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Automatic food understanding from images is an interesting challenge with applications in different
domains. In particular, food intake monitoring is becoming more and more important because of the key
role that it plays in health and market economies. In this paper, we address the study of food image
processing from the perspective of Computer Vision. As first contribution we present a survey of the
studies in the context of food image processing from the early attempts to the current state-of-the-art
methods. Since retrieval and classification engines able to work on food images are required to build
automatic systems for diet monitoring (e.g., to be embedded in wearable cameras), we focus our at-
tention on the aspect of the representation of the food images because it plays a fundamental role in the
understanding engines. The food retrieval and classification is a challenging task since the food presents
high variableness and an intrinsic deformability. To properly study the peculiarities of different image
representations we propose the UNICT-FD1200 dataset. It was composed of 4754 food images of 1200
distinct dishes acquired during real meals. Each food plate is acquired multiple times and the overall
dataset presents both geometric and photometric variabilities. The images of the dataset have been
manually labeled considering 8 categories: Appetizer, Main Course, Second Course, Single Course, Side Dish,
Dessert, Breakfast, Fruit. We have performed tests employing different representations of the state-of-the-
art to assess the related performances on the UNICT-FD1200 dataset. Finally, we propose a new re-
presentation based on the perceptual concept of Anti-Textons which is able to encode spatial information
between Textons outperforming other representations in the context of food retrieval and Classification.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction and motivations

It is well-known that a non-healthy diet can cause health
problems such as obesity and diabetes, as well as risks for people
with food allergy. The current mobile imaging technologies (e.g.,
smartphones and wearable cameras) give the opportunity of
building advanced systems for food intake monitoring in order to
assess the patients' diet [5,6,36,49,56,62,78,88,113,118]. Related
assistive technologies can also be useful to increase the awareness
of the society with respect to the quality of life. In this context the
ability to automatically recognize images of food acquired with a
mobile camera is fundamental to assist patients during their daily
meals. Automatic food image retrieval and classification could
replace the traditional dietary assessment based on self-reporting
that is often inaccurate. As pointed out in different works
[4,10,30,31,33,50–53,67], food understanding engines embedded
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in mobile or wearable cameras can create food-logs of the daily
intake of a patient; these information help the experts (e.g., nu-
tritionists, psychologists) to understand the behavior, habits and/
or eating disorders of a patient.

However, food has a high variability in appearance and it is
intrinsically deformable. This makes classification and retrieval of
food images difficult tasks for current state-of-the-art methods
[22,116,32], and hence an interesting challenge for Computer Vi-
sion researchers. The image representation used to automatically
understand food images plays the most important role. Despite
many approaches have been published, it is difficult to find works
where different techniques are compared on the same dataset.
This makes difficult to figure out peculiarities of the different re-
presentations, as well as to understand which is the best re-
presentation method for food retrieval and classification.

To find a suitable representation of food images it is important
to have representative datasets with a high variety of dishes. Al-
though different retrieval and classification methods have been
proposed in the literature, most of the datasets used so far have
not been designed having in mind the study of a proper image
representation for food images. Many food datasets are composed
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of images collected through the Internet (e.g., downloaded from
Social Networks), where a specific plate is present just once; there
is no way to understand if a specific type of image representation
is useful for the classification and retrieval of a specific dish ac-
quired under different points of view, scales or rotation angles.
Also the food images collected through the Internet have usually a
low resolution and have been processed by the users with artistic
or enhancement filters.

The automatic analysis of food images has a long history. The
article by Parrish et al. [79], which is probably the first using
Computer Vision techniques for a food analysis tasks, dates back to
1977. Looking at the literature in this context, it is quite evident
that between 1980s and 2000s the interest on food image un-
derstanding was mainly for engineering applications related to the
production chain and the assessment of the quality of the mar-
keted food. From the beginning of the new century, with the
proliferation of high performance mobile devices, the research has
focused more and more on aspects which are strictly related to
everyday life, and hence on problems and applications for food
intake monitoring.

In this paper we consider the problem of food image re-
presentation for retrieval and classification purposes. After an in-
depth review of the literature related to food image analysis, a new
dataset designed for the study of the representation of images is
introduced. The proposed dataset, called UNICT-FD1200, is com-
posed of 1200 different food plates acquired by users during real
meals. Each food plate has been acquired multiple times and in
different light conditions to guarantee both high geometric and
photometric variability. Building on top of previous works [30,32]
we employ a bag of words like representation based on Texton
features [105] to represent the images of food. We present an in-
depth analysis of the main “ingredients” to be used into the bag of
Textons representation pipeline to point-out which color domain,
bank of filters and vocabulary size are more suitable to tackle the
retrieval and classification in this specific domain. We also propose
a new image representation building on the perceptual concept of
Anti-Textons discussed in [110] by Williams and Julesz. The pro-
posed Anti-Texton features extend Textons by encoding spatial
information during feature extraction.

The contribution of this paper is three-fold:

(i) a deep review of the state-of-the-art approaches and datasets;
(ii) the introduction of a new public available dataset of food

images;
iii) a new method for texture-based representation of food

images.

The reminder of the paper is organized as follows. In Section 2
we present a survey of the state-of-the-art in the field of food
image analysis. Section 3 introduces the proposed UNICT-FD1200
food dataset, whereas Section 4 discusses the image representa-
tions used in this paper for experimental purposes and defines
Anti-Texton features. Section 5 reports the experimental settings
and the results. Finally, we draw our conclusions.
2. Food image analysis

Food image analysis has a long history. With the aim of giving a
survey of the main works in the literature, we have identified four
application areas:

� Detection and recognition of food for automatic harvesting.
� Quality assessment of meals produced by industry.
� Food logging, dietary management and food intake monitoring.
� Food classification and retrieval.
Despite most of the “ingredients” involved in the solutions
proposed in the different application areas overlap, the main aims
of the final systems are different. For instance, if a certain accuracy
obtained by a system for the detection and recognition of food for
automatic harvesting could be acceptable by a robotic industry, the
same accuracy could be not sufficient in systems dedicated to the
diet monitoring for patients with diabetes or food allergy. This
motivated us in grouping the works in the literature by consider-
ing the four aforementioned areas.

Automatic detection and recognition of fruits and vegetables
are useful to enhance robots affordable and reliable vision systems
in order to improve the harvesting procedures both in terms of
quality and speed. In the late 1980s, industrial meals production
knew a large scale expansion, so the evaluation of the quality of
the produced food with vision systems became an interesting and
valuable challenge. From the late 1990s, the growth of the number
of people affected by diseases caused by a non-healthy diet moved
the focus to the usage of Computer Vision techniques to help ex-
perts (e.g., nutritionists) for the monitoring and understanding the
relationships between patients and their meals. This particular
researches can take advantage of the huge diffusion on low-cost
imaging devices, such as the current smartphones and wearable
devices. The large and fast growth of mobile cameras, together
with the birth and diffusion of social network services – such as
Facebook, Instagram, Pinterest – opened the possibility to upload
and share pictures of food. For these reasons, in the past few years,
classification and retrieval of food images become more and more
popular.

In the following section we will review the state-of-the-art in
the field in order to give to the reader an overview of what have
been done in the four application domains mentioned above.

2.1. Detection and recognition for automatic harvesting

Among the several techniques used for the harvesting of fruits,
the more desirable are the ones which do not cause damages to
the fruit and/or to the tree. Thus, accurate systems for fruits de-
tection and recognition from images are needed in order to per-
form the task correctly. One of the first Computer Vision ap-
proaches has been designed by Parrish et al. [79] and focuses on
apples detection task. The vision system is composed of a B/W
camera and an optical red filter. The image is binarized through
thresholding operation, then smoothed to suppress noise and ar-
tifacts. At the end, the roundness of the region is estimated by
measuring the difference between the longest horizontal and
vertical segments inside the region itself. To accept a region as an
apple, a density estimation and thresholding is performed.

In [61], a robot vision system called AID is implemented for
oranges recognition. A pseudo-gray image is obtained by means of
an electronic filter used to enhance the image. Every pixel is coded
using 6 bits. The value is proportional to the distance between the
pixel hue value and a reference hue value. Then, the gradient is
computed using a classic Sobel filter to obtain the magnitude and
directions in two separate images. Using a gradient template
previously computed, a matching is performed to interpret the
scene correctly. With this approach the 70% of the fruits were
detected.

An orange recognition method, based on color images, is pro-
posed in [96]. Here, Hue and Saturation components of each pixel
are employed to form a two-dimensional feature space. Then, two
thresholds based on the maximum and minimum values for each
component are used as linear classifiers to define a region in the
feature plane. Approximately 75% of the pixels were correctly
classified. In [97], the same authors extend their study employing
a Bayesian classifier, using the RGB values instead of the Hue and
Saturation components, with the goal of segmenting the fruit
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pixels from the background pixels. The tests show that 75% of the
pixels are correctly classified.

The Purdue University (USA) and The Volcani Center (Israel)
developed a vision system for melon harvesting [21]. A B/W image
is analyzed to locate the melon and estimate its size. On this im-
age, basic operations – involving also shape and textures analysis –
are performed in order to obtain multiple candidate regions. Then,
using prior knowledge on the domain, the candidates are eval-
uated to discard noisy and multiple detections by achieving a true
positive rate of 84%.

The Italian institute CIRAA developed a robotic system named
AGROBOT [18]. The goal was automatizing greenhouse operations.
The scene is acquired through a color camera and is segmented
using the Hue and Saturation histograms via thresholding. Then
information about the 3-dimensional geometry of the scene is
retrieved using stereo matching. The performances of the AGRO-
BOT were pretty good – about 90% of correctly detected ripe to-
matoes. The occlusions were the most frequent causes of errors.

The 3D information, obtained with a laser scanner, is employed
also by Jiménez et al. [43] to perform automatic harvesting of
spherical fruits. The laser scanner maps the points of each scene in
the 3D world using spherical coordinates, and associates a distance
to each point estimating the laser energy attenuation value.
Combining the extracted features, the scene is mapped onto four
images, representing the azimuth, the elevation angles, the dis-
tance from the sensor (i.e. a depth map) and the attenuation va-
lues. Exploiting the sensor model, these images are processed, and
taking advantage of the information retrieved by the scanner, four
images are produced in output. Of these four, three are actually
used for the orange recognition: one is an enhancement of the
previous image representing the distance from the sensor, the
others encode respectively the apparent reflectance and the re-
flectance of the surfaces. The image analysis focuses on the last
two images. The apparent reflectance image is thresholded to se-
parate the background from the foreground and then the re-
maining pixels are clustered using the Euclidean distance. The
detected clusters without a minimum number of pixels belonging
to it are rejected as valid fruit in order to eliminate the possibility
of random small areas of a highly reflective non-fruit object. This
method, though, is not able to detect fruits whose reflectance is
under 0.3. To cope with these kinds of items, the Circular Hough
Transform is employed on the distance image to detect fruits.

Many other methods have been developed over the years: for
an accurate review of this technique, the reader should refer to
[43].

2.2. Quality assessment of meals produced by industry

The assessment of the food quality produced by an industry is a
crucial task needed to guarantee a good experience to the final
customer. Alongside with human control of the product chain,
Computer Vision systems can be used to perform the quality as-
sessment through the automatic inspection of images.

In [17,28,38], a review of methods for food quality assessment
is presented. The authors consider different acquisition systems,
the features that can be employed in different tasks, as well as the
machine learning algorithms used to perform the decision among
the quality of the food items.

In a typical Computer Vision based pipeline for quality assess-
ment, an image preprocessing, a feature extraction process, and a
classification are performed.

Munkevik et al. [72] propose a method to check the validity of
industrial cooked meals. As first step, the images of the food are
segmented. Then 18 features are extracted from the segmented
image, in order to capture different aspects. Specifically, the fea-
tures are related to the size of the food items on the plate, to the
overlapping between different food items, to the shape of the food
and to the colors. Eventually, the extracted features are used to
train a Self-Organizing Feature Map [55], which is employed to
learn the model of a meal. In [73] the approach is refined and
extended by considering more food items and employing an Ar-
tificial Neural Network (ANN) for classification purposes.

A beans quality classification system was proposed by Kiliç
et al. [48] in 2007. For testing purposes, they considered a dataset
of images with variable number of beans. After a segmentation
stage using morphological operators, the 1st to 4th order statistics
on the RGB channels of the image are computed. Three quality
levels for both color and integrity of the sample were defined, but
only 5 out of the 9 possible combinations were used to better
separate top quality beans from medium and low quality ones. In
other words, given a rating from A to C for both colors and in-
tegrity, the considered classes are AA, BB, BC, CB, CC. The classifi-
cation was performed using an ANN, using 69 samples for training
and 71 for validation, while the testing set is composed of 371
beans images.

The quality of pizza production has been explored by different
researchers. In [29,98] methods for inspecting shapes, toppings
and sauce spread in pizza production are proposed. Different
features were computed for the shape, sauce and topping in-
spection. Specifically, to assess the quality with respect to the
shape, the area ratio, aspect ratio, eccentricity, roundness have
been considered. For sauce and topping the Principal Component
Analysis (PCA) on the histograms computed in the HSV color space
has been exploited. The food items are classified considering
5 quality levels concerning the sauce spread and topping, and in
4 quality levels with respect to the shape. The quality classification
task was performed by using a set of binary Support Vector Ma-
chine (SVM) classifier (one-vs.-all) organized in a Directed Acyclic
Graph (DAG). The system is trained using 120 images for the
shape, 120 images for the sauce and 120 images for the topping.

Despite the quality assessment and inspection of food is not
strictly related to the application domain of dietary food mon-
itoring, we have decided to include information on this application
domains such that the reader can have a better overview of what
has been done in the context of food image analysis. The inspec-
tion of the food quality is usually performed in constrained set-
tings tackling with a small number of food classes and low vari-
abilities. Usually, simple approaches (e.g., very simple features
such as shape measurement) are enough to address the problem
and the results claimed by the authors are very good. This scenario
is very different from the one where images of food are acquired
during meals of a patient or they are downloaded from a social
network. The systems for generic food intake monitoring have to
deal with a higher number of food classes, mixed food, and a
number of image variabilities, such as different environment illu-
mination, different point of view in the acquisition, and different
acquisition devices (i.e., different resolution, compression factors,
etc.). Moreover, usually these systems have to be able to work
without prior knowledge. For instance, differently than an in-
dustrial production chain where the different ingredients (e.g., to
make a pizza) are known in advance, in a generic food image
understanding problem there are not a priori assumptions by
making the task more challenging.

2.3. Food logging, dietary management and food intake monitoring

Diet monitoring has a keyrole for the human health and can
help to reduce disease risks such as diabetes. For this reason, since
the 1970s, the computers have been employed to help the medical
teams for dietary assessment of the patients. However, the pri-
mordial systems for food logging and intake monitoring did not
use the Computer Vision; they were calculators for nutrition



Table 1
Food image datasets. C, classification; R, retrieval; CE, calorie estimation.

Dataset Related works Classes Img per
class

# of img Task

UEC FOOD
100

[41,46,47,69,70,88,114,115] 100 E100 9060 C

PFID [12,22,32,74,108,116,119] 101 18 1818 C/R
FRIDa [37] 8 ND 877 CE
NTU-FOOD [23] 50 100 5000 C
ETHZ Food-
101

[16] 101 1000 101,000 C

UNICT-
FD889

[30,31,66] 899 3/4 3583 R

FooDD [84] 23 ND 3000 CE
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factors from a predefined food list [89,111].
During the last century, despite the great steps forward in the

knowledge of nutrition, there has been a dramatic increase of
food-related illnesses [117]. It has been proved that food diaries
are effective instrument to boost self-awareness of eating habits,
and augmenting written diaries with photographs have a more
effective impact on the patients. Hence, Computer Vision re-
searchers have put effort to provide reliable tools to make the
automatic detection and recognition of meals images more
accurate.

Among these systems, FoodLog1 [4,50,51,53,67] is a multimedia
Internet application that enables easy capture and archival of in-
formation regarding daily meals. The goal of this framework is to
assist the user to keep note of their meals and balance the nutri-
tional values coming from different kinds of food (e.g., carbohy-
drates, fats, etc.). The user uploads the pictures on a remote folder,
where the archive is maintained. In [51], the images containing
food items are identified by exploiting features related to the HSV
and RGB color domains, as well as the shape of the plate. A SVM
classifier is trained to detect food images. More specifically, the
images are divided in 300 blocks and each block is classified as one
of the five nutritional groups defined in the “My Pyramid” model2

(grains, vegetables, meat & beans, fruits, milk) or as “non-food”. In
[53] more local features are considered. Color statistics were
coupled with SIFT descriptor [64] obtained with three different
keypoint selection methods (difference of Gaussians, centers of
grid, centers of circles). In [50] the approach has been extended,
adding also a pre-classification step and the personalization of the
food image estimator. In [67] the Support Vector Machine is re-
placed by a Naive Bayesian Classifier.

The goal of the approach proposed in [95] is to help people
affected by diabetes in following their dietary prescriptions. The
authors used object-related features (color, size, texture and
shape) and context-related features (time of the day and user
preference). Using an ANN as a classifier, the authors proved that
the context information can be exploited to improve the accuracy
of the monitoring system.

Food recognition and 3D volume estimation is the goal of the
work by Puri et al. [85]. The images, taken under different lighting
conditions and poses, are normalized by color and scale, by means
of dedicated calibration patterns placed besides the food items.
They use an Adaboost-based feature selection method to combine
color (RGB and LAB neighborhood) and texture (Maximum Re-
sponse filters) information, in order to perform a segmentation by
classification of the different food items in a dish. The final clas-
sifier is obtained as a linear combination of many weak SVM
classifiers, one for each feature. Moreover, they reconstruct the 3D
shape of the meal using dense stereo matching, after a pose esti-
mation step performed using RANSAC [35].

Chen et al. [24] aim to categorize food from video sequences
taken in a laboratory setting. The dishes are placed on a turntable
covered with a black tablecloth. They consider an elliptical Region-
of-Interest (ROI), inside which they first extracted MSER [68], SURF
[9] and STAR [2] features. Since these detectors work on mono-
chrome images, a color histogram in the HSV color space is com-
puted inside the ROI, in addition to the aforementioned detectors,
in order to capture the richness of food images in terms of colors.
The images are then represented using the Bag of Words para-
digm; they create a vocabulary with 10,000 visual words using K-
means clustering and subsequently each data point is associated
with the closest cluster using the Approximated Nearest Neighbor
algorithm. For each image, hence, a Bag of Word representation
1 http://www.foodlog.jp
2 http://www.mypyramid.gov/
and the color histogram in the HSV color space are provided. The
goal is to classify the dish in a specific frame. The authors propose
to compare the frame under examination with a frame already
classified, in a retrieval-like fashion. To do so, a similarity score is
computed separately for the Bag of Words representation and for
the color histograms. For the first representation, the term fre-
quency-inverse document frequency (tf-idf) technique is em-
ployed; for the latter one, the correlation coefficient between the
| |L1 -norm of the histograms is computed. The two scores are then
combined with different weights to obtain the global score for the
considered frame. Since the calories for the reference dish are
known, the similarity is able to coarsely quantify the difference of
food in the two frames.

The 3D reconstruction is used in [26] for volume computation.
A disparity map is computed from stereo pairs, and hence a dense
3D points cloud is computed and aligned with respect to the es-
timated table plane using a specific designed marker. The different
food items present in the image are assumed to be already seg-
mented. Each food segment is then projected on the 3D model, in
order to compute its volume, which can be defined as the integral
of the distance between the surface of each segment and either
the plate (identified by its rim and reconstructed shape), or the
table (identified by the reference pattern).

Food consumption estimation is also addressed in [62]. The
authors propose a wearable system equipped with a camera and a
microphone. When the microphone detects a chewing sounds, the
Computer Vision part of the framework is activated. The algorithm
tries to identify keyframes containing food by using simple fea-
tures such as ellipse detection and color histograms. The first step
is the ellipse detection. When the ellipse is found, it is split into
four quadrants and, for each quadrant, the color histogram is
computed in the C-color space [20]. Then, the difference between
the histograms computed over subsequent frames is computed to
evaluate the food consumption.

2.4. Food classification and retrieval

The approaches we have reviewed so far aim to solve specific
food-related task, such as fruit recognition, quality assessment or
food logging for dietary management. All of these application
domains share a key component related to the recognition of the
food. In the last years, this aspect has been considered by many
computer vision researchers thanks to the increasing availability of
large quantity of image data in Internet and the explosion of posts
portraying food in social media. This led to the proliferation of
datasets with a consistently increasing number of classes and
samples. Table 1 summarizes the main features of the publicly
available datasets reported in the state-of-the-art works in the last
UPMC
Food-101

[112] 101 1000 101,000 C

CAS dataset [91,40] ND ND 117,504 C

http://www.foodlog.jp
http://www.mypyramid.gov/
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In order to recognize food depicted in images, two computation
strategies can be usually considered: classification and retrieval. In
both cases the task is to identify the category of a new food image
observation on the basis of a training set of data. The main dif-
ference between the two approaches stays in the mechanism used
to perform the task. In the case of classification the training set is
used just to learn the decision function by considering the re-
presentation space of the images. Hence, the training images are
represented as vectors in a feature space through a transformation
function (e.g., Bag of Visual Word approach by considering SIFT or
Texton features [7,58]) whereas a learning mechanism is used to
train a classifier (e.g., a Support Vector Machine) to discriminate
data belonging to different classes. After that, the training dataset
is discarded and a new observation can be classified by consider-
ing the employed feature space and the trained classification
model. In the case of retrieval, the training set is maintained and
the identification is performed comparing the images through si-
milarity measures (e.g., Bhattacharyya distance) [13] after their
representation in the feature space.

In [114], a framework for food classification of Japanese food is
proposed. The approach is trained and tested on a dataset with 50
classes. Three kinds of features are extracted and used: (a) Bag of
SIFT; (b) Color Histograms; (c) Gabor Filters [65]. The keypoint
sampling strategy on which the SIFT descriptor has been com-
puted is implemented with three different ways: using the DoG
approach, by random sampling and using a regular grid. To com-
pute Color Histograms, the images are first divided in ×2 2 re-
gions, and for each region a 64-bin RGB histogram is calculated.
The region-based histograms are then concatenated into a 256-
bin. In a similar way, the images are split into ×3 3 and ×4 4
blocks to compute Gabor Filters responses. The employed Gabor
filters take into account four different scales and six orientations,
so for the whole image a 216 or 384-dimensional vector arises as
result of the extraction step. While Color Histograms and Gabor
Filters provide a representation of the images by themselves, SIFT
keypoints are clustered by generating two different vocabularies
with 1000 and 2000 codewords and the images are represented
using the Bag of Words paradigm. Summing up, for each image
9 different representations are provided, one coming from the
Color Histograms, two from the Gabor Filters with different
blocking schemes and six from the combination of sampling
strategies and vocabulary size for SIFT features. Classification is
performed using a Multiple Kernel Learning SVM (MKL-SVM)
[104]. In [41] the dataset is extended up to 85 classes, and 8 var-
iants of Histogram of Oriented Gradients (HOG) [25] are in-
troduced as new features. Moreover, the χ2 kernel is employed as a
kernel function in the MKL-SVM. An extended version of the da-
taset, containing 100 food items, has been used in [70] where
candidate regions are identified using different methods (whole
image, Deformable Part Model (DPM) [34], a circle and the seg-
mentation method proposed in [27]). The final segmentation
arises by integration of the results of the aforementioned techni-
ques. For each candidate region, four sets of features are com-
puted: Bag of SIFT and Bag of CSIFT [1], Spatial Pyramid Re-
presentation [59], HOG and Gabor Filters. Then a MKL-SVM is
trained for each category, and a score is assigned to every candi-
date region. The experiments are conducted on images containing
both single and multiple food-items. In successive work [69] the
same approach is used, but the scores assigned by the classifica-
tion algorithm are re-arranged applying a manifold learning
3 Some other datasets have proposed in the literature [5,14,26,39]. However
these datasets have been not included in Table 1 because they are not publicly
available. More information on these datasets can be found at URLs http://www.
tadaproject.org and http://gocarb.eu.
technique to the candidate regions. The dataset used in [69,70] is
called UEC FOOD 100 and is an extension of the dataset presented
in [41,114]. On this dataset, other approaches have been tested. For
instance, pre-trained Convolutional Neural Networks (CNN) [57]
are used in [47] for feature extraction. The CNN features are coded
using the Fisher Vectors technique [92], and then the classification
is performed by means of SVM. Ravì et al. [88] exploited jointly
different features in a hierarchy to obtain real-time food intake
classification. The hierarchy of features encodes, in some way, the
complexity of the images: on simple classes, the classification will
rely on the features at the first level, while on more complex
classes more features will be used. To represent the images, the
Fisher Vector [80] technique is employed, and PCA is applied as in
[81]. To perform classification, a linear SVM is trained using the
one-vs.-rest strategy. The UEC FOOD 100 has been extended to 256
categories (UEC FOOD 256) in [46] using a so-called “foodness
classifier” and transfer learning on images coming from crowd-
sourcing. UEC FOOD 100 and UEC FOOD 256 have been employed
by Yanai et al. [115] to fine tune a pre-trained deep convolutional
neural network (pre-trained with 2000 categories in the
ImageNet).

Another dataset used in the literature is the Pittsburgh Food
Image Dataset (PFID) [22]. This dataset is composed of 4545 still
images, 606 stereo pairs, 303 videos for structure from motion
( °360 videos), and 27 privacy-preserving videos of eating events of
volunteers. The images portray 3 instances of 101 food items,
bought in 11 different fast food chains. In [22], a baseline for future
experiments is provided. The authors use color histograms and
Bag of SIFT features to train a multi-class SVM. In [116], an in-
gredient based segmentation is performed using a Semantic Tex-
ton Forest [94]. Hence, pairwise statistics of local features are
computed on the segment connecting two points, and specifically:
(a) orientation; (b) midpoint; (c) between-pair; (d) distance.
Moreover, two joint features are considered (Distance þ Or-
ientation and Orientation þ Midpoint). A SVM with a χ2 kernel is
employed for classification purpose. The PFID is also used for
calories estimation in [108]. SIFT are extracted and a cosine-based
distance function is used for matching. Rankings on food cate-
gories can be obtained in two ways: (1) a ranking based matching,
based on top T items of each frame-based rankings; (2) a count-
based matching based on sum of keypoint matching counts over
all video frames. Zong et al. [119] locate the keypoints using the
SIFT detector, applying the Local Binary Pattern (LBP) [3]. Then
they employ a BoW model, using a codeword filtering function to
select the most discriminative words in the vocabulary. Dictionary
creation is performed in a class-based manner. To provide spati-
ality, the shape context descriptor [11] is calculated on the image
space, considering the words as keypoints. The images are classi-
fied by means a cost function which takes into account the Bhat-
tacharyya distance and the shape context matching cost. Nguyen
et al. extended the previous mentioned approach introducing the
Non-Redundant Local Binary Pattern (NRLBP) [74] and propose
two strategies to classify the images: the first makes use of a SVM,
the second is based on a cost function. Farinella et al. propose two
different approaches on the PFID: one [32] is based on the re-
presentation of food images as Bag of Textons. Textons are com-
puted using the responses of MR4 filters, then clustered in a class-
based fashion obtaining a visual vocabulary. In the other approach
[33] SIFT and SPIN [58] features are computed over a dense grid,
and multiple runs of the K-means algorithm are performed sepa-
rately for SIFT and SPIN. The vocabularies obtained in output are
used as input for an Expectation–Maximization based consensus
clustering technique [102]. In both approaches, SVM is used as a
classifier. The method proposed in [12] combines different de-
scriptors calculated on patched centered on the keypoints de-
tected by the Harris–Laplace detector. For each feature, a visual

http://www.tadaproject.org
http://www.tadaproject.org
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codebook with 1000 words is built, and for each set a Gaussian
kernel is computed. The resulting kernels are used as input to train
a Sequential Minimal Optimization (SMO) MKL-SVM.

Bosch et al. propose a method for food identification based on
global and local features [15]. As global features, they use (1) 1st
and 2nd moment statistics computed on the color channels of the
image; (2) entropy statistics; (3) predominant color statistics. As
local features, they consider small patches and calculate the fol-
lowing features: (1) local color statistics; (2) local entropy color;
(3) Tamura features; (4) Gabor filters; (5) SIFT descriptor; (6) Haar
wavelets; (7) Steerable filters; (8) DAISY descriptor [101]. While
the global features are used as input for a SVM with a RBF kernel,
the Bag of Words approach is used with local features. Classifica-
tion, in this case, is done using a Nearest Neighbor algorithm. This
approach was tested on a subset of the dataset created at Purdue
University [14]. The Purdue Food Dataset is an extension of the
USDA Food and Nutrient Database for Dietary Studies (FNDDS),
created having in mind the goal of augmenting “an existing critical
food database with the types of information needed for dietary as-
sessment from the analysis of food images and other metadata”.

Rahmana et al. in [87] present a dataset with 209 acquired
using a iPhone3, to be used for retrieval purposes. They propose, as
a baseline, Gabor filter variants to ensure scale and rotation in-
variance to their algorithm. However, they also perform a classi-
fication task, grouping the categories in 5 groups (Bread, Cereal,
Veg, Fruit, Fast).

Another system for mobile food recognition is proposed in [45].
Here, color histograms on the RGB space are computed on ×3 3
blocks and a dictionary with 500 visual words is built on SURF
descriptors, to enclose local features in the general description of
the image. To classify the images, a linear SVM with explicit em-
bedding [107] is employed. It is interesting to note that the authors
propose a system able to suggest the direction to which the
camera should be moved, in order to improve classifier accuracy.
Also, a dataset with 50 categories containing 100 images each is
presented.

A Computer Vision system for Chinese food identification is
presented in [23]. The authors work on a database composed of 50
categories of ready-to-eat Chinese meals, with 100 images per
category. On each image, the following features are extracted:
(1) SIFT with sparse coding; (2) LBP with multi-resolution sparse
coding; (3) color histograms; (4) Gabor textures. A SVM is trained
for each feature using 5-fold cross validation; the fusion is done
using the Multi-Class AdaBoost algorithm. Marginally, the authors
propose also a quantity estimation technique using Microsoft Ki-
nect, but this approach has been tested only on a single item of
“hot & sour soup”.

A food recognition system integrated on a chopping board is
the topic of the work by Pham et al. [82]. In this work, an imaging
system composed of a matrix of optical fibers is placed under an
appropriately prepared chopping board. The sensor acquires the
image and afterwards a 64-dimensional color histogram and a 64-
dimensional vector of Bag of SURF features are computed. The
algorithms used to classify the images are kNN and SVM. The
training and testing phases make use of a dataset composed of
1800 pictures of 12 food ingredients.

Random Forest (RF) [100] is used in [16] for mining dis-
criminative regions. Superpixels are generated from the images
and dense SURF and color histograms are computed and encoded
using Fisher Vectors [92]. These descriptors are supplied to the RF
for training. Once the RF has been trained, the leaves constitute
the set of candidates for the components. Using a probability-
based distinctiveness function, the most discriminative leaves are
selected. Hence, a linear binary SVM is trained for each class, using
the samples lying in the most discriminative leaves as positive
samples and hard negative samples to speed up the learning
process. Alongside with the algorithm, the authors present a novel
dataset, called Food-101, composed of 1000 images for each one of
the 101 most popular dishes on http://www.foodspotting.com. In
[112] Xin et al. propose UPMC Food-101, a new dataset of 101,000
images to address the recipe recognition problem. This dataset
includes the same 101 categories of Food-101 and 1000 new
images for each one. Google Image Search engine is exploited to
retrieve 1000 images for each of the categories, moreover for all
the images the related HTML textual description is collected. To
benchmark the dataset, Bag of Words and CNN approaches are
employed and textual information are embodied to improve
classification performance.

Other food dataset include images and related geocontext in-
formation, such as GPS coordinates, restaurant where the dish is
cooked and so on. Herranz et al. [40] propose a probabilistic model
to combine locations, restaurants and visual features by exploiting
a reduced set of the dataset collected by Ruihan et al. [91] from
Institute of Computing Technology, CAS. To each of the restaurants
are associated the related geographical coordinates to uniquely
locate it and a menu which includes at least 3 dish categories.
Then, for each of these categories, more than 15 images are
included.

The UNICT-FD899 [30] has been acquired by users with a
smartphone in the last four years during meals (i.e., iPhone 3GS or
iPhone 4) in unconstrained settings (e.g., different backgrounds
and light environmental conditions). Each dish has been acquired
through a smartphone multiple times to introduce photometric
(e.g., flash vs. no flash) and geometric variability (rotation, scale,
point of view changes). The overall dataset contains 3583 images
acquired with smartphones. The dataset is designed to push re-
search in this application domain with the aim of finding a good
way to represent food images for recognition purposes. The first
question the authors try to answer is the following: are we able to
perform a near duplicate image retrieval (NDIR) in case of food
images? Note that there is no agreement on the technical defini-
tion of near-duplicates since it depends on “how much” variability
(both geometric and photometric) the system can tolerate. For
instance, some approaches define the near duplicate of an image
as the images obtained transforming the original by means of
slight common editing, such as contrast equalization, scaling, and
cropping. Other techniques (e.g., [8,42]) consider as near duplicate
the images of the same scene but with different viewpoints and
illumination. In [30], the authors consider this last definition of
near duplicate food images to test different image representations
on the proposed dataset. Then, they benchmark the proposed
dataset in the context of NDIR by using three standard image
descriptors: Bag of Textons [105], PRICoLBP [86] and SIFT [64].
Results confirm that textures and colors are fundamental proper-
ties. The experiments performed point out that Bag of Textons
representation is more accurate than the other two approaches for
NDIR.

A comparative analysis on features and classifiers is the core of
[39]. The authors test several features, basically related to three
aspects (color, texture, local regions) and two classifiers (kNN,
Vocabulary Tree [75]) on a novel dataset composed of 42 classes,
with a total of 1453 images.
3. Proposed dataset

The research in the field of Computer Vision needs a large
amount of organized data in order to test the algorithms for task
such as detection, recognition and so on. Unfortunately it is not
always easy to collect meaningful data for the different tasks. In
particular, in the case of food classification and retrieval for food
intake monitoring, it can be very difficult to build a representative

http://www.foodspotting.com
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dataset. Actually food comes in many forms and it is naturally
deformable, so a representative dataset should contain different
variabilities. Moreover it is important whether the data are ac-
quired in real meal scenario rather than collected from the web,
where images of food are usually posted to show the best aspect of
a dish and, some time, are post processed for this scope. As dis-
cussed in previous section, different datasets have been proposed
in the literature. However, most of them are build by collecting
images downloaded from Internet [16,69,70,112], contain food
images acquired with constrained laboratory settings [22,84] (e.g.,
variabilities related to light conditions and background are not
considered), consider very simple food plates [37,84], or include
only food from one nationality [23].

Considering the aforementioned limitations of the datasets
currently available for testing purposes, in our previous work we
have introduced the UNICT-FD889 dataset [30], which is a collec-
tion of food images acquired during real meals, useful for the study
of the image representation to be used for food image retrieval
purposes. This dataset is available online at the URL http://www.
iplab.dmi.unict.it/UNICT-FD889/.

In this paper we extend the UNICT-FD889 in two different as-
pect. Specifically, we include more dishes as well as the labels
related to the following 8 categories: Appetizer, Main Course, Sec-
ond Course, Single Course, Side Dish, Dessert, Breakfast, Fruit. Images
depicting mixed food (e.g., fish with salad) are labeled with mul-
tiple labels (e.g., Second Course and Side Dish). The proposed da-
taset is composed of 4754 images related to 1200 distinct dishes of
food of different nationalities (e.g., English, Japanese, Indian, Ita-
lian, Thai, etc.). Each plate has been acquired multiple times (four
in the average) to guarantee the presence of geometric and pho-
tometric variabilities. All the food photos have been taken in the
last five years during real meals by using a mobile camera in un-
constrained settings, such as different backgrounds and light
conditions. This is a significant characteristic which is mandatory
to test food understanding algorithms on real scenario data. At the
best of our knowledge, all the other state-of-the-art datasets, ex-
cept UNICT-FOOD889, include photos retrieved by web in semi-
automatic way or acquired under laboratory settings. The mobile
cameras used for the acquisition are iPhone 3GS, iPhone 4 and
iPhone 5 with a max resolution (e.g., equals to ×2448 3264 for the
Fig. 1. (a) A sample of the UNICT-FD1200 dataset. (b) Three elements for 24 clas
iPhone 5). The UNICT-FD1200 dataset is thought to help research
in the field of food-understanding with the aim to study the best
representation to use for food images. It can be used to test food
image retrieval as well as food classification by considering the
aforementioned classes. Fig. 1(a) shows image samples randomly
selected from the UNICT-FD1200 dataset, whereas Fig. 1(b) can be
useful to assess the multi-view acquisition as well as geometric
and photometric variabilities. The UNICT-FD1200 dataset is avail-
able for research purposes at the URL http://www.iplab.dmi.unict.
it/UNICT-FD1200/.
4. Image representation

To benchmark the proposed dataset we employed three dif-
ferent types of hand-crafted features: SIFT [63], PRICoLPB [86],
Texton [44,60,105]. We decided to include SIFT features because
of the good results obtained for Computer Vision tasks in the last
years. We exploit SIFT to represent the food images as a set of
features to be used together with a matching scheme during
classification and retrieval, as well as to build a representation
based on the bag of words paradigm as recently proposed in [5].
The PRICoLBP features have been included into the comparison
since they have been recently proposed and tested on food da-
taset [86]. Building on our previous works [30,32] we considered
Bag of Textons representation because of its capability to describe
texture information. Despite the simplicity of the Bag of Textons
representation, it has obtained good results in the context of food
classification and retrieval [30,32]. Finally, we propose a new
image representation based on the perceptual concept of Anti-
Textons [103,109,110] to encode spaces between Textons. The
proposed image representation outperforms all the others ap-
proaches. It is important to note that all the aforementioned re-
presentation methods are invariant or partially invariant to the
illumination. Texton-based representations perform two nor-
malization steps to strongly reduce the illumination effect (pre-
processing normalization at mean 0 and variance 1 and post-
processing normalization according with Weber's law [105]).
PRICoLBP is a variation of LBP, which is invariant to global illu-
mination changes [77]. Concerning SIFT, in the extraction process,
ses of the UNICT-FD1200 dataset. The variabilities for each class are evident.

http://www.iplab.dmi.unict.it/UNICT-FD889/
http://www.iplab.dmi.unict.it/UNICT-FD889/
http://www.iplab.dmi.unict.it/UNICT-FD1200/
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the last normalization step employed to build the descriptor
guarantees linear and non-linear illumination invariance [63].
Considering descriptors with illumination invariance property is
mandatory because images into the proposed dataset have been
acquired under different light conditions. In the following sub-
sections we detail all the aforementioned image representation.
4.1. SIFT

SIFT algorithm allows us to detect visual interest points and
describes them such that the final descriptor results invariant to
scale, rotation, illumination changes and partially invariant to af-
fine distortion [63,64]. SIFT is usually extracted sparsely or densely
[59,76] from gray-scale or color images [5]. After SIFT extraction
the set of descriptors can be used for matching purposes or to
build an image representation based on the Bag of Words (BoW)
paradigm. We tested both representation approaches in our ex-
periments. To build the BoW SIFT representation we use a dense
regular grid to compute the SIFT descriptor of a patch. At this
point, a clustering algorithm is used to quantize descriptors space
extracted on training images to create a visual words vocabulary.
To represent image, each point of the regular grid is associated to
the nearest visual word. When the visual vocabulary is computed,
each image in the training and test set can be represented as a
distribution of visual words. In our experiments a grid with spa-
cing of 8 pixel and a patch of ×16 16 is used during dense sam-
pling on the three RGB channels. K-means clustering is exploited
to compute the visual words vocabulary with different sizes. The
SIFT descriptors are computed independently for each color
channel. A Bag of SIFT is obtained for each color channel and the
three visual word distributions are concatenated in a unique
descriptor.

SIFT has been also tested for matching purposes. In this case
the SIFT of a query image are matched to the keypoints of all the
images in the training set. The query image is associated to the
image of the training dataset with the highest number of match-
ings. Since the SIFT matching algorithm assigns a score to each
matched point based on the quality of the match, we also consider
to inversely weigh each matched keypoints by taking into account
the similarity between the SIFT descriptors of the matched key-
points. We consider both gray and color domains. In the RGB do-
main the SIFT features are extracted and matched independently
on each color channel, then the sum of the matchings for the three
channels is considered to compute the similarity index. In our
experiments VLFeat [106] library has been used to extract SIFT
keypoints.
4.2. PRICoLBP

Pairwise Rotation Invariant Co-occurrence LBP (PRICoLBP) de-
scriptor focuses on encoding spatial co-occurrences and pairwise
orientations of the well-known Local Binary Pattern (LBP) features
[77]. It preserves the relative orientations of LBP features pairs in
order to obtain rotational invariance. To compute the PRICoLBP
descriptor, we employed the original implementation provided by
the authors which is available online.4 We exploited PRICoLBP on
both gray and color domains. In our experiments we set the radius
2, neighbor points equal to 8 and the template equals to 2. This
results in two kinds of PRICoLBP descriptors of 1180 and 3540
components to represent gray and color images respectively.
4 http://qixianbiao.github.io/
4.3. Bag of Textons

Textons have been introduced by Julesz as the putative unit for
the visual perception during pre-attention processing. A compu-
tational model for Textons can be obtained through the responses
of the gray or the color image to a bank of filters [60]. Filter re-
sponses of the training images are quantized through clustering
procedure. Hence, each cluster centroid can be considered a Tex-
ton and a set of them compose a visual codebook [105]. To re-
present images each filtered pixel is associated with one of the
Textons in the codebook considering a similarity metric (in this
paper we use L2 distance). Finally, the histogram of the distribu-
tion over the different Textons of an image is built. We considered
different configurations involved in the Textons extraction pipeline
to highlight which bank of filters, color domain, normalization
procedure and size of the vocabulary are the most appropriate in
the application context discussed in this paper. As similarity
measure between two Texton distributions, we use the χ2 distance.
In the following subsections we detail the different ×49 49 filter
banks tested in this paper (LM, MR8, MR4, Schmid) and LINC
normalization strategy.

4.3.1. Standard filter banks
The Leung–Malik (LM) filters bank [60] consists of 48 filters

(Fig. 2(a)), among which smoothing filters, edge detectors and bar
detectors. There are 4 Gaussian filters, first and second derivatives
of Gaussian at 6 orientations and 3 scales, 8 Laplacian of Gaussian
filters. The scale s of the Gaussian functions is between 1 and 10.

The Maximum Response 8 (MR8) filters are derived by the Root
Filter Set (RFS) which consists of 38 filters similar to the LM filters
[60]. After the convolution with the 38 filters only 8 responses are
selected. As in LM filter bank, MR8 contains filters with different
scales and orientations. However, only the maximum response is
selected across orientations of a specific filter (e.g., edge filter) in
order to achieve rotation invariance. The 38 filters consist of a
Gaussian filter and a Laplacian of Gaussian filter with scale σ = 10,
first derivative of Gaussian filters at 3 scales and 6 orientations,
second derivative of Gaussian filters with the same scales and
orientations of the first derivative of Gaussian filters.

The Maximum Response 4 (MR4) is a subset of the MR8 filters
which is built considering a single scale for the edge filters and bar
filters [60]. Hence the filter bank to be applied contains 14 filters
but 4 responses only are selected.

The Schmid filter bank [93] consists of 13 isotropic filters de-
scribed by the equation:
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where s is the filter scale in pixel and τ a value which is propor-
tional to the number of concentric rings in the kernel. σ τ( )F ,0 is
added to obtain a zero DC component for the filter with σ τ( ), pair
taking values (2,1), (4,1), (4,2), (6,1), (6,2), (6,3), (8,1), (8,2), (8,3),
(10,1), (10,2), (10,3) and (10,4). Those filters are shown in Fig. 2(b).

4.3.2. Local Intensity-normalized Colors (LINC) filter banks
To achieve invariance to local intensity changes the Local In-

tensity-normalized Color procedure has been proposed in [19]. The
authors proposed to use opponent color space and a normalization
of the filter responses. Specifically, for each filter response the
Gaussian filter response for first channel at the same scale s is
exploited in order to obtain local intensity normalization. Despite
LINC normalization has been proposed for MR8 filter bank, we
have employed the procedure considering both MR8 and Schmid
bank of filters.

http://qixianbiao.github.io/


Fig. 2. (a) The 48 filters of Leung–Malik filter bank; (b) the 13 Schmid isotropic filters.
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4.4. Anti-Textons representation

Bag of Textons representation has shown good performances in
the context of food classification and retrieval [32,30]. However,
this representation does not take into account the spatial relation
between the visual words. This is because, in the bag of words
paradigm, only the first order statistics of the visual words are
used as image descriptor. We propose to exploit the spatial in-
formation around each Texton to build a more discriminative re-
presentation of food images. This idea is supported by the study
presented in [103] where the authors defined the concept of Anti-
Textons as the space between two Textons. Anti-Textons concept
has been introduced in the literature by Williams and Julesz in
[109,110] for the purpose of texture segregation (i.e., segmenta-
tion). At the best of our knowledge there is only a single attempt to
find a suitable computational procedure to compute Anti-Textons
for texture segmentation [103]. Differently from previous works
we introduce a computational approach to compute Anti-Textons
distribution for the purpose of image representation. The pro-
posed method assumes that a textons vocabulary with N code-
words has been obtained from the set of training images. Once the
visual vocabulary is obtained, the Anti-Textons computation pi-
peline shown in Fig. 3 is applied to represent an image. The Anti-
Textons representation is computed considering the following
steps:
Fig. 3. Anti-Textons representation
� The Textons map for an image I is computed. For each pixel the
Textons map stores the corresponding Texton ID.

� For each Texton with ID i ( = … )i N1, , a binary map is produced.
The binary map Bi for the Texton i contains 1 in the position
where the Texton i occurs and 0 in all the other positions. At this
stage, N binary maps are computed.

� The Distance Transform [71,90] for each map Bi is computed.
This results in a “saliency” map where the points close to the
Texton i are less salient than the further ones. We use this
saliency map to establish how much each Textons into the
Textons map can be considered Anti-Textons with respect the
Texton i. Each saliency map is normalized by dividing by its max
value. We refer to the normalized map for Texton i with the
symbol Di. The maps Di are inverted by computing = −E D1i i.
This is the way we encode the space between two Textons of the
same class i.

� As next step each map Ei is used to weight the original Texton
map to obtain the final Anti-Textons distribution for Texton i. In
particular, we compute the histogram Hi as follows:

( ) = ∑ ( ) ( )H k E Bx xi i kx , where x is the coordinate in the Texton
Map. The normalized histogram H͠i (at sum 1) represents the
Anti-Textons distribution for the Texton i.

� Finally, we average all the N computed histograms H͠i in order to
produce the Anti-Textons representation for the image I.

The experiments confirm that the proposed Anti-Textons
pipeline (see text for details).
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representation outperforms the other representation.
Table 2
Accuracy and Mean Average Precision for Global Textons vs. Class-Based Textons by
using MR4 filters in gray domain.

Representation Accuracy (%) mAP (%)

12,000 Textons (MR4) – Gray – Class Based 29.16 36.93
12,000 Textons (MR4) – Gray – Global 28.94 36.56
6000 Textons (MR4) – Gray – Global 28.56 36.39
3000 Textons (MR4) – Gray – Global 28.30 36.06
1500 Textons (MR4) – Gray – Global 28.41 36.33
750 Textons (MR4) – Gray – Global 28.16 35.99
375 Textons (MR4) – Gray – Global 27.73 35.58
5. Experimental settings and results

In this section we describe the settings and the quality mea-
sures used to compare the image representations presented in the
previous section and tested on the dataset proposed in Section 3.
We performed both, retrieval and classification tests. For retrieval
purpose, all the 4754 images of the UNICT-FD1200 dataset have
been resized to ×320 240 pixels. For a proper evaluation of the
representation methods, we performed the experiments three
times with different training sets and test sets. All results are ob-
tained by averaging among the three different tests. All the re-
presentation approaches are compared by using the same training
set and test sets. To build a training set we selected a single image
for each of the 1200 dishes. Hence, a training set is composed of
1200 different images. The intersection between the three training
sets is empty. For each test set, we used the rest of the images. The
dataset as well as details useful to properly replicate the experi-
ments with the considered training and test sets are available at
URL http://www.iplab.dmi.unict.it/UNICT-FD1200/. For each image
representation, the results are obtained by averaging over the
three runs. In the case of the retrieval a run consists in a group of
queries composed of the test images for which we need to find the
corresponding image in the training set. The retrieval perfor-
mances are measured using the quality metric P(n) which is based
on the top-n criterion:

( ) =
( )

P n
Q
Q 2

n

where Q is the number of queries (test images) and Qn the number
of correct queries among the first n retrieved images. In this case

( )P 1 results in the classification accuracy measure of the system.
As index to describe the whole retrieval result we decided to use
the Mean Average Precision (MAP) described in [83].

For classification purposes, we consider the same three training
and test sets employed for retrieval purpose and a − NN1 classi-
fier with χ2 distance. Because the images can have multiple labels
(up to 2 labels), two performance metrics have been considered:
as a first measure we considered intersection between the labels
of the query image and the labels of the nearest retrieved images
(according to the − NN1 criteria). If the intersection is not empty,
we count a positive match. Only the overall accuracy is computed
in this case. For the second classification test, we removed all the
multi-labeled images. In this way, the training set is reduced from
1200 to about 965 images and the test set from 3479 to 2799. With
a single label, we are able to build a standard confusion matrix for
evaluation purpose. In the following subsections we detail both
the performed experiments and the obtained results.

5.1. Global Textons vs. Class-Based Textons

Bag of Textons representation obtained in two modalities has
been tested: class-based and global. For the class-based re-
presentation we consider each image in the training set as a class
because it is related to a specific plate. Then, 10 Textons per image
have been extracted by using K-means algorithm to quantize the
space related to the considered categories. Hence, the vocabulary
can be build by collecting all the extracted Textons. Since our
training set is composed of 1200 images, the vocabulary contains
12,000 visual words. In the global approach all the filter responses
of the training set are considered to build the final vocabulary
through K-means clustering with K¼12,000. We have performed
several test by using MR4 filter banks in gray domain and different
vocabulary sizes for the global approach. The results (Table 2)
show that there is no meaningful difference between the class-
based approach and the global one. Since the construction with
the global approach allows us to perform tests at varying of the
final vocabulary in a simple way, we have chosen this modality to
build the visual codebook for the all other experiments presented
in the paper.

5.2. Gray Textons vs. Color Textons

As a next experiment, we decided to compare Textons re-
presentation in gray domain with respect to the one obtained
considering RGB domain. To this aim, we choose to apply the MR4
filter bank to each color channel and then concatenate the re-
sponses obtained for different channels. Hence, considering the
MR4 filters we obtained features in 4-dimensional space for the
gray domain and features in a 12-dimensional space for the color
domain. The P(n) graph in Fig. 4 shows that a great improvement
has been achieved by using color information. For this reason, we
guess that the color information is critical for a good representa-
tion of food images. Considering P(1), which correspond to the
recognition accuracy of the system, the gray representation ob-
tains 28.94% whereas considering color domain an accuracy of
68.14% is obtained.

5.3. SIFT based representation

We test SIFT descriptor in both, gray and RGB color domains. To
retrieve images, we have used two similarity measures. The first
one is based on the number of matched points, while in the second
one each matching is weighted by taking into account the
matching quality score. The approach with weighted measure
outperforms the one where only the number of matched points is
considered. Also in this case, the plots in Fig. 5 and Table 3 show
that the descriptors in color domain outperform the gray ones for
both the SIFT measures employed. Considering the weighted
measure in color domain, we obtained the best accuracy for SIFT
based representation, that is 63.52%. Nevertheless, this result does
not outperform the previous results obtained with MR4 filter bank
in color domain.

5.4. PRICoLBP based representation

These descriptors can be described as a histogram of CoLBP
pattern to encode textures in a rotational invariant way. Since
PRICoLBP has been used for food classification with promising
results [86], we take into account it in the comparison. Result is
presented in Fig. 5. PRICoLBP in color domain is better than PRI-
CoLBP in gray domain. However once again the best results are still
obtained using Bag of Textons approach with MR4 filter bank and
12,000 visual words in RGB color domain. Hence, we decided
to focus on Bag of Textons representation for the next
experiments.

http://www.iplab.dmi.unict.it/UNICT-FD1200/


Fig. 4. P(n) curves related to Gray Textons and RGB Color Textons. (For inter-
pretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)

Fig. 5. P(n) curves for SIFT matching approaches, SIFT matching with weighted
scheme approach and PRICoLBP features in gray and RGB color domains. (For in-
terpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)

Table 3
Accuracy (P(1)) and Mean Average Precision for SIFT matching approach and SIFT
matching with weighted scheme approach.

Representation Accuracy (%) mAP (%)

SIFT – RGB – Score 63.52 67.30
SIFT – RGB – Match 61.15 64.46
SIFT – Gray – Score 54.26 57.73
SIFT – Gray – Match 51.67 54.78

Table 4
Accuracy (P(1)) and Mean Average Precision for different vocabulary sizes for the
Bag of Textons representation considering MR4 filters and color domain.

Representation Accuracy (%) mAP (%)

12000 Textons (MR4) – RGB – Global 68.14 73.99
6000 Textons (MR4) – RGB – Global 66.60 72.65
3000 Textons (MR4) – RGB – Global 65.48 71.62
1500 Textons (MR4) – RGB – Global 63.03 69.69
750 Textons (MR4) – RGB – Global 60.53 67.50
375 Textons (MR4) – RGB – Global 56.58 63.91

G.M. Farinella et al. / Computers in Biology and Medicine 77 (2016) 23–39 33
5.5. Dimension of the visual vocabulary

The vocabulary size is one of the parameters of the retrieval
system to consider to better understand the retrieval perfor-
mances when the number of visual words used to represent the
food images is reduced. For this purpose, we performed tests by
using MR4 filter bank in RGB color domain with different numbers
of visual words: 12,000, 6000, 3000, 1500, 750, 375. In Table 4 are
reported the performances of the tests where the number of visual
words is reduced. Despite the retrieval accuracy decrease, no high
drops are observed. This is reasonable because when the voca-
bulary is reduced, some discriminative visual words could be lost.
Nevertheless a smaller vocabulary results in a better use of the
resources (e.g., memory, CPU). However for the next comparisons,
we decided to use the vocabulary size that guarantee the best
performance (12,000 words).
5.6. Filter banks

We have performed tests considering Bag of Textons re-
presentation in RGB domain by using three more filters banks:
MR8, LM and Schmid (see Section 4 for details). Tables 5 and 6
report an improvement for MR8 and Schmid filters banks with
respect to MR4. On the other hand the LM filter bank has shown
the worst performances. We guess this is because Leung–Malik set
is not rotationally invariant. This idea is coherent with the best
performance obtained with the Schmid set, which consists of 13
symmetric filters. The retrieval system employing Schmid bank of
filters in RGB color domain obtained an accuracy of 75.74% and a
MAP of 80.43%.

5.7. Bag of SIFT vs. Bag of Textons

For a proper comparison between Textons features and SIFT
features we decided to test the Bag of Words paradigm using SIFT
descriptors. Considering the work [5] where Bag of SIFT has been
used for food classification purpose, to build Bag of SIFT re-
presentation we used a dense sampling on a grid with a spacing of
8 pixels. A ×16 16 patch is extracted and SIFT descriptor is com-
puted considering the three RGB channels as described [5]. To
make more fair the comparison with respect to the Bag of Textons
representation we repeated the Bag of Textons tests by using MR8
bank of filters, color domain, 12,000 visual words but considering
the same ×8 8 sampling used for SIFT descriptors. The results in
Fig. 6 and Table 7 show Bag of Textons approach without spatial
sampling Bag of SIFT representation. It is interesting to notice that
Bag of Textons approach outperforms with a large margin Bag of
SIFT also when spatial sampling is used.

5.8. Color space

Finally, we consider to change the color space used into the Bag
of Textons representation to achieve further improvements in the
retrieval performances. To this aim, we exploited the L*a*b* color
space and the opponent color space. In the first case, we simply
transform the pixel value of an image from the RGB color space to
the L*a*b* one. The Textons are computed in the standard way, as
described in Section 5.2. In the second case, we use the opponent
color space and the normalization procedure described in [19]. In
particular, it has been considered the procedure called Local In-
tensity-normalized Colors (LINC). The normalization is made by
dividing each filter response by the Gaussian filter response (with
the same s value). We tested the MR8-LINC method proposed in
[19]. Moreover we have adapted that the algorithm has been
adapted to extract the LINC version of the Schmid filter banks
(Schmid-LINC). As shown in Table 8, the best performance is
achieved using Schmid filter banks computed in the L*a*b* color
space with an accuracy of 87.44% and a MAP equal to 90.06.



Table 5
First P(n) values ( = … )n 1 10 related to Bag of Textons representation obtained with different filter banks in RGB domain.

Representation P(1) (%) P(2) (%) P(3) (%) P(4) (%) P(5) (%) P(6) (%) P(7) (%) P(8) (%) P(9) (%) P(10) (%)

12,000 Textons (MR4) – Color – Global 68.14 74.16 77.17 79.30 80.70 81.80 82.79 83.41 84.02 84.70
12,000 Textons (MR8) – Color – Global 71.55 77.41 80.20 81.81 83.11 84.21 85.07 85.77 86.33 86.84
12,000 Textons (Schmidt) – Color – Global 75.74 80.79 83.16 84.43 85.68 86.68 87.49 88.10 88.68 89.20
12,000 Textons (LM) – Color – Global 61.69 68.24 71.59 73.69 75.35 76.63 77.79 78.93 79.73 80.56

Table 6
Accuracy and Mean Average Precision related to Bag of Textons representation
obtained with different filter banks in RGB domain.

Representation Accuracy (%) mAP (%)

12,000 Textons (MR4) – RGB – Global 68.14 73.99
12,000 Textons (MR8) – RGB – Global 71.55 77.00
12,000 Textons (Schmidt) – RGB – Global 75.74 80.43
12,000 Textons (LM) – RGB – Global 61.69 68.22

Fig. 6. P(n) curves for Bag of Textons and Bag of SIFT representations in RGB
domain.

Table 7
Accuracy and Mean Average Precision for Bag of Textons and Bag of SIFT re-
presentations in RGB domain.

Representation Accuracy (%) mAP (%)

12,000 Textons (MR8) – RGB – Global 71.55 77.00
12,000 Bag of SIFT 21.81 29.14
12,000 Textons (MR8) – RGB – Global – 8�8 47.45 57.00

Table 8
Accuracy and Mean Average Precision of Bag of Textons representation with dif-
ferent color spaces.

Representation Accuracy (%) mAP (%)

12,000 Textons (MR8) – Lab – Global 85.04 88.39
12,000 Textons (MR8) – LINC – Global 83.10 86.93
12,000 Textons (MR8) – RGB – Global 71.55 77.00
12,000 Textons (Schmidt) – Lab – Global 87.44 90.06
12,000 Textons (Schmidt) – LINC – Global 84.32 87.84
12,000 Textons (Schmidt) – RGB – Global 75.74 80.43
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5.9. Visual analysis

In order to understand different discriminative capabilities
among the employed representations, we performed a visual
analysis of the results. For this purpose, we have included 5 re-
presentations in the analysis: Bag of Textons computed with
Schmid filters in L*a*b* color space and 12,000 visual words, MR8
filters in L*a*b* with 120,00 visual words, MR8 in RGB space with
12,000 visual words and sparse sampling with step 8, Bag of SIFT,
and SIFT based representation with matching scheme. Here we
have reported some interesting result of one of the three tests for
all the 5 representations. The complete visual comparison is
available at the URL http://www.iplab.dmi.unict.it/UNICT-FD1200/.
In Fig. 7 we show two queries where all the representations have a
positive match. On the contrary, in Fig. 8, are shown queries where
all the representations fail. Since we find out that the Schmid
based representation outperforms all the other ones, we selected
some queries where this representation had a positive match but
all the other ones fail (Fig. 9). In Fig. 10 are shown the only
2 queries where the Schmid based representation fails whereas all
the other ones have a correct match.
5.10. Result on the UNICT-FD889

To compare the results reported in [30] with the ones of this
paper, we decide to perform an experiment on the UNICT-FD889
dataset using the representation which have obtained the best
results on the UNICT-FD1200 (i.e., Bag of Textons with Schmid
filter bank in L*a*b* color space and codebook of 12,000 words).
The results in [30] are outperformed with an improvement of at
least 26% for the accuracy and more than 20% for the MAP score as
reported in Table 9. Recently in [66], the authors propose a Ran-
dom Forest classification algorithm on the UNICT-FD889. The
proposed representation outperforms also the results reported in
[66].
5.11. Anti-Texton results

So far we have presented different experiments which have
pointed out that Bag of Textons representation, obtained con-
sidering Schmid filters on L*a*b* domain, obtains the best per-
formances on the UNICT-FD1200 dataset. One contribution of this
paper is the introduction of a novel representation based on the
concept of Anti-Textons, in order to encode spatial information in
the classic Bag of Textons representation. To demonstrate the
performances of Anti-Textons representation, we have compared
the different filter banks to compute the Bag of Textons re-
presentation on L*a*b* space with a very small number of visual
words equal to 375. As confirmed by the results reported in Ta-
ble 10, Anti-Textons representation involved the best results in all
of the configurations. Moreover it is interesting to note that the
results obtained considering only 375 visual words with Anti-
Textons representation and Schmid filters (85.01%) are close to the
one obtained when 12,000 visual words are employed (87.44% –

see Table 8) which has a higher cost in terms of representation
storage and similarity computational time during retrieval. On the
other hand, the computation of Anti-Textons representation is
more expensive with respect to the original Textons based re-
presentation since it has to encode the spatial information among
textons.

http://www.iplab.dmi.unict.it/UNICT-FD1200/


Fig. 7. A visual comparison where all the considered representations have a positive match.

Fig. 8. A visual comparison where all the considered representations fail.

Fig. 9. A visual comparison where only the Schmid L*a*b* representation gives a correct match.
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5.12. Food classification

In previous sections we have presented different tests to assess
the performances of a retrieval system at varying of features and
parameters. As pointed out by our experiments, an accuracy of
87.44% and a MAP of 90.06% can be achieved on the UNICT-FD1200
dataset by exploiting Schmid Textons computed on the L*a*b*
domain with a large vocabulary of 12,000 visual words. Moreover
tests pointed out that the Anti-Textons representation improves
the results in every configuration used. Another task we can
consider in the UNICT-FD1200 dataset is classification. As detailed
in Section 3 each image of the UNICT-FD1200 is labeled with one
or two of the following classes: Appetizer, Main Course, Second
Course, Single Course, Side Dish, Dessert, Breakfast, Fruit. To per-
form the classification test we have considered the best Bag of
Textons representation mentioned above. For a proper evaluation,
we have performed two kinds of experiments by using − NN1
classifier and χ2 distance. First, to consider the fact that images can
have multiple labels (e.g., Second Course and Side Dish) as eva-
luation criteria we count a positive match for the query i when

∩T Pi i is not empty. Let Ti be the set of the true labels for the query
image i, and Pi is the set of the predicted labels. The average
classification accuracy obtained by using Bag of Textons was
93.04%. Despite this strategy could produce too much positive
match, we remark that the multi-labeled images of UNICT-FD1200
have no more than 2 labels. As second evaluation, the training sets



Fig. 10. The only 2 queries where the Schmid L*a*b* representation fails.

Table 9
Accuracy and Mean Average Precision of the representation used in [30] and the
Bag of Textons representation with Schmid filters proposed in this paper.

Representation Accuracy (%) mAP (%)

8890 Textons – Gray – Global 27.70 35.98
1100 Textons – RGB – Global 60.17 67.46

SIFT – RGB – Score 58.12 62.74
PriCoLBP – RGB 56.33 63.52

12,000 Textons (Schmidt) – Lab – Global 86.17 89.21

Table 10
Accuracy and Mean Average Precision of the Bag of Texton and Anti-Textons re-
presentations with 375 visual words in L*a*b domain.

Representation Accuracy (%) mAP (%)

375 Textons – LM Lab 74.75 80.15
375 Anti-Textons – LM Lab 76.23 81.39
375 Textons – MR4 Lab 77.18 82.11
375 Anti-Textons – MR4 Lab 78.40 83.05
375 Textons – MR8 Lab 80.83 85.12
375 Anti-Textons – MR8 Lab 82.21 86.17
375 Textons – Schmid Lab 83.77 87.30
375 Anti-Textons – Schmid Lab 85.01 88.22

Fig. 11. The confusion matrix for the classification the tests related to food. The
image representation used is the Bag of Textons with Schmid filter bank in L*a*b*
color space and codebook of 12,000 words.
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and test sets have been reduced by removing the images with
multiple labels. Classification results for this test are reported in
the confusion matrix in Fig. 11. In this case, the accuracy was
92.60%. Confusion matrix is a common statistical tool to report
performance of a classification system [54]. Each of the columns of
the confusion matrix shows the predicted class for a classification
query, while each of the rows represents the actual (or true) class
for a classification query [54].

We have also performed classification tests by using the pro-
posed Anti-Textons representation (Schimd filters, L*a*b* color
space) with a codebook of 375 elements. In order to compare
properly the standard Bag of Textons approach, with the respect to
Anti-Textons representation, the same test using Bag of Textons
has been repeated by using a vocabulary of 375 visual words. The
accuracy obtained with Bag of Textons was 90.42% whereas Anti-
Textons representation has got an accuracy of 91.21% confirming
its effectiveness. In Fig. 12(a) and (b) note that the Anti-Textons
representation, with only 375 visual words, is able to reach an
accuracy very close to the Bag of Textons with a vocabulary of
12,000 Textons (91.21% vs. 93.04%). For a proper evaluation of the
proposed representations we have performed the classification
experiments by employing a CNN-based method. Specifically, to
perform tests we fine tuned GoogleNet [99]. Results show an
accuracy for the CNN method of 51.41% which is much lower than
the accuracy obtained with the representations proposed in this
paper. This is not a surprise, because the CNN-based methods
usually need a huge amount of data for a proper training. Note that
there are real cases (retrieval of a food offered of a canteen of a
company) in which the construction of a big dataset is not possible
(or at least has a high cost). In such cases the proposed approach
for food classification can be suitable since CNN cannot be suc-
cessfully applied.

5.13. Experiments on the menu-match dataset

To properly test the proposed approaches we performed ex-
periments by employing another food dataset. Specifically we have
considered the Menu-Match dataset introduced in [10] and we
have compared the proposed approach with respect the approach
described in [10]. The authors of [10] proposed a system which
provides automatic classification by using priors about the pro-
venance of food plate depicted in the acquired images. Specifically,
the system is able to recognize food plates which are served in a
predetermined set of restaurants. Thanks to GPS coordinates
stored in the query image metadata, most of the restaurants can be
discarded. The Menu-Match dataset contains 646 multi-labeled
food images across 41 food categories, which have been acquired



Fig. 12. The confusion matrices for the classification the tests related to food. The employed image representations are Bag of Textons (a) and Anti-Textons (b) with Schmid
filter bank in L*a*b* color space and codebook of 375 visual words. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.).
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with six different mobile devices by five photographers in three
different restaurants, in order to guarantee a considerable photo-
metric variability. We evaluated the approaches proposed in this
paper on the Menu-Match dataset (GPS coordinates have not been
used) to compare the performances with respect to the one ob-
tained in [10]. In the original work, the acquired image was re-
presented by employing Bag of Words paradigm and six different
kinds of features, among which: color features, Histogram of Or-
iented Gradients (HOG), Scale-Invariant Features Transform (SIFT),
Local Binary Pattern (LBP) and Textons with MR8 filters bank. All
the aforementioned features were encoded through locally con-
strained linear encoding method (LLC) and finally joint in a unique
feature vector. Since, Menu-Match dataset contains multi-labeled
images, the top-5 average recall has been proposed by the authors
as evaluation metric, while a one-vs.-all SVM has been employed
for training and classification. The experiments in [10] report a
top-5 average recall of 83.00% with a 30,720-dimensional feature
vector. We performed tests employing the same Training–Testing
protocol proposed by the authors, using the proposed Bag of
Textons and Anti-Textons with a vocabulary of 1024 visual words.
The experiments pointed out that the proposed Bag of Textons
representation in L*a*b* domain and Schmid filters bank outper-
forms the representation suggested in [10] obtaining a top-5 recall
of 84.05%. A further boost in the performances has been obtained
with the proposed Anti-Textons representation (85.82%).
6. Conclusion and future perspective

In this paper the problem of Food Image Analysis has been
taken into account. After a review of the literature we have fo-
cused on the problem of food image retrieval and classification.
The new dataset UNICT-FD1200 has been introduced for the study
of food image representation and different tests have been done to
compare state-of-the-art representation approach. Another con-
tribution of the paper is the introduction of a computational ap-
proach to encode the perceptual concept of Anti-Texton in order to
encode spatial information into the Bag of Textons approach. Ex-
periments have pointed out that Textons based representation
computed in a L*a*b* domain considering the Schmid filter banks
achieve good performances on both retrieval and classification
tests. Finally, we have demonstrated that the proposed Anti-Tex-
tons representation is able to improve the results based on the Bag
of Textons paradigm. Future works can consider the exploitation of
more complex representation (e.g., deep learning) as well as a
different level of classification (e.g., ingredients) to better describe
a food plate. Moreover, considering the results achieved in this
paper, systems based on retrieval mechanisms can also be built to
deal with the problem of food intake monitoring and calories es-
timation. Finally, food understanding has become more and more
of interest for both research community and society. There is a
general consensus that multimedia assisted dietary management
systems can be useful to improve the quality of life. To this aimwill
be important to build systems able to automatic answer different
questions from food images: (1) which kind of food is in the im-
age?; (2) what are the ingredients of the detected food? (3) does it
contain allergic ingredients (e.g. nuts); (4) which is the volume of
the food?; (5) how many calories I will assume with this plate?

The above questions pose many challenges. As first, it will be
important to build and share benchmark labelled datasets in order
to test and compare the different solutions. Common evaluation
methods on the benchmark datasets should be proposed to better
assess the performances of the systems with respect to different
tasks (e.g., is a classification score of 99% acceptable in case of
detection of allergic ingredient classification?). Studies on pixel-
wise semantic segmentation of the food images are still needed to
better deal with ingredients identification. An in-depth analysis of
the volume estimation methods from single food images, as well
as from multiple images is still missing in the literature.
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