
Representing scenes for real-time context classification
on mobile devices

G.M. Farinella a,n, D. Ravì a, V. Tomaselli b, M. Guarnera b, S. Battiato a

a Image Processing Laboratory, University of Catania, Italy
b Advanced System Technology – Computer Vision, STMicroelectronics, Catania, Italy

a r t i c l e i n f o

Article history:
Received 30 November 2013
Received in revised form
13 May 2014
Accepted 19 May 2014
Available online 9 June 2014

Keywords:
Scene representation
Scene classification
Image descriptor
GIST
JPEG
DCT features
Mobile devices
Wearable cameras

a b s t r a c t

In this paper we introduce the DCT-GIST image representation model which is useful to summarize the
context of the scene. The proposed image descriptor addresses the problem of real-time scene context
classification on devices with limited memory and low computational resources (e.g., mobile and other
single sensor devices such as wearable cameras). Images are holistically represented starting from the
statistics collected in the Discrete Cosine Transform (DCT) domain. Since the DCT coefficients are usually
computed within the digital signal processor for the JPEG conversion/storage, the proposed solution
allows to obtain an instant and “free of charge” image signature. The novel image representation exploits
the DCT coefficients of natural images by modelling them as Laplacian distributions which are
summarized by the scale parameter in order to capture the context of the scene. Only discriminative
DCT frequencies corresponding to edges and textures are retained to build the descriptor of the image. A
spatial hierarchy approach allows to collect the DCT statistics on image sub-regions to better encode the
spatial envelope of the scene. The proposed image descriptor is coupled with a Support Vector Machine
classifier for context recognition purpose. Experiments on the well-known 8 Scene Context Dataset as
well as on the MIT-67 Indoor Scene dataset demonstrate that the proposed representation technique
achieves better results with respect to the popular GIST descriptor, outperforming this last representa-
tion also in terms of computational costs. Moreover, the experiments pointed out that the proposed
representation model closely matches other state-of-the-art methods based on bag of Textons collected
on spatial hierarchy.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction and motivations

Scene recognition is a key process of human vision which is
exploited to efficiently and rapidly understand the context and
objects in front of us. Humans are able to recognize complex visual
scenes at a single glance, despite the number of objects with
different poses, colors, shadows and textures that may be con-
tained in the scenes. Seminal studies in computational vision [1]
have portrayed scene recognition as a progressive reconstruction
of the input from local measurements (e.g., edges and surfaces). In
contrast, some experimental studies have suggested that recogni-
tion of real-world scenes may be initiated from the encoding of the
global configuration, bypassing most of the details about local
concepts and objects information [2]. This ability is achieved
mainly by exploiting the holistic cues of scenes that can be
processed as single entity over the entire human visual field

without requiring attention to local features [3]. Successive studies
suggest that the humans rely on local as much as on global
information to recognize the scene category [4,5].

The recognition of the scene is a useful task for many relevant
Computer Vision applications: robot navigation systems [6],
semantic organization of databases of digital pictures [7],
content-based image retrieval (CBIR) [8], context driven focus
attention and object priming [9,10], and scene depths estimation
[11]. To build a scene recognition system, different considerations
about the spatial envelope properties (e.g., degree of naturalness
and degree of openness) and the level of description of the scene
(e.g., subordinate, basic, and superordinate) have to be taken into
account [12].

The results reported in [13] demonstrate that a context recog-
nition engine is important for the tuning of color constancy
algorithms used in the Imaging Generation Pipeline (IGP) and
hence improve the quality of the final generated image. More in
general, in the research area of single sensor imaging devices [14],
the scene context information can be used to drive different tasks
performed in the IGP during both acquisition time (e.g., autofocus,
auto-exposure, and white balance) and post-acquisition time (e.g.,
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image enhancement and image coding). For example, the auto-
scene mode of consumer and wearable cameras could allow to
automatically set the acquisition parameters improving the per-
ceived quality of the captured image according to the recognized
scene (e.g., Landscape and Portrait). Furthermore, context recogni-
tion could be functional for the automatic setting of surveillance
cameras which are usually placed in different scene contexts (e.g.,
Indoor vs Outdoor scenes and Open vs Closed scenes), as well as in
the application domain of assistive technologies for visually
impaired and blind people (e.g., indoor vs outdoor recognition
with wearable smart glasses). The need for the development of
effective solution for scene recognition systems to be embedded in
consumer imaging devices (e.g., consumer digital cameras, smart-
phones, and wearable cameras) is confirmed by the growing
interest of consumer devices industry which are including those
capabilities in their products. Different constraints have to be
considered in transferring the ability of scene recognition into the
IGP of a single sensor imaging devices [15]: memory limitation,
low computational power, as well as the input data format to be
used in scene recognition task (e.g., JPEG images).

This paper presents a new computational model to represent
the context of the scene based on the image statistics collected in
the Discrete Cosine Transform (DCT) domain. We call DCT-GIST the
proposed scene context descriptor. Since the DCT of the image
acquired by a device is always computed for JPEG conversion/
storage,1 the features extraction process useful to compute the
signature of the scene context is “free of charge” for the IGP and
can be performed in real-time independently from the computa-
tional power of the device. The rationale beyond the proposed
image representation is that the distributions of the AC DCT
coefficients (with respect to the different AC DCT basis) differ
from one class of scene context to another and hence can be used
to discriminate the context of scenes. The statistics of the AC DCT
coefficients can be approximated by a Laplacian distribution [16]
almost centered at zero; we extract an image signature which
encodes the statistics of the scene by considering the scales of
Laplacian models fitted over the distribution of AC DCT coefficients
of the image under consideration (see Fig. 1). This signature
computed on a spatial pyramid [17,18], together with the informa-
tion related to the colors obtained considering the DC compo-
nents, is then used for the automatic scene context categorization.

To reduce the computational complexity involved in the image
representation extraction, only a subset of the DCT frequencies
(summarizing edges and textures) are considered. To this purpose
a supervised greedy based selection of the most discriminative
frequencies is performed. To improve the discrimination power,
the spatial envelope of the scene is encoded with a spatial
hierarchy approach useful to collect the AC DCT statistics on image
sub-regions [17,18]. We have coupled the proposed image repre-
sentation with a Support Vector Machine classifier for final context
recognition purpose. The experiments performed on the 8 Scene
Context Dataset [12] as well as on the MIT-67 Indoor Scene dataset
[5] demonstrate that the proposed DCT-GIST representation
achieves better results with respect to the popular GIST scene
descriptor [12]. Moreover, the novel image signature outperforms
GIST in terms of computational costs. Finally, with the proposed
image descriptor we obtain results comparable with other more
complex state-of-the-art methods exploiting spatial pyramids [17]
and combination of global and local information [5].

The primary contribution of this work is related to the new
descriptor for scene context classification which we call DCT-GIST.
We emphasize once again the fact that the proposed descriptor is
built on information already available in the IGP of single sensor

devices as well as in any image coded in JPEG format. Compared to
many other scene descriptors extracted starting from RGB images
[4,12,13,17–20], the proposed representation model has the fol-
lowing peculiarities/advantages:

� the decoding/decompression of JPEG is no needed to extract
the scene signature;

� visual vocabularies have not to be computed and maintained in
memory to represent both training and test images;

� the extraction of the scene descriptor does not need complex
operation such as convolutions with bank of filters or domain
transformations (e.g., FFT);

� there is no need of a supervised/unsupervised learning process
to build the scene descriptor (e.g., there is no need of pre-
labeled data and/or clustering procedure);

� it can be extracted directly into the Imaging Generation Pipe-
line of mobile devices with low computational resources;

� the recognition results closely match state-of-the-art methods
cutting down the computational resources (e.g., computational
time needed to compute the image representation).

The remainder of this paper is organized as follows: Section 2
briefly surveys the related works. Section 3 gives the background
about the AC DCT coefficients distributions for different image
categories. Section 4 presents the proposed image representation,
whereas the new Image Generation Pipeline architecture is
described in Section 5. Section 6 reports the details about the
experimental settings and discusses the obtained results. Finally,
Section 7 concludes the paper with hints for future works.

2. Related works

The visual content of the scene can be described with local or
global representation models. A local based representation of the
image usually describes the context of the scene as a collection of
previously recognized objects/concepts within the scene, whereas
a global (or holistic) representation of the scene context considers
the scene as a single entity, bypassing the recognition of the
constituting concepts (e.g., objects) in the final representation. The
representation models can significantly differ for their capability
of extracting and representing important information for the
context description.

Many Computer Vision researchers have proved that holistic
approaches can be effectively used to solve the problem of rapid
and automatic context recognition. Most of the holistic approaches
share the same basic structure that can be schematically summar-
ized as follows:

1. A suitable features space is considered (e.g., textons vocabul-
aries [17]). This space must emphasize specific image cues such
as corners, oriented edges, and textures.

2. Each image under consideration is projected into the consid-
ered feature space. A descriptor is built considering the image
as a whole entity (e.g., textons distributions [17]).

3. Context recognition is obtained by using Pattern Recognition
and Machine Learning algorithms on the computed represen-
tation of the images (e.g., by using K-nearest neighbors
and SVM).

A wide class of techniques based on the above scheme, works
extracting features on perceptually uniform color spaces (e.g.,
CIELab). Typically, filter banks [19,21] or local invariant descriptors
[18,20] are employed to capture image cues and to build the visual
vocabulary to be used in a bag of visual words model [22]. An
image is considered as a distribution of visual words and this1 JPEG is the most common used format for images and videos.
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Fig. 1. Given the luminance channel of an image (a), the feature vector associated to the context of the scene is obtained considering the statistics of the AC coefficients
corresponding to the different AC DCT basis (b). For each AC frequency, the coefficients distribution is computed (c) and fitted with a Laplacian model (d). Each fitted
Laplacian is characterized by a scale parameter related to the slope of the distribution. The final image signature is obtained collecting the scale parameters of the fitted
Laplacians among the different AC DCT coefficient distributions. As specified in Section 4, information on colors (i.e., DC components) as well as on the spatial arrangement of
the DCT feature can be included to obtain a more discriminative representation. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)
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holistic representation is used for classification purposes. Spatial
information have been also exploited in order to capture the
layout of the visual words within images [18,23]. A review of
some other state-of-the-art methods working with features
extracted on spatial domain can be found in [24].

On the other hand, different approaches have considered the
frequency domain as an useful and effective source of information
to holistically encode an image for scene classification. The statistics
of natural images on frequency domain reveal that there are
different spectral signatures for different image categories [25]. In
particular by considering the shape of the FFT spectrum of an image
it is possible to address scene category [12,25,26], scene depth [11],
and object priming such as identity, scale and location [10].

As suggested by different studies in computational vision,
scene recognition may be initiated from the encoding of the global
configuration of the scene, disregarding details and object infor-
mation. Inspired by this knowledge, Torralba and Oliva [26] have
introduced computational procedures to extract the global struc-
tural information of complex natural scenes looking at the
frequency domain [12,25,26]. The computational model presented
in [26] works in the Fourier domain where Discriminant Structural
Templates (DSTs) are built using the power spectrum. A DST is a
weighting scheme over the power spectrum that assigns positive
values to the frequencies that are representative for one class and
negative for the others. In particular the sign of the DST values
indicates the correlation between the spectral components and
the “spatial envelope” properties of the two groups to be distin-
guished. When the task is to discriminate between two kinds of
scenes (e.g., Natural vs. Artificial) a suitable DST is built and used
for the classification. A DST is learned in a supervised way using
Linear Discriminant Analysis. The classification of a new image is
hence performed by the sign of the correlation between the power
spectrum of the considered image and the DST. A relevant issue in
building a DST is the sampling of the power spectrum both at the
learning and classification stages (a bank of Gabor filters with
different frequencies and orientation is used in [26]). The final
classification is performed on the Principal Components of the
sampled frequencies. The improved version of the DST descriptor
is called GIST [12,25]. Oliva and Torralba [12] performed tests
using GIST on a dataset containing pictures of 8 different environ-
mental scenes covering a large variety of outdoor places obtaining
good performances. The GIST descriptor is nowadays one of the
most used representation to encode the scene as whole. It has
been used in many Computer Vision application domains such as
robot navigation [6], visual interestingness [27], image retrieval
[28], and video summarization [29].

Luo and Boutell [30] built on previous works of Torralba and
Oliva [26] and proposed to use Independent Component Analysis
rather than PCA for features extraction. In addition they have
combined the camera metadata related to the image capture
conditions with the information provided by the power spectra
to perform the final classification.

Farinella et al. [31] proposed to exploit features extracted by
ordering the Discrete Fourier Power Spectra (DFPS) to capture the
naturalness of scenes. By ordering the DFPS the overall “shape” of
the scene in frequency domain is captured. In particular the
frequencies that better capture the differences in the energy
“shapes” related to Natural and Artificial categories are selected
and ordered by their response values in the Discrete Fourier power
spectrum. In this way a “ranking number” (corresponding to the
relative position in the ordering) is assigned to each discriminative
frequency. The vector of the response values and the vector of the
relative positions in the ordering of the discriminative frequencies
are then used singularly or in combination to provide a holistic
representation of the scene. The representation was used with a
probabilistic model for Natural vs Artificial scene classification.

The Discrete Cosine Transform (DCT) domain was explored by
Farinella and Battiato [15] to build histograms of local dominant
orientations to be used as scene representation at the abstract
level of description (e.g., Natural vs Artificial and Indoor vs Out-
door). The representation is built collecting the information about
orientation and strength of the edges related to the JPEG image
blocks [7]. This representation was coupled with a logistic classi-
fier to discriminate between the different scene contexts.

The aforementioned techniques disregard the spatial layout of
the discriminative frequencies. Seminal studies proposed by Tor-
ralba et al. [9–11] have proposed to further look at the spatial
frequency layout to address more specific vision tasks by exploit-
ing contextual information (e.g., object detection and recognition,
and scene depth estimation).

3. The statistics of natural image categories in DCT domain

One of the most popular standard for lossy compression of
images is the JPEG [32]. The JPEG compression is available in every
IGP of single sensor consumer devices such as digital consumer
cameras, smartphones and wearable cameras (e.g., smart glasses).
Moreover, most of the images on Internet (e.g., in social networks
and websites) are stored in JPEG format. Nowadays, around 70% of
the total images on the top 10 million websites are in JPEG
format.2 Taking into account these facts, a scene context descriptor
that can be efficiently extracted in the IGP and/or directly in the
JPEG compressed domain is desirable.

The JPEG algorithm splits the image into non-overlapping
blocks of size 8�8 pixels and each block is then processed with
the Discrete Cosine Transform (DCT) before quantization and
entropy coding [32]. The DCT has been studied by many research-
ers which have proposed different models for the distributions of
the DCT coefficients. One of the first conjecture was that the AC
coefficients have Gaussian distributions [33]. Different other
possible distributions of the coefficients have also been proposed,
including Cauchy, generalized Gaussian, as well as a sum of
Gaussians [34–38]. The knowledge about the mathematical form
of the statistical distribution of the DCT coefficient is useful for the
quantizer design and noise mitigation for image enhancement.
Although methods to extract features directly from JPEG com-
pressed domain have been presented in the literature in the
application context of image retrieval [39,40], at the best of our
knowledge there are not works where the DCT coefficients
distributions are exploited for scene classification. The proposed
image representation is inspired by the works of Lam [16,41],
where the semantic content of the images has been characterized
in terms of DCT distributions modelled as Laplacian and general-
ized Gaussian models.

After performing the DCT on each 8�8 block of an image and
collecting the corresponding coefficients to the different AC basis
of the DCT, a simple observation of the distribution indicates that
they resemble a Laplacian (see Fig. 1(c)). This guess has been
demonstrated through a rigorous mathematical analysis in [16].
The probability density function of a Laplacian distribution can be
written as

f ðxjμ; bÞ ¼ 1
2b

exp �jx�μj
b

� �
ð1Þ

where μ is the location parameter and bZ0 is the scale parameter.
Fig. 2 reports examples of different Laplacian distributions. At
varying of the scale parameter, the Laplacian distribution changes

2 Source: http://w3techs.com/technologies/overview/image_format/all. The
statistics is computed on the top 10 million websites according to the Amazon.
com company (Nov 2013).
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its shape. Given N samples {x1,…,xN}, the parameters μ and b can
be simply estimated with the maximum likelihood estimator [42].
Specifically, μ corresponds to the median of the samples,3 whereas
b is computed as follows:

b¼ 1
N

∑
N

i ¼ 1
xi�μ :j
�� ð2Þ

The rationale beyond the proposed representation for scene
context classification is that the context of different classes of
scenes differs in the scales of the AC DCT coefficient distributions.
Hence, to represent the context of the scene we can use the feature
vector of the scales of the AC DCT coefficients distributions of an
image after a Laplacian fitting. Fig. 3 reports the average “shapes”
of the AC DCT coefficients Laplacian distributions related to the
8 Scene Context Dataset [12]. The dataset contains 2600 color
images (256�256 pixels) belonging to the following 8 outdoor
scene categories: coast, mountain, forest, open country, street, inside
city, tall buildings, highways. The Laplacian shapes in Fig. 3 are
computed by fitting the Laplacian distributions for the different AC
DCT coefficients of the luminance channel of each image and then
averaging the Laplacian parameters with respect to the 8 different
classes (color coded in Fig. 3). A simple observation of the slopes of
the different Laplacian distributions (corresponding to the b
parameter) is useful to better understand the rationale beyond
the proposed scene descriptor. The slopes related to the different
classes are captured by the b parameters computed (with low
computational cost) from the images directly encoded in the DCT
domain (i.e., JPEG format). The guess is that the multidimensional
space of the b parameters is discriminative enough for scene
context recognition. Although it is difficult to visualize the
N-dimensional distributions of the b parameters, an intuition of
the discriminativeness of the space can be obtained by considering
two AC DCT frequencies and plotting the 2-dimensional distribu-
tions of the related Laplacian parameters. Fig. 4 shows the
2-dimensional distributions obtained by considering two DCT
frequencies corresponding to the DCT basis (0,1) and (1,0) which
are useful to reconstruct the vertical/horizontal edges of each
image block (see Fig. 1(b)). As the figure points out, already
considering only two AC DCT frequencies there is a good separa-
tion among the eight different classes. The experiments reported
in Section 6 quantitatively confirm the above rationale.

4. Proposed DCT-GIST image representation

In this section we formalize the proposed image representation
which builds on the main rationale that different scene classes
have different AC DCT coefficient distributions (see Section 3).
Fig. 3 shows the average of the AC DCT coefficient distributions
after a Laplacian fitting on images belonging to different scene
contexts. Differences in the slopes of the Laplacian distributions
are evident and related to the different classes. As a consequence
of this observation, we propose to encode the scene context by
concatenating all the Laplacian parameters related to the median
and slope (μ and b) which are computed by considering the
different AC DCT coefficients distributions of the luminance
channel of the image.4 In addition to these information, the mean
and variance of the DC coefficients can be also included into the
feature vector to capture the color information, as well as the AC
DCT Laplacian distributions parameters obtained considering the
Cb and Cr channels.5 In Section 6 we show the contribution of each
component involved in the proposed DCT-GIST image descriptor.

The aforementioned image features are extracted in the IGP just
after the image acquisition step, without any extra complex proces-
sing. Specifically, the Laplacian parameters related to the AC DCT
coefficients are obtained collecting the AC DCT coefficients inside the
JPEG encoding module performed before the image storage. In case
the image is already stored in JPEG (e.g., a picture from the web), the
information useful for scene context representation can be directly
collected in the compressed domain without any further processing.
Indeed, to build the scene descriptor in the DCT compressed domain,
only simple operations (i.e., the median and the mean absolute
deviations from the median) are needed to compute μ and b for the
different image channels, as well as to compute themean and variance
on the DC components. This cuts down the computational complexity
with respect to other descriptors which usually involve convolution
operations (e.g., with bank of filters [17] or Gaussian Kernels [12]) or
other more complex pipelines (e.g., Bag of Words representation [18])
to build the final scene context representation.

It is well-known that some of the DCT basis are related to the
reconstruction of the edges of an 8�8 image block (i.e., first row
and first column of Fig. 1(b)), whereas the others are more related
to the reconstruction of the textured blocks. As shown in [43] the
most prominent patterns composing natural images are the edges.
High frequencies are usually affected by noise and could be not
really useful for discriminating the context of a scene. For this
reason we have performed an analysis to understand which of the
AC DCT basis can give a real contribution to discriminate between
different classes of scenes. One more motivation to select only the
most discriminative AC DCT frequencies is the reduction of the
complexity of the overall system.

To properly select the AC DCT frequencies to be employed in the
final image representation, we have collected (from Flickr) and
labelled a set of 847 uncompressed images to be used as validation
set. These images belong to the eight different classes of scene context
[12] (see Fig. 3) and have variable size (max size 6000�4000, min size
800�600). We used uncompressed images to avoid that the selection
processes of the most discriminative frequencies could be biased by
the JPEG quantization step. On this dataset we have performed scene
context classification by representing images through the Laplacian
fitting of a single AC DCT basis. This step has been repeated for each AC
DCT basis. A greedy fashion approach has been hence employed to
select the most discriminative frequencies. This means that as first
round the classification has been performed for all the AC DCT basis

−10 −8 −6 −4 −2 0 2 4 6 8 10
0
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Fig. 2. Laplacian distribution at varying of μ and b.

3 Note that for the different AC DCT distributions the μ value is not equal
to zero.

4 Note that in the JPEG format the image is converted in the YCbCr color model
as first step.

5 The DCT chrominance exhibits the same distribution as for the luminance
channel [16].
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separately. The images have been hence classified after performing the
learning of a support vector machine. A leave one out modality has
been used to evaluate the discriminativeness of each AC DCT basis.
Thenwe have selected the most discriminative frequency and we have
performed another round of learning and classification considering
the selected frequency coupled with one of the remaining frequencies
in order to jointly consider two AC DCT basis. This procedure has been
recursively repeated to greedily select frequencies. The experiments on
the validation set suggested that a good trade-off between context
classification accuracy and computational complexity (i.e., the number
of AC DCT frequencies to be included in a real IGP to fit with required
computational time and memory resources) is the one which con-
siders the AC DCT frequencies marked in red in Fig. 5. Let Dði; jÞ ,
i¼ 1;…;7, j¼ 1;…;7, be the DCT components corresponding to the
2D DCT basis (i,j) in Fig. 1(b). The final set of the selected AC DCT basis
in Fig. 5 is defined as

F ¼ fði;0Þji¼ 1;…;7g⋃fði;1Þji¼ 1;…;3g⋃fð0; jÞjj
¼ 1;…;7g⋃fð1; jÞjj¼ 1;…;3g⋃fði; jÞji¼ 0…;7; j¼ 7� ig: ð3Þ
Table 1 reports the accuracy obtained on the aforementioned

validation dataset considering the Laplacian fitting of all the 63 AC

DCT basis, as well as the results obtained considering the 25
selected basis in Eq. (3) (see Fig. 5). Notice that the overall accuracy
obtained with the only 25 selected AC DCT basis is higher than the
one obtained by considering all the 63 AC DCT basis. This is due to
the fact that high frequencies (i.e., the ones below the diagonal in
Fig. 5) could contain more noise information than the other
frequencies, making confusion into the feature space.

The scene context descriptor proposed so far, uses a global
feature vector for describing an image by leaving out the informa-
tion about the spatial layout of the local features. The relative
position of a local descriptor can help to disambiguate concepts
that are similar in terms of local descriptor. For instance, the visual
concepts “sky” and “sea” could be similar in terms of local
descriptor, but they are typically different in terms of position
within the scene. The relative position can be thought as the
context in which a feature takes part with respect to the
other features within an image. To encode information of the
spatial layout of the scene, different pooling strategies have been
proposed in literature [17,18]. Building on our previous work [17]
we have augmented the image representation discussed above by
collecting the AC DCT distributions over a hierarchy of sub-regions.

Coast Forest Highway Inside City

Mountain Open Country Street Tall Building

Fig. 3. Average Laplacian distributions of the AC DCT coefficients considering the 8 Scene Context Dataset [12]. The different scene classes are color coded. (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Specifically, the image is partitioned using three different mod-
alities: horizontal, vertical and regular grid. These schemes are
recursively applied to obtain a hierarchy of sub-regions as shown
in Fig. 6. For each sub-region at each resolution level, the Laplacian
parameters (μ and b) over the selected AC DCT coefficients are
computed and concatenated to compose the feature vector, thus
introducing spatial information. As in [17] we have used three
levels in the hierarchy. The integral imaging approach [17,44] is

exploited to efficiently compute the Laplacian parameters of the
different AC DCT coefficients. The accuracy obtained on the
aforementioned validation set, by considering the spatial hierarchy
based representation was 0.8233%, improving the previous result
of more than 6% (see Table 1).

We can formalize the proposed DCT-GIST scene descriptor as
following. Let rl;s be a sub-region of the image under consideration
at level lAf0;1;2g of the subdivision scheme sAS¼ fHorizontal;
Vertical;Gridg (see Fig. 6).6 Let Hl;s and Wl;s be the number of 8�8
blocks of pixel with respect to the height and width of the region
rl;s. We indicate with the notation Bl;s

h;w;c , h¼ 1;…;Hl;s,
w¼ 1;…;Wl;s, an 8�8 block of pixels of the region rl;s considering
the color channel cAfY ;Cb;Crg. Let Dl;s

h;w;c be the DCT components
obtained from Bl;s

h;w;c through a 2-dimensional DCT processing. We
indicate with Dl;s

h;w;cði; jÞ, i¼ 1;…;7, j¼ 1;…;7, the DCT components
corresponding to the 2D DCT base (i,j) of Fig. 1(b). Let F be the set
of the selected AC DCT basis defined above (Eq. (3)). Then, the

Fig. 4. 2-dimensional distributions (fitted with a Gaussian model) related to the Laplacian distribution parameters of the DCT frequency (0,1) and (1,0) in Fig. 1(b).

Fig. 5. Final AC DCT frequencies considered for representing the context of the
scene (marked in red). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

Table 1
Accuracy of scene context classification on the validation dataset.

Approach Accuracy

All frequencies (63 AC DCT basis) 0.7410
Selected AC DCT basis (Eq. (3)) 0.7549
Selected AC DCT basis (Eq. (3)) and spatial hierarchy 0.8233

6 Note that we define r0;s as the entire image under consideration for every
sAS.
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scene context descriptor of the region rl;s is computed as in the
following equations (4)–(7):

μl;s
c ð0;0Þ ¼

1

Hl;sWl;s
∑
Hl;s

h ¼ 1
∑
Wl;s

w ¼ 1
Dl;s
h;w;cð0;0Þ ð4Þ

bl;sc ð0;0Þ ¼
1

Hl;sWl;s
∑
Hl;s

h ¼ 1
∑
Wl;s

w ¼ 1
ðDl;s

h;w;cð0;0Þ�μl;s
c ð0;0ÞÞ2 ð5Þ

where Eq. (4) and (5) are evaluated for each cAfY ;Cb;Crg. The
features in Eqs. (4) and (5) are related to the DC components of the
DCT.

μl;s
c ði; jÞ ¼MedianðfDl;s

h;w;cði; jÞjh¼ 1;…;Hl;s;w¼ 1;…;Wl;sgÞ ð6Þ

bl;sc ði; jÞ ¼
1

Hl;sWl;s
∑
Hl;s

h ¼ 1
∑
Wl;s

w ¼ 1
Dl;s
h;w;cði; jÞ�μl;s

c ði; jÞj
��� ð7Þ

where Eq. (6) and (7) are evaluated for each ðc; i; jÞAfcA
fY ;Cb;Crg; ði; jÞAFg. The features in Eqs. (6) and (7) are related to
the 25 selected AC components of the DCT.

Let ½μl;s;bl;s� be the feature vector related to the region rl;s

computed considering the Eqs. (4)–(7). The final image represen-
tation is obtained concatenating the representations ½μl;s, bl;s� of all
the sub-regions in the spatial hierarchy (Fig. 6). The computational
complexity to compute the proposed image representation is
linear with respect to the number of 8�8 blocks composing the
image region under consideration.

5. The image generation pipeline architecture

In this section we describe the system architecture to embed
the scene context classification engine into an Image Generation
Pipeline. The overall scheme is shown in Fig. 7. The “Scene Context
Classification” module is connected to the “DCT” module. The
“High resolution Pipe” block represents a group of algorithms
devoted to the generation of high resolution images. This block is
linked to the “Acquisition Information” block devoted to collect
different information related to the image (e.g., exposure, gain,
focus, white balance and). These information are used to capture
and process the image itself. The “Viewfinder Pipe” block repre-
sents a group of algorithms which usually work on downscaled
images to be shown in the viewfinder of a camera. The “Scene
Context Classification” block works taking the input from the
viewfinder pipe to determine the scene class of the image. The
recognized class of the scene influences both the “Acquisition
Information” and the “High resolution pipe” blocks in setting the

parameters for the image acquisition. Moreover, the information
obtained by the “Scene Context Classification” block can be
exploited by the “Application Engine” block which can perform
different operations according to the detected scene category. The
“Memory lines” and “DMA” blocks provide the data arranged in
8�8 blocks to the “DCT” module for each image channel (Y, Cb,
Cb). The “JPEG” block is the one that produces the final compressed
image. The sub-blocks, composing the “Scene Context Classifica-
tion” module, are described in the next subsections.

5.1. DCT coefficients accumulator

This block is directly linked to the “DCT” block, and thus it
receives the DCT coefficients for the luminance and both chromi-
nance channels. With reference to the hierarchical scheme shown
in Fig. 6, this block accumulates DCT coefficients in histograms
starting from the configuration having the smallest region size
(e.g., level 2 of grid subdivision). For all the larger regions in the
hierarchy, the computations can be performed by merging corre-
sponding histogram bins previously computed at fine resolution
level (e.g., the information already computed at level 2 can be
exploited to compute the table at level 1 of grid subdivision).

5.2. Scene context representation

Starting from the histograms obtained by the “DCT Coefficients
Accumulator” block, all the pairs of Laplacian parameters (μ and b)
are computed by using the Laplacian fitting equations presented in
Section 4. The scene context representation is then obtained by
concatenating all the computed Laplacian parameters related to
the selected DCT frequencies of all the sub-regions in the hierarchy
for the three channels composing the image. In addition to this
information, the mean and variance of the DC coefficients upon
the hierarchy are computed exploiting the equations introduced in
Section 4.

5.3. Classifier

The “Classifier” block takes the feature vector as input (i.e., the
scene context representation) to perform the final scene context
classification. It takes into account a classifier learned offline (i.e.,
the block “Model” in Fig. 7 which is learned out of the device).
A Support Vector Machine is employed in our system architecture.

Fig. 6. Hierarchical subdivision of the image.
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6. Experimental settings and results

In this section we report the experiments performed to quantita-
tively assess the effectiveness of the proposed DCT-GIST scene
context descriptor with respect to other related approaches. In
particular, we compare the performances obtained by the proposed
representation model with respect to the ones achieved by the
popular GIST descriptor [12] and the RoiþGist Segmentation model
proposed in [5]. Moreover, since the proposed representation is
obtained collecting information on a spatial hierarchy, we have
compared it with respect to the one which uses bags of textons on
the same spatial hierarchy [17]. Finally, we describe how the
architecture presented in Section 5 has been implemented on an
IGP of a mobile device to demonstrate the effectiveness and the real-
time performances of the proposed method. Experiments have been
done by using a SVM and a 10-fold cross-validation protocol on each
considered dataset. The images are first partitioned into 10 folds by
making a random reshuffling of the dataset. Subsequently, 10
iterations of training and testing are performed such that within
each iteration a different fold of the data is held-out for testing while
the remaining folds are used for learning. The final results are
obtained by averaging over the 10 runs. Since the proposed image
representation can be used as input for any classifier, we reports also
results obtained by exploiting the DCT-GIST representation with a
Convolutional Neural Network classifier.

6.1. Proposed DCT-GIST representation vs GIST representation

To perform this comparisonwe have taken into account the scene
dataset used in the paper introducing the GIST descriptor [12]. The
dataset is composed by 2688 color images with resolution of
256�256 pixels (JPEG format) belonging to 8 scene categories: Tall
Building, Inside City, Street, Highway, Coast, Open Country, Mountain,
Forest. This dataset, together with the original code for computing the
GIST descriptor are available on the web [45]. To better highlight the
contribution of the different components involved in the proposed
DCT-GIST representation (see Section 4) we have considered the
following configurations (Table 2):

(A) Laplacian parameters of the 63 AC DCT components computed
on Y channel;

(B) Laplacian parameters of the 25 selected AC DCT components
computed on Y channel;

(C) Laplacian parameters of the 25 selected AC DCT components
computed on Y channel and spatial hierarchy with 3 levels
(l¼0,1,2);

(D) Laplacian parameters of the 25 selected AC DCT components
computed on Y channel, mean and variance of the DC DCT
components computed on Y channel, and spatial hierarchy
with 3 levels (l¼0,1,2);

(E) Laplacian parameters of the 25 selected AC DCT components
computed on YCbCr channels, mean and variance of the DC
DCT components computed on YCbCr channels;

(F) Laplacian parameters of the 25 selected AC DCT components
computed on YCbCr channels, mean and variance of the DC
DCT components computed on YCbCr channels, and spatial
hierarchy with 3 levels (l¼0,1,2).

Fig. 8 reports the average per class accuracy obtained consider-
ing all the above DCT-GIST representation configurations together
with the results obtained employing the GIST descriptor [12]. The
results show that the scene representation which considers only
the Laplacian parameters of the 25 selected AC DCT frequencies
fitted on the Y channel, i.e., the configuration (B), already obtains
an accuracy of 75.20%. Encoding the information on the spatial
hierarchy, i.e., configuration (C), is useful to improve the results of
more than 6%. A small, but still useful, contribution is given by the
color information obtained considering the DC DCT components,
i.e., configuration (D). The proposed DCT-GIST representation
obtains better results with respect to the GIST descriptor in both
cases with and without spatial hierarchy (our with spatial hier-
archy: 85.25%, our without spatial hierarchy: 84.60%, GIST:
84.28%). Table 3 reports the confusion matrix related to the
proposed DCT-GIST representation corresponding to the config-
uration (F), whereas Table 4 shows the confusion matrix obtained
by employing the GIST descriptor. One should not overlook that
the proposed DCT-GIST representation has a very limited compu-
tational overhead for the image signature generation because

  
   

Scene Context Classification 

High Resolution Pipe

Viewfinder Pipe

Acquisition
Information

DCT 
Coefficients 
Accumulator 

Classifier

JPEG

DCTMemory
Lines DMA

Scene Context 
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Application 
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Model

Scene Class

Sensor

Fig. 7. Architecture of the IGP including the proposed scene context classification engine.

Table 2
The different configurations of the proposed DCT-GIST image representation.

DCT-GIST
configuration

DCT frequencies Image
channels

Spatial
hierarchy

(A) All 63 AC components Y No
(B) Selected 25 AC components Y No
(C) Selected 25 AC components Y Yes
(D) Selected 25 AC components þ

DC component
Y Yes

(E) Selected 25 AC components þ
DC component

YCbCr No

(F) Selected 25 AC components þ
DC component

YCbCr Yes
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it is directly computed by considering DCT coefficients already
available from the JPEG encoder/format. Specifically, the computa-
tion of the image representation (F) requires about 1 operation per
pixel (i.e., it is linear with respect to the image size). This highly
reduces the complexity of the scene recognition system. Moreover,
differently than GIST descriptor, the proposed representation is
suitable for mobile platforms (e.g., smartphones and wearable
cameras) since the DCT is already embedded in the Image
Generation Pipeline, whereas the GIST descriptor needs extra
overhead to compute the signature of the image and employs
operations which are not present in the current IGP of single
sensors imaging devices (e.g., FFT on the overall image).
As detailed in the Sub-Section 6.5, the proposed DCT-GIST
descriptor with configuration (F) can be computed in 15.9 ms on
QVGA images (i.e., 320�240 pixels) with a 1 GHz Dual-core CPU.
This computational time considers also the operations needed to
compute the 8�8 DCT transformation of the input image. When
the 8�8 DCT coefficients of the image are already available (e.g.,
in case of JPEG images or considering that these feature are
computed into the IGP) the time needed to compute the proposed
DCT-GIST descriptor is only 0.3 ms. As reported in [28] where an
in-depth evaluation of the complexity of the GIST has been
presented, the time needed to compute the GIST descriptor [12]
on 64-bit 8-core computer and considering images of size 32�32
pixels is 35 ms. This means that the time needed to compute the
proposed representation is at least half than the one needed to
compute the GIST descriptor, and it is one order of magnitude less
if the DCT coefficients are already available (i.e., JPEG format).

Further tests have been done to demonstrate the effectiveness
of the proposed representation in discriminating the Naturalness
and Openness of the scene [12]. Specifically, taking into account the
definition given in [12], the Naturalness of the scene is related to
the structure of a scene which strongly differs between man-made
and natural environments. The notion of Openness is related to the
open vs closed-enclosed environment, scenes with horizon vs no
horizon, a vast or empty space vs a full, filled-in space [12].
A closed scene is a scene with small perceived depth, whereas
an open scene is a scene with a big perceived depth. Information
about Naturalness and/or Openness of the scene can be very useful
in setting parameters of the algorithms involved in the image
generation pipeline [13].

For the Naturalness experiment we have split the 8 scene
dataset as in [12,15] by considering the classes Coast, Open Country,
Mountain and Forest as Natural environments, whereas the classes
Tall Building, Inside City, Street and Highway as belonging to the
Man-Made environments. For the Openness experiment, the
images belonging to the classes Coast, Open Country, Street and
Highway have been considered as Open scenes, whereas the
images of the classes Forest, Mountain, Tall Building and Inside City
have been considered as Closed scenes. The results obtained
employing the proposed representation (F) are reported in
Tables 5 and 6. The obtained results closely match the perfor-
mances of other state-of-the-art methods [15,17,26] by employing
less computational resources.

Finally, we have considered the problem of recognizing four
scene context usually available in the auto-scene mode of digital

Fig. 8. Contribution of each component involved in the proposed DCT-GIST representation and comparison with respect to the GIST descriptor [12].

Table 3
Results obtained by exploiting the proposed DCT-GIST representation with configuration (F) on the 8 Scene Context Dataset [12]. Columns correspond to the inferred classes.

Confusion matrix Tall Building Inside City Street Highway Coast Open Country Mountain Forest

Tall Building 0.88 0.07 0.00 0.01 0.01 0.00 0.01 0.02
Inside City 0.07 0.87 0.04 0.02 0.00 0.00 0.00 0.00
Street 0.03 0.04 0.89 0.02 0.00 0.01 0.01 0.01
Highway 0.00 0.03 0.02 0.82 0.07 0.03 0.03 0.00
Coast 0.00 0.00 0.00 0.02 0.85 0.11 0.01 0.01
Open Country 0.00 0.00 0.01 0.02 0.15 0.74 0.05 0.03
Mountain 0.01 0.00 0.00 0.01 0.02 0.05 0.85 0.06
Forest 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.93
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consumer cameras: Landscape, Man-Made Outdoor, Portrait, Snow.
To this purpose we have collected 2000 color images (i.e., 500 per
class) with resolution 640�480 pixels from Flickr . This dataset
has been used to perform a comparative test of the proposed
DCT-GIST image representation with configuration (F) with respect
to the popular GIST descriptor. The results are reported on
Tables 7 and 8. The proposed image representation obtained an
average accuracy of 89.80%, whereas GIST achieved 86.07%.

6.2. Proposed representation vs bags of textons on spatial hierarchy

Since the proposed scene context representation works exploit-
ing information collected on spatial hierarchy, we have compared
it with respect to the method presented in [17], where Bags of
Textons are collected for each region in the spatial hierarchy to
represent the images for scene classification purposes. For this
comparison we have considered the 15 Scene Classes Dataset used
in [18]. This dataset is an augmented version of the 8 Scene Classes
Dataset [12]. The dataset is composed by 4485 images of the
following fifteen categories: highway, inside of cities, tall buildings,
streets, forest, coast, mountain, open country, suburb residence,
bedroom, kitchen, living room, office, industrial and store. Since a
subset of the images of the dataset does not have color informa-
tion, the tests on the 15 Scene Classes Dataset have been
performed taking into account only the Y channel and using the
DCT-GIST scene descriptor with configuration (D) (see Table 2).
The results obtained on this dataset are reported in Table 9. The
average per class accuracy achieved by the proposed approach is
78.45%, whereas the method which exploit textons distributions
on spatial hierarchy [17] obtained an accuracy of 79.43%. Both
representations outperform the GIST one, which obtains 73.25% of
accuracy on this dataset. Although the results are slightly in favor
for the method proposed in [17] (of less than 1%), one should not
forget that the proposed DCT-GIST representation is suitable for an
implementation on the image generation pipeline of single sensor
devices, whereas the method in [17] requires extra memory
to store Textons vocabularies (i.e., hardware costs for industry)
as well as a bigger computational overhead to represent the image
to be classified (e.g., convolution with bank of filters, computation
of the Textons distributions for every sub-regions, etc.). Specifi-
cally, considering an image stored in JPEG format, the computation
of the Bag of Textons signature in [17] requires the convolution of
the image with a bank of 24 filters of size 49�49 (i.e., 49�49�24
operations per pixel), and the computation of the similarity of
each pixel responses with respect to the Textons vocabulary (i.e.,
T operations per pixels, where T is the number of Textons in the
vocabulary). Hence, the computational time needed to build the
Bag of Textons signature is much higher than the one to compute
the proposed DCT-GIST representation (i.e., linear with respect to
the number of 8�8 blocks composing the image region under
consideration).

We have performed one more test to assess the ability of the
proposed representation in discriminating among Indoor vs Out-
door scenes. This prior can be very useful for autofocus, auto-
exposure and white balance algorithms. To this aim we have

Table 4
Results obtained exploiting the GIST representation [12] on the 8 Scene Context Dataset. Columns correspond to the inferred classes.

Confusion matrix Tall Building Inside City Street Highway Coast Open Country Mountain Forest

Tall Building 0.83 0.01 0.03 0.00 0.00 0.13 0.00 0.00
Inside City 0.00 0.94 0.00 0.00 0.05 0.01 0.00 0.01
Street 0.07 0.00 0.82 0.03 0.03 0.03 0.02 0.00
Highway 0.02 0.01 0.01 0.84 0.00 0.01 0.04 0.08
Coast 0.01 0.05 0.01 0.00 0.86 0.05 0.00 0.02
Open Country 0.14 0.04 0.02 0.00 0.05 0.73 0.01 0.00
Mountain 0.00 0.01 0.03 0.05 0.01 0.02 0.87 0.02
Forest 0.00 0.01 0.00 0.08 0.02 0.00 0.00 0.88

Table 5
Natural vs Man-made classification performances of the proposed DCT-GIST
representation with configuration (F). Columns correspond to the inferred classes.

Confusion matrix Natural Man-made

Natural 97.88 2.12
Man-made 4.75 95.25

Table 6
Open vs Closed classification performances consid-
ering the proposed DCT-GIST representation with
configuration (F). Columns correspond to the
inferred classes.

Confusion matrix Open Closed

Open 94.17 5.83
Closed 4.63 95.37

Table 7
Results obtained by the proposed DCT-GIST representation with configuration
(F) on four classes usually used in the auto-scene mode of consumer digital
cameras.

Confusion matrix Landscape Man-made outdoor Portrait Snow

Landscape 87.76 1.22 0.61 10.41
Man-made outdoor 3.78 91.33 2.22 2.67
Portrait 1.02 1.84 94.29 2.86
Snow 9.62 1.13 3.02 86.23

Table 8
Results obtained by GIST [12] on four classes usually used in the auto-scene mode
of consumer digital cameras.

Confusion matrix Landscape Man-made outdoor Portrait Snow

Landscape 84.69 3.27 0.20 11.84
Man-made outdoor 4.44 87.78 2.44 5.33
Portrait 0.41 3.47 91.84 4.29
Snow 11.70 3.40 4.34 80.57

Table 9
Results obtained on the 15 Scene Dataset [18].

Bags of textons with spatial hierarchy [17] 79.43%
Proposed DCT-GIST representation with configuration (D) 78.45%
GIST representation [12] 73.25%
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divided the images of the 15 Scene Classes Dataset as indoor vs
outdoor images. The classification results are reported in Table 10.
Again the results confirm that the proposed representation can be
employed to distinguish classes of scenes at superordinate level of
description [12].

6.3. DCT-GIST evaluation on the MIT-67 indoor scene dataset

To further assess the proposed image representation we have
performed tests by considering the challenging problem of dis-
criminating among different indoor scenes categories. To this aim
we have considered the MIT-67 Indoor Scene Dataset [5] which
contains 67 Indoor categories and a total of 15,620 images. The
MIT-67 dataset is one of the largest dataset of scenes available so
far. In performing the experiments we have considered the testing
protocol used in [5] (i.e., same training and testing images). The
tests have been done considering the configuration (F) of the
proposed representation (see Table 2). The proposed descriptor
has been compared with respect to the GIST [12] as well as with
respect to the model called ROIþGist Segmentation (RGS) which
has been introduced in the paper related to MIT-67 dataset [5]. The
RGS representation model combine both global (i.e., GIST) and
local information (i.e., spatial pyramid of visual words on ROIs
obtained by segmenting the image). Hence the RGS is able to take
into account global spatial properties of the scenes and the
concepts/objects they contain.

The experiments pointed out that our DCT-GIST scene descrip-
tor achieves an average per-class accuracy of 26.7%, which is
greater than the one obtained by both GIST (less than 22%) and
RGS model (25.05%) [5]. Table 11 reports the per-class accuracies
obtained with both the proposed DCT-GIST and the RGS model.
Also in this case the DCT-GIST descriptor obtains comparable
recognition performances with respect to the state-of-the-art,
and outperforms the state-of-the-art in terms of computational
complexity (i.e., RGS model needs to compute the GIST with its
related computational complexity, needs a segmentation step, and
also uses a spatial based bag of visual word model. Hence, DCT-
GIST is more suitable for the Imaging Generation Pipeline in terms
of both time and memory resources).

6.4. Instant scene context classification on mobile device

The experiments presented in Sections 6.1–6.3 have been
performed on representative datasets used as benchmark in the
literature. For those tests the DCT-GIST scene context representa-
tion has been obtained directly by extracting the DCT information
from the compressed domain (JPEG format). The main contribu-
tion of this paper is related to the possibility to obtain a signature
for the scene context directly into the image generation pipeline of
a mobile platform, taking into account the architecture presented
in Section 5. To this aim we have implemented the proposed
architecture on a Nokia N900 smartphone [46]. This mobile plat-
form has been chosen because it has less computational power of
the other smartphones (i.e., the scene context classification engine
should able to classify in real-time independently of the computa-
tional power of the device). Moreover, with the chosen mobile
platform, the FCam API can be employed to work within the Image

Generation Pipeline of the device [47,48]. This allows to effectively
build the proposed architecture and test it with real settings.
Although the limited resources of the hand-held device, the

Table 10
Indoor vs outdoor classification performances considering the proposed DCT-GIST
representation with configuration (D). Columns correspond to the inferred classes.

Confusion matrix Indoor Outdoor

Indoor 89.75 10.25
Outdoor 3.86 96.14

Table 11
Recognition results of the proposed DCT-GIST descriptor on the MIT-67 dataset [5].
The proposed representation is compared with respect to the ROIþGist Segmenta-
tion model [5].

Classes Proposed DCT-GIST RGS model [5]

elevator 71.40 61.90
greenhouse 65.00 50.00
concert hall 60.00 45.00
inside bus 56.50 39.10
corridor 52.40 38.10
bowling 50.00 45.00
buffet 50.00 55.00
classroom 50.00 50.00
cloister 50.00 45.00
casino 47.40 21.10
hospital room 45.00 35.00
pantry 45.00 25.00
auditorium 44.40 55.60
church inside 42.10 63.20
library 40.00 40.00
bathroom 38.90 33.30
clothing store 38.90 22.20
tv studio 38.90 27.80
children room 33.30 5.60
closet 33.30 38.90
inside subway 33.30 23.80
florist 31.60 36.80
studio music 31.60 36.80
airport inside 30.00 10.00
kinder garden 30.00 5.00
movie theater 30.00 15.00
dental office 28.60 42.90
grocery store 28.60 38.10
dining room 27.80 16.70
meeting room 27.30 9.10
video store 27.30 27.30
art studio 25.00 10.00
living room 25.00 15.00
lobby 25.00 10.00
nursery 25.00 35.00
prison cell 25.00 10.00
restaurant 25.00 5.00
computer room 22.20 44.40
garage 22.20 27.80
bakery 21.10 15.80
game room 20.00 25.00
stairscase 20.00 30.00
train station 20.00 35.00
subway 19.00 9.50
bar 16.70 22.20
gym 16.70 27.80
deli 15.80 21.10
bedroom 14.30 14.30
kitchen 14.30 23.80
locker room 14.30 38.10
laundromat 13.60 31.80
toystore 13.60 13.60
restaurant kitchen 13.00 4.30
fast-food restaurant 11.80 23.50
mall 10.00 0.00
hair salon 9.50 9.50
office 9.50 0.00
warehouse 9.50 9.50
laboratory wet 9.10 0.00
operating room 5.30 10.50
bookstore 5.00 20.00
pool inside 5.00 25.00
jewellery shop 4.50 0.00
museum 4.30 4.30
shoe shop 0.00 5.30
waiting room 0.00 19.00
wine cellar 0.00 23.80
Average 26.70 25.05
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implemented system works in real-time as demonstrated by the
video available at the following URL: http://iplab.dmi.unict.it/
DCT-GIST.

For the implemented system we have used a SVM model
learned offline on the 8 Scene Context Dataset (see Section 6.1)
and the configuration (F) for the DCT-GIST representation (see
Table 2). The scene context representation is computed on the fly
during the generation of the image to be displayed in the view-
finder. The implemented architecture can also perform classifica-
tion of images already stored in the mobile (Fig. 9).

The proposed DCT-GIST based scene context classifier has been
also tested on a NovaThor U9500 with Android OS. The board
mounts a 1 GHz Dual-core ARM Cortex-A9 CPU. The computa-
tional time performances have been evaluated by considering the
average latencies of the different scene classification blocks on a
set of QVGA images. We have measured the computational time of
all the steps involved in the scene classification engine: DCT
computation, DCT-GIST image representation with configuration
(F) (see Table 2) and the SVM classification. The DCT computation
required 15.6 ms on the average (this value could be disregarded
when DCT coefficients are directly provided by the integrated JPEG
encoder or by working directly on compressed domain). The
overall computational time to build the image signature with
configuration (F) (i.e., the one with spatial hierarchy and all the
three image channels of the image) was only 0.3 ms. Finally, the
SVM classification required 117.4 ms. This test confirmed that the
proposed image signature can be computed in realtime within a
mobile platform. Note that the GIST descriptor [12] is not suitable
for the IGP (i.e., FFT is not present into the IGP) and it is known
from [28] that the time needed for its computation is Z35 ms

(i.e., higher than the one needed to compute proposed DCT-GIST
descriptor).

6.5. Further experiments exploiting convolutional neural network
classifier

The proposed DCT-GIST representation can be used with any
classifier. The test reported so far have been performed by
employing the SVM classifier to compare our approach with
respect to the other compared scene descriptors [12,17,5]. To
further test the proposed DCT-GIST representation with respect
to the GIST we have employed Convolutional Neural Network as
classifier. The results of this comparison are reported in Tables 12
and 13. Note that the average per class accuracy is in favor of the
proposed descriptor. The results obtained with CNN are slightly
better than the one obtained with SVM in almost all cases.

7. Conclusion and future works

This paper introduces the DCT-GIST image representation to be
exploited for scene context classification on mobile platforms. The
proposed scene descriptor is based on the statistics of the DCT
coefficients. Starting from the knowledge that the distribution
of the AC DCT coefficients can be approximated by Laplacian
distributions, and from the observation that different scene
context present differences in the Laplacian scales, we proposed a
signature of the scene that can be efficiently computed directly in
the compressed domain (from JPEG format), as well as in the image
generation pipeline of single sensor devices (e.g., smartphones,
consumer digital cameras, and wearable smart cameras). The
effectiveness of the proposed scene context descriptor has been
demonstrated on representative datasets by comparing it with
respect to the popular GIST descriptor [12] and the representation
based on textons distributions on spatial hierarchy [17] and the
ROIþGist segmentation model [5]. Moreover, the proposed scene
context recognition architecture has been implemented and tested
on a real acquisition pipeline of a mobile phone to demonstrate the
real-time performances of the overall system. Differently than other
state-of-the-art scene descriptors, the computation of the proposed
signature does not need extra information to be stored in memory
(e.g., visual vocabulary) or complex operations (e.g., convolutions,
FFT, learning phase). The proposed holistic scene representation
provides an efficient way to obtain information about the context of
the scene which can be extremely useful as first step for object
detection and context driven focus attention algorithms by priming
typical objects, scales and locations [9,10]. It can be also exploited to
have priors for setting the parameters of the algorithm involved in
the IGP (e.g., white balance) to improve the quality of the final
acquired image [13]. Future works could consider the integration of
camera metadata related to the image capture conditions to
improve recognition accuracy [49,50].
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Fig. 9. Example scene context classification of the system implemented on the
Nokia N900.

Table 12
Comparison of DCT-GIST with respect to GIST [12]
employing Convolutional Neural Network classifier
on the 8 Scene Dataset.

Proposed DCT-GIST GIST

86.49 86.47

Table 13
Comparison of DCT-GIST with respect to GIST [12]
employing Convolutional Neural Network classifier
on the MIT-67 Dataset.

Proposed DCT-GIST GIST

28.81 22.68
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