk areas which are not known. In addition roads and the traffic
flows constantly change, so fixed-placed solutions need to be
constantly upgraded and re-positioned as well.

On-board systems allow to know what happens around the
vehicle while moving together with it. Most systems are based on
the sensors of the vehicle itself [9] (speed, acceleration, GPS, etc.),
while others [10] are video-based and can achieve great accuracy
in identifying drivers behaviour. Horrey et al. [11] presented a
detailed review of the state of the art of on-board monitoring
systems. However, despite they have good accuracy in identifying
driver's behaviour their solution lacks in detecting locations where
road safety is compromised.

As regards on-board systems, mobile-phone based solutions are
promising in terms of being able to collect a very big amount of
data exploiting the widespread of mobile devices among people.
Among others in [12] mobile phone sensors (GPS receiver and
orientation sensor) were used to detect erratic driving behaviour
caused by overtaking considering phone as a steering wheel.
Another interesting study that uses the three-axis accelerometer
sensors of smart-phones was developed in [13]. The system
presented by the authors claims to be used to detect and analyse
various external road conditions and driver behaviours that could
be dangerous to the health of the driver, automobile and the
neighbouring public. In [14] the authors proposed a vehicle
mounted system which provides a safety index to each driver on
the basis of his quality of driving. The android device was fixed to
the windshield and captured the audio and video signals (10 s
before and after the event) and in order to detect driving
manoeuvres like aggressive turn and sudden brake etc., thresholds
were defined for the accelerometer in each direction. A similar
study was developed in [15] where the authors presented a mobile
application that combines the sensors of mobile phone like GPS,
accelerometer and microphone to detect the driver behaviour,
traffic and road conditions.

While promising mobile-based studies work in extremely
unconstrained conditions and with a various quantity of low-
quality sensors. Thus the overall quality of collected data is
extremely low. Moreover, given the big amount of data, the
analysis and insight extraction should be done offline.

Studies conducted in [16] demonstrated the effectiveness of
using an on-board monitoring system based on stereo-vision to
automatically compute measures useful to compute a level of risk
in a detected pre-crash event.

As discussed in [17], the research and development of on-board
monitoring systems should ideally: (a) identify and validate
behaviours that may be precursors to crashes or injuries; (b) be
based on cost-effective ways to monitor behaviour; (c) establish
management and driver acceptance of the program.

In this paper we present the implementation of a framework for
road safety analysis that satisfies all of the above mentioned
conditions and fills the gap in the field of automatic road safety
analysis combining high-quality real-time video and sensor data
collection and analysis techniques in a mixture of real-time and
non real-time analysis.

3. The Traffic Conflicts Technique

The ‘Heinrich Triangle’ theory [18] provides a conceptual
framework to reason about road accidents (Fig. 1). It is founded on
the relationship that ‘no-injury accidents’ precede ‘minor injuries’
(i.e., events closer to the base of the triangle precede events nearer
the top). Moreover the ‘Heinrich Triangle’ events near the base
occur more frequently than events near the top.
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The Traffic Conflict Technique (TCT) takes off from the ‘Heinrich
Triangle’ theory, assuming that the appropriate Traffic Conflict (TC)
factors can be defined as measures of near-crash events. A TC is
defined as an observable situation in which two or more road users
approach each other in space and time to such an extent that there
is risk of collision if their behaviour remain unchanged [19] (e.g. a
pedestrian crossing the road and a vehicle approaching that does
not brake or change direction).

The TCT is based on the measurement of both spatial and
temporal variables describing the interactions between two road
users (e.g., a car and a pedestrian) involved in a critical event for
safety. The Time To Collision (TTC) is the main indicator used by the
Traffic Conflict Technique and it is computed for the vehicles
(TTCv) and obstacles (TTCo). Formally TTC is defined as follows
[20,16]:

TTC ¼ D
V

ð1Þ

where D is the distance between the subject and the conflict point
and V is the velocity of the road users (the vehicle or the generic
obstacle).

Considering the event dynamics it is possible to differentiate
the Traffic Conflicts into three major classes with related TTC
measures (Fig. 2: Pedestrian Conflict, Car Following Conflict and
Intersection Conflict.

In case the obstacle is a pedestrian crossing the road we have a
Pedestrian Conflict. The TTC measures, related to this conflict, at
Fig. 2. The three classes of TC: (a) Intersection, (b) Car Following, (c) Pedestrian Cro
TTCo(i) < TTCv(i) < Tf(i) is related to the conflict. Each actor has a reference system int
time i for the two involved actors (i.e., vehicle and pedestrian), are
defined as follows:

TTCiðvÞ ¼ Dzi ðvÞ
ViðvÞ

; ð2Þ

TTCiðpÞ ¼ Dxi ðvÞ � Dxi ðpÞ
ViðpÞ

: ð3Þ

where by considering a 3D reference system centred on the vehicle,
DziðvÞ represents the distance between the vehicle and the
pedestrian along the Z axis and Dxi ðvÞ � Dxi ðpÞ represents the
distance between the vehicle and the pedestrian along the X axis
(see Fig. 2c). Let be Tf i the time required for the vehicle to stop at
time i defined as:

Tf i ¼ Tr þ ViðvÞ
af

ð4Þ

where Tr is the reaction time, ViðvÞ is the vehicle velocity at time i,
af is the deceleration during braking. Taking into account the
previous considerations it is possible to differentiate the following
cases, which define the areas marked in Fig. 2d:

� TTCiðvÞ > Tf i: vehicle may stop before conflict area,
� TTCiðpÞ > TTCiðvÞ: the vehicle passes the area of conflict before
the pedestrian reaches it,
ssing, (d) Temporal trend of the quantities involved in the TTC. The area where
egral to itself.



Fig. 3. The connection scheme of all the sensors that acquire raw data during the
input phase.
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� TTCiðpÞ < TTCiðvÞ < Tf i: Pedestrian Conflict.

If the conflict exists it is possible to evaluate its duration
(TTZduration) as the difference between the final and initial time (if
� i0) in which Traffic Conflict conditions are satisfied.

The second traffic conflict class is the Car Following (Fig. 2b) in
which there are two vehicles moving along the same direction. The
conflict occurs when the vehicle in front (v1) of another vehicle (v2)
makes a rush braking or a fast deceleration. If the distance to
actually stop for vehicle v1 is equal or minor to the distance of the
vehicle v2 in front of it, the crash will occur. The TTC measure at
time i for the second vehicle v2 can be defined as stated in [21]:

TTCi ¼
Vi

2ðv1Þ
2Viðv2Þaiðv1Þ

� Viðv2Þ
2aiðv2Þ

þ Dyi

Viðv2Þ
ð5Þ

where Dyi is the distance between the vehicles along the Y axis at
time i, Viðv1Þ and aiðv1Þ are respectively the velocity and
deceleration of the front vehicle at time i, Viðv2Þ and aiðv2Þ are
respectively the velocity and deceleration of the rear vehicle at
time i.

If TTCi< Tfi, with Tfi defined as in Eq. (4), the vehicle V2 could not
stop in time, the conflict occurs and it is possible to evaluate
TTZduration.

The third traffic conflict class is the Intersection Conflict (Fig. 2a).
This class is very similar to the Pedestrian Conflict one assuming
that the involved actors are now two vehicles. The difference is that
in this class much greater speeds are involved. For this reason it is
mandatory to take into account the Tfi of both vehicles from this
assumption the TTC measures of both vehicles are defined as:

TTCiðv1Þ ¼ Dyi ðv1Þ
Viðv1Þ

; ð6Þ

TTCiðv2Þ ¼ Dxi ðv2Þ
Viðv2Þ

: ð7Þ

where by considering a 3D reference system centred on the
considered vehicle v1: Dyi ðv1Þ represents the distance between the
first vehicle and the second along the Y axis, DxiXðv2Þ represents the
distance between the second vehicle and the first along the X axis,
Viðv1Þ and Viðv2Þ represents respectively the velocities of the first
vehicle and the second one along their direction of travel.

If both conditions TTCiðv1Þ < Tf iðv1Þ and TTCiðv2Þ < Tf iðv2Þ
happen, the conflict occurs and it is possible to evaluate
TTZ(duration).

Given the TTZduration it is possible to compute the severity of the
conflict as Risk Impact (RI) at time i according to the following
equation:

RIi ¼
X

i2TTZduration
V2
vi
� DTi ð8Þ

where Vvi is the velocity of the vehicle at time i and
DTi ¼ Tf i � TTCðviÞ.

It is also possible to evaluate the RI of the whole conflict as
follows (according to [16]):

RI ¼
1
N

PN
i RIi

TTZduration
ð9Þ

The discrimination between the three classes of conflict can be
done automatically. The Car Following case is easily distinguishable
from the others by analysing the magnitude and direction of
speeds of both vehicles. On the other hand to discriminate between
intersection and pedestrian classes the TTC measures alone are not
sufficient and visual information is needed. Automatic classifica-
tion of TC classes will be introduced in Section 4.5.

4. Framework description

The proposed framework is composed of several modules that
operate in different phases. For clarity we first describe the
hardware components in Section 4.1 whereas the software
modules that run on top of them in the subsequent sections.

4.1. Hardware components

The hardware employed in the proposed framework is
composed of a number sensors, processors and network compo-
nents that are connected together as described in Fig. 3.

The TYZX DeepSea G3 Embedded Vision System [22] (EVS in
Fig. 3) is an embedded stereo image processor which is used to
compute the depth-map of the scene in front of the vehicle. The
design of the EVS is based on an architecture that implements the
Census stereo vision algorithm [23]. As the input pixels enter the
EVS, the Census transform is computed at each pixel based on the
local neighbourhood, resulting in a stream of Census bit vectors.
For each pixel of one image of the stereo system, a summed
Hamming distance is used to compare the Census vectors around
the pixel to those at the window locations in the other image. These
comparisons are pipelined and occur simultaneously. The best
match, shortest summed Hamming distance, is located with five
bits of sub-pixel precision. The EVS Processor converts the
computed pixel disparity to metric distance measurements using
the stereo camera calibration parameters and the depth units
specified by the user. To have a system able to compute the
distance of an object from the driver perspective, we needed to
take into account the working ranges and the HFOV of the EVS. We
used a baseline of 33 cm and an 83 degrees HFOV lens in our
experiments. This configuration has a working distance range
between 2.5 and 50 m. The specifications of the EVS used in our
experiments are described in Table 1.

Fig. 3 shows how the EVS is connected with a router to a GPS
module and a notebook. The router solves the EVS data access
problem. A gigabit Ethernet WLAN router manages a network in
which the EVS is accessed by a notebook. A client can access the
EVS by connecting to a TCP service that sends every image and the
computed depth data. Since the required stereo videos must be
geo-referenced we also connected the EVS to a Bluetooth GPS
receiver module. The choice of a wireless device is mandatory to
solve the signal satellite problem, since we have used a city bus for
our experiments. The shape of a city bus forced us to put the GPS
module on the vehicle roof to have the best signal quality. Finally a
notebook PC connected to the LAN acts as data collector. The



Table 1
Hardware specifications of the EVS.

G3 Embedded Vision System Specifications

Weight 675 g
Size 3.8 cm � 18.7 cm � 14.5 cm
Power 11 W typ.: 12 vdc or PoE class III
Imagers Aptina MT9V022 color, up to 60 fps, 752 � 480 pixels
Lens 83 degrees horizontal FOV
Stereo baseline 33 cm
CPU Freescale PowerPC 8347 @400MHz
Memory 256 Mbytes
Operating system Linux 2.6 Kernel

212 S. Battiato et al. / Computers in Industry 98 (2018) 208–217
notebook controls the EVS and receives data both from the EVS and
the GPS module. All further processing is done on the notebook.
The overall cost of the hardware components described above is
less than 2000$ where the most expensive components are the
stereo camera and the notebook. The correct installation and
positioning of the camera on the vehicle is crucial for the proper
functioning of the system. Camera positioning is a relevant issue
because it must work without any occlusion in the field of view and
should not be intrusive for the driver. In Fig. 4a a correct
positioning of the camera in a bus is shown: this position is integral
with the field of view of the driver and not intrusive for him.

After installation, a calibration procedure is needed. The
calibration procedure consists of placing outside and in front of
the vehicle two targets orthogonal to the axis of the vehicle at 3 m
away from the camera. The targets are placed using a high
precision laser rangefinder positioned on vehicles vertices and
pointed to the targets. At this point, by using the EVS it is possible
to evaluate the distances of the two targets and to record the
distance difference between the right target and the left one. The
estimated differences are dependent to the inclination of the
camera relative to the axis of the vehicle. These values are stored
and used to completely specify the reference system of the camera.
Fig. 4a illustrates the position of the camera on a bus. Fig. 4b shows
the system used for data acquisition in our experiments.

4.2. Software modules

The software of the proposed framework analyses all data
provided by hardware sensors in order to compute the TCT
measures and detect locations at risk for safety. For an easier
understanding we will describe the overall process divided into
logical phases as shown in Fig. 5.
Fig. 4. The proposed system installed on an urban bus for data collection and Traffic Con
camera.
The whole process starts by gathering data from the sensors.
The data collected for further processing are: the GPS coordinates,
the RGB video frames and a depth map of the scene in front of the
vehicle. To achieve a geo-referenced video with depth information
the raw data must be synchronised in a single record to represent
all the raw input variables together. The synchronization is
performed in the Data Acquisition Phase. The data acquired in
the first phase are typically too voluminous for an efficient
evaluation. The successive step is hence the Summarisation Phase to
find those data sequences eligible to identify a TC. The data
sequences are then furtherly analysed to discriminate if they
describe a real TC or not. Once a conflict is detected the next phase
computes an estimate of the risk of an accident (Risk Analysis
Phase). At this point the classified TC event, with the corresponding
computed risk, is recorded and located on a map for further data
analysis and decision making (e.g., acting on the infrastructure of
the road).

The above steps are discussed in more detail in the next
sections.

The presented software modules where developed in C/C++
programming language by means of QT IDE and exploiting open-
source libraries and modules that will be indicated in each section.

4.3. Data Acquisition Phase

The data sequences composed of colour images, depth maps
and GPS data taken during the input phase, are compressed and
sent to a notebook for further computation. The colour images are
compressed according to the MPEG4V3. The depth-map is a 24-bit
RGB image where the most significant 16 bits represent a metric
distance value. These images are compiled into a video file on
which we operate a lossless compression using the FFv1 [24]. The
images and the corresponding depth-maps from the EVS need to
be geo-referenced. The data acquisition module solves the problem
of the frequency difference between the two streams. As a matter
of fact image and depth data have a frequency of 20–30 Hz while
the GPS data comes at 10 Hz. The acquisition module operates in
two phases: when a new video information arrives the software
operates a sample and hold mechanism on GPS information, so
there will be some frames referring to the same GPS information.
As a new GPS information arrives, the system changes previous
held information by linear-interpolating the values of position and
velocity according to the pattern described by the new GPS
information. Finally, the software produces a text output that
allows to uniquely bind each frame and depth-map to the
flict Analysis testing. (a) Placement of the camera on a bus. (b) Photo of the installed



Fig. 5. The framework pipeline from input phase of raw data to a geo-referenced output of processed data.
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corresponding GPS information. When cold start is performed,
even with the considerations explained above, GPS and video data
cannot be synchronised due to network latencies. In this case
synchronisation is achieved by the acquisition module through the
evaluation of these latencies on packet transmission. This was
done by means of the Linux-based Network Time Protocol (NTP
[25]) and the NTP C++ modules.

4.4. Summarisation Phase

Data acquisition records a number of data greater than what is
really needed for our purposes. A way to reduce the amount of data
produced is to make a summarisation based on the identification of
video sequences that are most likely candidate to be a conflict. It
has been already demonstrated that it is possible to identify these
points simply by analysing only GPS tracks and measures derived
from it (e.g. speed, trajectory, acceleration, jerk, angular deviation
rate, etc.) in conjunction with the application of filtering
techniques (based on Butterworth filter) and outlier detection
Fig. 6. Diagram of the depth based 
techniques (based on Mahalanobis distance). The mathematical
details for the summarisation technique employed in our
framework has been presented in [26] while the library used for
implementation was the DLIB C++ library [27]. As output there are
the initial points and the duration of each sequence in which a
possible TC occur. Given the synchronization between GPS data
and video, the corresponding video sequences are then taken into
account as candidates for further analysis. The numerous presence
of false positives however asks for a further analysis described in
the next Subsection.

4.5. Traffic Conflict Analysis phase

In this phase the analysis of video data starts to take place. All
video and image computation modules were developed using the
OpenCV open-source project [28] (version 2.7). Once video
sequences of candidate TC are detected, in previous phase, the
TC analysis module proceeds to identify the obstacle that may have
generated the TC. This obstacle will be represented by the point
mean-shift tracking algorithm.



Fig. 7. TC analysis example of a candidate sequence. Four key frames of the obstacle that generated the conflict, the circle is the output of the tracking algorithm, the reference
system used is shown.
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that is the closest to the vehicle in the depth map. The obstacle is
then considered as an object if that appears to be “big” in terms of
dimensions (at least 60 cm height and 10cm width): this can be
easily done by using the depth information. After the obstacle is
considered as an object. The initial point of interest will be the one
with the lowest value in the depth-map between the points of the
detected object. This initial point will be automatically followed in
subsequent frames thanks to the tracking module. The tracking
module in this way produces measurements of the TC indicators
described in Section 3. In our experiments an augmented version of
a well-known tracking algorithm called mean-shift [29] has been
developed. The mean-shift tracking algorithm has been extended
to work with depth information and a-priori knowledge based on
vehicle speed. To do this our development took place from the
OpenCV [28] mean-shift implementation. The depth based mean-
shift tracking algorithm starts from the idea that, given the vehicle
speed, an obstacle in front of the vehicle cannot change in its
distance value more than a certain threshold between two
consecutive frames. This algorithm works as indicated by the
diagram in Fig. 6. As a new frame arrives, the tracking module
considers a circular patch around the initial point of interest (with
radius of 10 pixels) and computes the mean distance value for all
pixels in that circle taking corresponding values from the depth
map (1). When the next frame arrives, for each pixel, if the
difference of distance values, between the pixel in the current
frame and the relative pixel from previous frame, surpasses a
certain threshold, the pixel value is set to 0; otherwise is left
unchanged (2). At this point, the mean-shift algorithm guesses
where the new point of interest is (3) and the mean between
Fig. 8. Trends of speed and distance between the vehicle and the obstacle during
the analysed conflict phase.
distance values of the pixels inside the patch around that new
point of interest is computed (4). If this last mean distance is
acceptable (5), with respect to the vehicle speed, then the guessed
point of interest is taken as the new one, otherwise all pixels in the
patch around the guessed point of interest are set to 0 and all pixels
in the coordinates of the previous frame patch are restored to their
original value (6). At this point mean-shift guessing is repeated. If
the algorithm does not find a suitable new point of interest in four
iterations, the distance threshold is increased by one meter, the
image is restored and everything starts back from (2). Four
iterations were needed to set to 0 four different guessing directions
of mean-shift in case on inability to find an acceptable new point of
interest. An exit condition for the algorithm should be selected in
case of disappearance of the object. We empirically selected an
initial threshold of 1 m and an exit condition of 10 m.

Using this tracking algorithm it is possible to follow an obstacle
in the entire sequence of a candidate TC video sequence. Thanks to
the data coming from the depth-map is possible to fully
reconstruct what happened between the vehicle and the obstacle
by computing relative speeds and distances of both vehicle and
obstacle in X and Y axis components according to the reference
system described in Fig. 7.

The obtained measurements are then used to compute the TC
indicators. In Fig. 9 the indicators for the candidate TCs shown in
Fig. 8 are plotted.

Starting from in depth analysis and results obtained in previous
works [16] in this paper we present an improvement in terms of
automatizing the TC analysis phase: through the exploitation of
Fig. 9. TTC measures over time, the conflict is actually present and the conflict
phase is highlighted in yellow. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of the article.)



Table 2
Confusion matrix related to the three possible Traffic Conflict classes.

Predicted

Intersection Pedestrian Car following

Actual Intersection 100% 0% 0%
Pedestrian 12.5% 87.5% 0%
Car following 0% 0% 100%

Table 3
Confusion matrix related to Traffic Conflict Prediction.

Predicted

TCs Not a TC

Actual TCs 100% 0%
Not a TC 1.3% 98.6%

Table 4
Distribution (%) of collected TC classes detected per RI-level.

TC class Class Low RI Medium RI High RI

Pedestrian 46.34 63.15 21.05 15.79
Car following 36.58 26.67 53.33 20
Intersection 17.07 28.57 28.57 42.85
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the TTC values of both vehicle and obstacle, and using image
analysis techniques it is possible to setup a cascade of classifiers
that can automatically infer if a conflict is actually present and to
classify it into one of the three classes introduced in Section 3. The
first classifier (developed using the DLIB C++ Library [27])
discriminates between two kind of TCs: one in which the obstacle
is moving in a direction perpendicular to the moving direction of
the vehicle (this class represents both pedestrian and intersection
conflicts) and a second one in which the obstacle is moving in the
same direction of the vehicle (this class is only represented by the
car following TC). Given this distinction, it is easy to discriminate
between these two groups of TCs by analysing the speeds of the
vehicle and the obstacle with respect to their components.
Through linear regression on the speed values, the coefficients
of the lines thus obtained are used as features for a Bayesian
classifier. The classifier is trained with a set of data manually
labelled by an expert on an acquisition of 1 h in which 100
sequences of TC candidates were identified.

A second classifier is needed to distinguish the pedestrian from
the intersection case. To this aim the HOG based pedestrian
detector [30] (implemented in OpenCV [28]) was used. The
detector gives information on the presence of the pedestrian: if
there is a pedestrian it should be placed moving in front of the
vehicle and with horizontal moving direction. In our experiments,
the pedestrian detector performed better than expected given the
input of the “big enough” obstacle detected earlier. Finally a third
classifier determines the existence of the real TC by using
conditions described in Section 3. The final output of the Traffic
Conflict Analysis phase is a decision on a candidate TC in order to
identify the type of conflict and if it is a real conflict. The Risk
Analysis Phase is done only if candidate TC is classified as positive
conflict.

4.6. Risk Analysis Phase

Once a TC is identified it is possible to compute the RI according
to the formulas described in Section 3. The RI is normalised on the
duration of the conflict and represented as one between three
levels: low (lower than 0.50), medium (between 0.50 and 0.75) and
high risk (over 0.75). The values that characterise these risk factors
have been identified by experts of the field correlating risk values
with respect to visual inspection of the sequences. At this point the
conflict is recorded with the corresponding GPS position. Finally
the tuple composed of GPS position, RI-level and class of conflict
are stored on a database. These data collected automatically can be
successively studied by experts to take actions on the road
infrastructure.

4.7. Implementation considerations

In this paper a number of hardware and software components
were combined in order to achieve the overall output of the
system: the identification of places, in an urban environment,
where safety in compromised in some way, due to the detection of
many Traffic Conflicts in those very places.

The design idea behind all the presented framework, was that
each part could be replaced with another one that produce the
same output in the pipeline.

The novelty of the proposed framework is the knowledge about
how to combine and customize simple components in order to
obtain the final result. Thus we had to make some choice for each of
the presented hardware and software: the hardware components
were chosen in order to have the best quality for input data; while
the software modules were chosen starting from open-source
projects and easiness-to-customization. The open-source feature
not only gave us short time-to-deploy but also guarantees the
reproducibility of the overall proposed framework. To this end we
selected some basic computer vision algorithms like HOG for
pedestrian detection and mean-shift as a code-base for tracking.

HOG was selected for pedestrian detection being fast and
already implemented into the OpenCV C++ Library. Moreover it
performed well with the help of depth-data pre-processing
described in 4.5 used to eliminate false positives.

The purpose of the proposed framework is not to present a good
pedestrian technique (between many described in a recent survey
[31] HOG is still a good technique) but a Pedestrian Crossing
detection algorithm that combined with all other modules
achieves the objective.

As regards the mean-shift, we needed a fast and lightweight
tracking algorithm with an easy implementation to be used as a
code-base for customization. Our customization introduces a lot of
“a-priori” knowledge from environment in order to achieve best
results.

Other algorithmic solutions could be easily replaced by end-
user however, taking advantage from the insights learned from this
paper, will be able to build a system to achieve same or better
results than those presented in next section.

5. Experimental results

The validation of the classifiers described in Section 4.5 has
been carried out on a test set, labelled by an expert and obtained
from 1 h of acquisition containing 108 elements as candidate TCs.
The results of classification on the test set are reported in the
confusion matrices in Tables 2 and 3. The accuracy of the cascade of
classifiers stated at an accuracy of 99.97% for TCs classification with
respect to the three classes and an accuracy of 99.07% for the TC
prediction.

The system described in this paper has been setup on city buses
of the public transportation company operating in the city of
Catania, Italy. The line identified for our tests runs through the
main streets of the city centre. Data used for the experiments have
been acquired on four week days for a total of 16 h, 4 drivers and
different weather and light conditions. 528 TCs were found. A
summary of the results obtained with the proposed framework is
shown in Table 4. It is possible to note that although most



Fig. 10. The visual output of the presented framework is a graphical representation of all TC occurrences with different class, frequency and RI-level.
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recognised conflicts are related to pedestrian, the most frequent
high RI-level occurs in the case of intersection conflict.

The conflicts recognised by our framework, are graphically
reported on a map where each conflict is shown as a pin with
different color and size as well as with a symbol that represents the
TC class:

� Green means low RI;
� Red means medium RI;
� Black means high RI.

The size of the marker is proportional to the number conflicts of
the same TC class and RI level detected in that place.

The final map obtained with our framework is shown in Fig. 10.
The augmented map gives an idea of the distribution of the risk for
road safety in the analysed urban area and allows to immediately
detect locations at which to intervene. Moreover by using our
framework it is possible to analyse the results of an intervention
and have a feedback of the actual safety improvement.

To further demonstrate the goodness of our framework we
compared the obtained results with the crash database of the
Public Transport Company AMT of Catania: the places in which
there is an high RI (black in Fig. 10) are locations were each month
there is at least one crash recorded confirming the low safety level
of the places.

6. Conclusion and future works

Given the unpredictability of driver behaviours and the random
and rare nature of crashes, it is becoming increasingly apparent
that the necessary data collection should be obtained from
naturalistic approaches like the Traffic Conflict Technique. The
framework described in this paper is based on the Traffic Conflict
Analysis theory in conjunction with Computer Vision algorithms. It
can be used as a decision support system for analysts and
governments to improve road safety and intervene to prevent
accidents instead of waiting for them to happen and collect
statistical data to make a decision. A possible future work can
involve a behavioural analysis of the driver based on wearable
technologies [32]. Also vision systems acquiring information on
drivers through video analysis can give further information to the
system to better understand what are the causes of a conflict and
then to learn how to better prevent an accident. Finally all of the
data collected with these kind of systems can be used to make a
driving assistive technology that infer how dangerous is a certain
road and alert the driver itself or change vehicle parameters in
order to prevent certain predefined condition that can create a
conflict or an accident.
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