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1. INTRODUCTION

Widespread use of message-based communication for davglogtwork applications to
combine numerous distributed services has provoked uingenést in structuring series of
interactions to specify and implement program commurocasiafe software. The actual
development of such applications still leaves to the pnognar much of the responsibility
in guaranteeing that communication will evolve as agreedlbthe involved distributed
peers. Multiparty session type disciplingroposed in [Honda et al. 2008] offers a type-
theoretic framework to validate a message-exchange anmrmiorently running multiple
peers in the distributed environment, generalising thstieg binary session types [Honda
1993; Honda et al. 1998]; interaction sequences are abstras a global type signa-
ture, which precisely declares how multiple peers comnataiand synchronise with each
other.

The multiparty sessions aim to retain the powerful dynamsatidres from the original bi-
nary sessions, incorporating features such as recursibohaice of interactions. Among
featuressession delegatiois a key operation which permits to rely on other parties for
completing specific tasks transparently in a type safe maren this mechanism is
extended to multiparty interactions engaged in two or mpez#ications simultaneously,
further complex interactions can be modelled. Each multypsession following a distinct
global type can be dynamicallgterleavedby other sessions at runtime either implicitly
via communications belonging to different sessions orieit|yl via session delegation.

Previous work on multiparty session types [Honda et al. 2008 provided a limited
progress property ensured only within a single sessiomyigg this dynamic nature. More
precisely, although the previous system assures that thigphaparticipants respect the
protocol, by checking the types of exchanged messages aratdler of communications
in a single session, it cannot guarantegabal progressi.e, that a protocol which merges
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2 . L. Bettini et al.

several global scenarios will not get stuck in the middle eéasion. This limitation pro-
hibits to ensure a successful termination of a transaatiaking the framework practically
inapplicable to a large size of dynamically reconfiguredvensations.

This paper develops, besides a more traditicmmhmunicatiortype system{ 3), a
novel staticinteractiontype system{ 5) for global progress in dynamically interleaved
multiparty, asynchronous sessions. High-level sessioogsses equipped with global sig-
natures are translated into low-level processes which bapkcit senders and receivers.
Type-soundness of low-level processes is guaranteedsa@fagniocal, compositional com-
munication type system.

The new calculus for multiparty sessions offers three teehmerits without sacrificing
the original simplicity and expressivity in [Honda et al.G8). First it avoids the overhead
of global linearity-check in [Honda et al. 2008]; secondlpriovides a more liberal policy
in the use of variables, both in delegation and in recursafadions; finally it implicitly
provides each participant of a service with a runtime chbindexed by its role with which
he can communicate with all the other participants, pemgjthlso broadcast in a natural
way. The use of indexed channels, moreover, permits to daflight-weight interaction
type system for global progress.

The interaction type system automatically infers causalivf channels for the low level
processes, ensuring the entire protocol, starting fronhide-level processes which con-
sist of multiple sessions, does not get stuck at intermedigsions also in the presence of
implicit and explicit session interleaving.

2. SYNTAX AND OPERATIONAL SEMANTICS

Merging Two Conver sations. Three-Buyer Protocol. We introduce our calculus through
an example, the three-buyer protocol, extending the twabprotocol from [Honda et al.
2008], which includes the new features, session-muliitgsind dynamically merging of
two conversations. The overall scenario, involving a 3€18), Alice (A), Bob (B) and
Carol (C), proceeds as follows.

(1) Alice sends a book title to Seller, then Seller sends lzagkiote to Alice and Bob.
Then Alice tells Bob how much she can contribute.

(2) Ifthe price is within Bob’s budget, Bob notifies both ®eland Alice he accepts, then
sends his address, and Seller sends back the delivery date.

(3) Ifthe price exceeds the budget, Bob asks Carol to calbdogether by establishing a
new session. Then Bob sends how much Carol must paydilegateshe remaining
interactions with Alice and Seller to Carol.

(4) If the rest of the price is within Carol's budget, Carotapts the quote and notifies
Alice, Bob and Seller, and continues the rest of the protegti Seller and Alice
transparentlyas if she were BabOtherwise she notifies Alice, Bob and Seller to quit
the protocol.

Then multiparty session programming consists of two stepscifying the intended com-
munication protocols using global types, and implementimgse protocols using pro-
cesses. The specifications of the three-buyer protocoliges gs two separated global
types: one i$5; among Alice, Bob and Seller and the otheGgbetween Bob and Carol.
We write principals with legible symbols though they willtaally be coded by numbers:
in Ga we haves = 3,A =1 andB = 2, while inGp we haveB =2,C = 1.
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Ga= Gp =
1. A — S: (string). 1. B — C: (int).
2. S — {A,B}: (int). 2. B — C: (T).
3. A — B (int). 3. C — B: {ok:end, quit:end}.
4. B — {S,A}: {ok:B—S: (string). T=
5. S — B (date);end ®({s,A},
6. quit : end} {ok :1(S,string); (S, date); end,
quit : end})

The types give a global view of the two conversations, diyegbstracting the scenario
given by the diagram. I16;,, line 1 denotes\ sends a string value t®. Line 2 saysS
multicasts the same integer valuest@ndB and line 3 says that sends an integer tB.
In lines 4-6B sends eithesk or quit to S andA. In the first cas® sends a string t6 and
receives a date from, in the second case there are no further communications.

Line 2 in G, represents the delegation of the capability specified bwdiien typeT of
channels (formally defined later) fromto C (note thats andA in T concern the session
ona).

We now give the code, associated®q and Gy, for S, A, B andC in a “user” syntax
formally defined in the following section:

S = a3|(ys).ys?(title); ys! (quote; ys& {ok : ys?(address; y3! (date; 0, quit: 0}
A a1 (y1).y1!("Title");y1?(quote;yi! (quotediv 2);y1&{ok : O, quit : O}

B a[2](y2).y2?(quots); y»?(contrib);
if (quote - contrib< 100) then y, @ ok;y»!("Address");y»?(date); 0
else b[2](z).2,! (quote - contrib 99); ! ({(y»)); Z2& {ok : 0, quit : O}

C = bl(z)z?x);zt);

if (X< 100) then z; @ ok;t @ ok;t!("Address");t?(date);0

else z1 ® quit;t ® quit; 0
Session nama establishes the session correspondinG4o S initiates a session involv-
ing three bodies as third participant bf8|(y3): A andB participate as first and second
participants bya[1](y1) anda[2](y2), respectively. Thers, A andB communicate using
the channelys, y1 andy,, respectively. Each channg) can be seen as a port connecting
participantp with all other ones; the receivers of the data senypare specified by the
global type (this information will be included in the runtncode). The first line o6, is
implemented by the input and output actiga8(title) andy;!("Title"). The last line of
Gy, is implemented by the branching and selection actm&d ok : 0, quit : 0} andz; & ok,
71 @ quit.

In B, if the quote minug’s contribution exceeds 1&(i.e.,quote - contrib> 100), an-
other session betwe@&wandc is established dynamically through shared n&amehe del-
egation is performed by passing the chanadtom B to C (actionsz,! ((y2)) andz; ?((1))),
and so the rest of the session is carried ou€lwith S andA. We can further enrich this
protocol with recursive-branching behaviours in intevlsh sessions (for example,can
repeatedly negotiate the quote withs if she wer®). What we want to guarantee by static
type-checking is that the whole conversation between the garties preserves progress
as if it were a single conversation.

Syntax for Multiparty Sessions. The syntax for processes initially written by the user,
calleduser-defined processes based on [Honda et al. 2008]. We start from the follow-
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P == Un)(y).P Multicast Request | ifethenPelse Q  Conditional
| up](y).P Accept |  P|Q Parallel
| yl(e);P Value sending | 0 Inaction
| y2AX);P Value reception | (va)P Hiding
| yl{(2);P Session delegation | defDinP Recursion
| y2A(2);P Session reception | X(ey) Process calll
|  yolP Selection
| y&{li : R}ial Branching e = v|x

u = x|a Identifier | eand€ |note... Expression

v = aftrue |false Value D == X(xy)=P Declaration

Table I. Syntax for user-defined processes

ing sets:service namegsanged over by, b, ... (representing public names of endpoints),
value variables ranged over by, X, ..., identifiers, i.e., service names and variables,
ranged over by, w, ..., channel variablesranged over by,zt..., labels ranged over
by I,I’,... (functioning like method names or labels in labelled resprgrocess vari-
ables ranged over b, Y, ... (used for representing recursive behaviour). Thercesses
ranged over by, Q. .., andexpressionganged over b, €, ..., are given by the grammar
in Table I.

For the primitives for session initiatiom|n](y).P initiates a new session through an
identifier u (which represents a shared interaction point) with the rothaltiple partici-
pants, each of shapgp](y).Q, where 1< p < n—1. The (bound) variablgis the channel
used to do the communications. We gallq,... (ranging over natural numbers) thar-
ticipantsof a session. Session communications (communicationsakeafplace inside an
established session) are performed using the next thresqdgirimitives: the sending and
receiving of a value; the session delegation and receptitiere the former delegates to
the latter the capability to participate in a session by ipgss channel associated with the
session); and the selection and branching (where the fazhwarses one of the branches
offered by the latter). The rest of the syntax is standamhffidonda et al. 1998].

Global Types. A global type ranged over byG, G, .. describes the whole conversation
scenario of a multiparty session as a type signature. Itaigar is given below:

Global G = p—N:{U).G Exchange U :@= S|T
| p—MN:{li:G}ie Sorts S = bool]...|G
|  ut.G |t |end

We simplify the syntax in [Honda et al. 2008] by eliminatingannels and parallel com-
positions, while preserving the original expressivityg(8®).

The global typep — M : (U).G’ says that participang multicasts a message of type
U to participantspy (k € M) and then interactions described® take place.Exchange
types UU’, ... consist ofsortstypesS, S, ... for values (either base types or global types),
andactiontypesT,T’,... for channels (discussed §8). Typep — N : {li : Gj}ic says
participantp multicasts one of the labelsto participantspy (k € ). If |} is sent, inter-
actions described iG; take place. Typgt.G is a recursive type, assuming type variables
(t,t’,...) are guarded in the standard way, i.e., type variables qrpgar under some pre-
fix. We take arequi-recursiveview of recursive types, not distinguishing betwgenG
and its unfoldingG{ut.G/t} [Pierce 2002] §21.8). We assume th& in the grammar of
sorts is closed, i.e., without free type variables. Tygjperepresents the termination of the
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P = cl(Ne;P Value sending | ca(nl),P Selection
| c?(p,X); P Value reception | c&(p,{li:R}ial) Branching
| cl((p,c));P  Session delegation | (vo)P Hiding session
| c?(a,y));P Session reception | s:h Named queue

[

c = vy |sp Channel

m = (q,MV) | (a,p,slP']) | (q,M,1) Message in transit

h = mh|g Queue

Table Il. Runtime syntax: the other syntactic forms are aEainle |

session. We often writg — p’ forp — {p’}.

Runtime Syntax. User defined processes equipped with global types are edtubugh

a translation into runtime processes. The runtime syntaklI€nl) differs from the syn-
tax of Table | since the input/output operations (including delegation ones) specify the
sender and the receiver, respectively. Thaid]1,€) sends a value to all the participants
in M; accordingly,c?(p,x) denotes the intention of receiving a value from the partici-
pantp. The same holds for delegation/reception (but the recévenly one) and selec-
tion/branching.

We call [p] a channel with role it represents the channel of the participarit the
sessiors. We usec to range over variables and channels with roles. As in [Haztda.
2008], in order to model TCP-like asynchronous commuricetimessage order preser-
vation and sender-non-blocking), we use the queues of messa a session, denoted by
h; a message in a queue can be a value mesgagde,v), indicating that the value was
sent by the participarg and the recipients are all the participantdina channel mes-
sage (delegation}q,p’, slp]), indicating thaly delegates t@’ the role ofp on the session
s (represented by the channel with ralg]); and a label messaggg,[1,1) (similar to a
value message). The empty queue is denoted bWith some abuse of notation we will
write h- mto denote thaimnis the last element included mandm-h to denote thainis the
head ofh. By s: hwe denote the quelreof the sessioms. In (vs)P all occurrences of[p]
and the queusare bound. Queues and channels with role are generated bgehational
semantics (described later).

We present the translation of BoB)(in the three-buyer protocol with the runtime syn-
tax: the only difference is that all input/output operati@pecify also the sender and the
receiver, respectively.

B = a2|(y2).y22(3,quote;y»?(1, contrib);
if (quote - contrib< 100) then Y & ({1,3},0k);y2! ({3}, "Address");y>?(3, date); 0
else b[2](z2).2,! ({1}, quote - contrib 99); 2! ((1,¥2)); 22& (1, {ok : O, quit : O}).
It should be clear from this example that starting from a gldppe and user-defined pro-
cesses respecting the global type it is possible to add s@mdereceivers to each com-
munication obtaining in this way processes written in thetirae syntax. We calpurea
process which does not contain message queues.

Operational Semantics. Table 1l shows the rules of the process reduction relation
P — P’. Rule [Link] describes the initiation of a new session amangarticipants that
synchronise over the service nameT he last participard[n|(yn).Pn, distinguished by the
overbar on the service name, specifies the numloéparticipants. For this reason we call
it the initiator of the session. Obviously each session must have a unidistani After
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a(yr)-Po| .. [ anl(yn)-Pn — (vS)(P{S[1]/y1} | .. | Pa{S[N]/¥n} | S: @) [Link]
sp)!(M,e);P|s:h—P|s:h-(p,M,v) (elv) [Send]
slpl!((a,S[p']));P[s:h—P|s:h-(p,q,S[p']) [Deleg]

slp] @ (M,1);P|s:h—P|s:h-(p,M,I) [Label]

spjlAa,¥);P | s: (q,M,v)-h — P{v/x} [ s: (q,MM\ j,v)-h (jen) [Recv]
sip]?2(a,y));P[s: (a,p,S[p'])-h— P{s[p']/y} | s:h [Srec]

Slpj]&(a, {li : P}ier) |s:(q,M,lig)-h— Py [s:(q,M\j,li)-h
(jen) (ipel) [Branch]

ifethen Pelse Q— P (e] true) ifethenPelseQ— Q (e] false) [If-T, If-F]
def X(x,y) = Pin (X(e s[p]) | Q) — def X(x,y) = Piin (P{v/x}{s[p]/y} | Q) (elV) [Def]
P—P = (vr)P— (vr)P P—P = PIQ—P|Q [Scop,Par]
PP = defDinP——defDinP [Defin]
P=P andP — Q andQ=Q = P—Q [Str]
Table Ill.  Reduction rules

the connection, the participants will share the privatsisesnames, and the queue asso-
ciated tos, which is initialized as empty. The variablgsin each participang will then be
replaced with the corresponding channel with rglg]. The output rules [Send], [Deleg]
and [Label] push values, channels and labels, respectimétythe queue of the sessisn
(in rule [Send],e | v denotes the evaluation of the expressidn the valuev). The rules
[Recv], [Srec] and [Branch] perform the corresponding campentary operations. Note
that these operations check that the sender matches, anthatshe message is actually
meant for the receiver (in particular, for [Recv], we needd@move the receiving partic-
ipant from the set of the receivers in order to avoid readimgdame message more than
once).

Processes are considered modulo structural equivaleanetat by= (Table I1V); be-
sides the standard rules [Milner 1999], we have a rule faragging messages when the
senders or the receivers are not the same, and also spéttimgssage for multiple recip-
ients and the rules for garbage-collecting messages thiatdieeady been read by all the
intended recipients. We use—~* and-/— with the expected meanings.

We conclude this section by showing some reduction stepgjubkie example of the
three buyer protocol of Section 2; we will consider a simetifiversion of the example
(i.e., the Buyer3 always selects thie label, without theif ... then ... else ...) and we
will concentrate on the part involving delegation. Thus,assume that the seller and the
first two buyers have already established a connection é$san name is?) and that the
Buyer2 is about to establish a connection with Buyer3; ttet fine represents the server
that is waiting to conclude the transaction with participan We give some reduction
steps in Table V. In the computation, Buyer3 plays the rolBwfer2 (participant 2 in the
sessiors?) transparently to the seller.
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Plo=P P|Q=Q|P (P|Q|R=P|(Q|R)
(vnP[Q=(vr)(P|Q ifr¢Mm(Q)
(vir)P= (vi')P (vr)0=0 defDin0=0
defDin (vr)P= (vr)defDinP ifr ¢fn(D)
(defDinP) |Q=defDin (P|Q) if dpv(D)Nfpv(Q) =0
defDin (defD' inP)=defDand D’'in P if dpv(D)Ndpv(D’) =0
s:(q,0v)-h=s:h  s:(q0l)-h=s:h

s:(q,N,2)-(d,N",Z)-h=s:(¢,1",Z)-(q,M,2)-h
if MINMN'=0orq#4

s:(q,N,2)-h=s:(q,N",2)-(q,N",2)-h
wherell =M unN” and’'NN” =0

Table IV.  Structural equivalence (anges ovea, sandzranges ovev, s[p] andl.)

(vs?)(2[3]> (2, {ok : s?[3](2, addres$; 2[3]! ({2}, date); 0, quit: O}) |
b[1](z1).z1!({2},quote - contrib 99); ! ((2,5%[2]));...) |
b[2](22).222(1,X); 22((L,1)); 2 ({1}, 0k); t < ({1, 3},0k);t1 ({3},...);t (3, date)

— by using [Link] (and the structural congruence for scopeiesibn)

(vs2sP)(...as above.. | L[1]1({2},quote - contrib -99);s°[1]! (2, 2[2]));... |
L[2]2(1,%); L[22((1,1));82[2] « ({1}, 0k);t < ({1, 3}, 0k); 1 ({3},...);t2(3,date))

—* by using [Send] and [RecV] the result@fiote - contrib 99 is communicated

(vs?sP)(...as above.. | L[1)1((2,5%[2])); L[] > (2, {ok : 0, quit : O}) |
[2]2(1,1)); L[2) < ({1}, 0k);t < ({1,3},0k);t1({3},...);t2(3,date))

—* by using [Deleg] and [Srec]

(vs?sP)(...as above.. | (1] (2,{ok : 0, quit: 0}) |
(2] < ({1}, 0k); (2] < ({1, 3}, 0k); (21 ({1}, );[22(3, date))

—* by using [Label] and [Branch]
(vs?s) (s3] > (2, {ok : $2[3]?(2, addres$; s*[3]! ({2}, date); 0, quit: 0}) | O |
(2] <({1,3},0k); 221 {{3},...); 2[2] %3, date))

Table V. Example of reduction

3. COMMUNICATION TYPE SYSTEM

The previous section defines the syntax and the global tyfiais. section introduces the
communication type system, by which we can check type saesslaf the communica-
tions which take place inside single sessions.

Types and Typing Rules for Pure Runtime Processes. We first define the local types of
pure processes, callegtion typesWhile global types represent the whole protocol, action
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types correspond to the communication actions, repreggséissions from the view-points
of single participants.

Action T = KNU)T send |  utT recursive
| 2Ap,U)T receive |t variable
| @M, {li:Titier) selection | end end
|

&(p.{li: Ti}ia)  branching
Thesend typel (IN,U);T expresses the sending to plifor k € M of a value or of a chan-
nel of typeU, followed by the communications d@f. Theselection typed (M, {l; : Ti}icI)
represents the transmission to gl for k € M of a labell; chosen in the sefli |i €1}
followed by the communications described By Thereceiveandbranchingare dual and
only need one sender. Other types are standard.
The relation between action and global types is formaligethb notion of projection
as in [Honda et al. 2008]. Thaojection of G ontay (G | q) is defined by induction ofs:
HM,U); (G 1q) ifq=p,
(p—M:(U).G)[q=12Ap,U);(G [q) if q=pxfor someke M,
G lq otherwise

(p—N:{li:Gi}lia) [q=

&M {li:Gilqtie) ifq=p

&(p,{li: Gi [ q}ie1) if q=pkfor someke

Gilq if 9 # p,q # pkvk € I and

Gi[q=Gj [qforalli,jel.
(Ut.G) Iq=ut.(Glq) tlg=t end[q=end.
As an example, we list two of the projections of the globaktyf, andGy, of the three-
buyer protocol:
Ga [ 3 = 21 string); 1{{1,2},int); & (2, {ok :?(2,string);! ({2}, date); end, quit : end})
Gp [1 = 22,int); 22, T);®({2},{ok : end,quit : end})
whereT = @ ({1,3}, {ok :I{{3},string); ?(3,date);end, quit : end}).
The typing judgements for expressions and pure processes tire shape:
I-e:Sandl -P>A

wherel is thestandard environmenthich associates variables to sort types, service names
to global types and process variables to pairs of sort typdsation typesi is thesession
environmentvhich associates channels to action types. Formally weetefin
M:=0|Mu:S|MX:STandA:=0|Ac:T

assuming that we can write,u : S only if u does not occur i, briefly u ¢ dom(T)
(dom(T") denotes the domain &F, i.e., the set of identifiers which occurlif). We use the
same convention foxX : S T andA.

Table VI presents the typing rules for pure processes. RMIEAST| permits to type
a service initiator identified by, if the type ofy is then-th projection of the global type
G of u and the number of participants @& (denoted by p(G)) is n. Rule [MAcc| per-
mits to type thep-th participant identified by, which uses the channg] if the type of
y is thep-th projection of the global typ& of u. The successive six rules associate the
input/output processes to the input/output types in theeetqu way. Note that, according
to our notational convention on environments, in rlUELEG| the channel which is sent
cannot appear in the session environment of the premise¢/i® domA) U {c}. Rule
| Conc| permits to put in parallel two processes only if their sessienvironments have
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g :bool
Mu:Sku:S [Nave| T+ true(false:bool — — |BooL],|AND]
[+e and e : bool
MFu:(G) TEPrAY:GI1 pnG)<n MFu:(G) TEPrAY:Glp
[MCAST]| [MAcc|
I Ean|(y).PrA I+ ulp](y).P>A
l-e:S THPeAcC:T M x:SEPeAC:T
| SEND| |Rev|
rEci(M,e);PrAc: (M,S);T IFc?q,x);P>A,c:2q,S);T
r-PoAc:T r-PsAc:Ty: T
| DELEG] | SREC]|
r=c{(p,c);PeAc: p,T');T,d: T r+c(q,y);P>A,c:q, T')T

Fr=PeAc:Ty jel

[SEL]
FEca (M) Ped,c a(M,{i: Tilia)

r'ReAc: T, Viel

|BRANCH |
M c&(p,{li : R}ict)>A,c: &(p, {li 1 Titiel)

FEPeA THQsA  domA)ndomA) =0

|CoNc]|
r-P|QsAUA
M-e:bool FFP>A THQrA A end only ra:(G)rP>A
- [IF] [INacT| —————— [NRes]
I+ if ethen Pelse Q»A r-osA M= (va)P>A
M-e:S Aendonly MX:STx:SFPpy: T X:STEQrA
[VAR| | DEF|
rX:STEX{ec)pAc:T I def X(x,y) =Pin QrA

Table VI. Typing rules for pure processes

disjoint domains. For example we can derive:

Fta ({1,3},0k);t! ({3}, "Address");t?(3,date); 0> {t : T}
whereT = ®({1,3}, {ok :! ({3}, string); ?(3, date); end, quit : end}).
In the typing of the example of the three-buyer protocol jfpes of the channelg andz;
are the third projection oB, and the first projection oy, respectively. By applying rule
|[MCAsST| we can then deriva: G4 + S-0. Similarly by applying ruld MAcc| we can
deriveb: G, - Cr 0.

Types and Typing Rules for Runtime Processes. We now extend the communication
type system to processes containing queues.

Message T == NKMU) message send
|  ®(M,I) message selection
| T;T message sequence

Generalised T = T action
| T message
| T continuation
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|QINIT] Mg sih>A M-v:s

Mgy s 220 Mg sih-(q.M,v)>A;{slq] :1(N,9)} osene)

Mg s:heA
Mg s:h-(q,pSP)eASP]: T {sq: {p, T}
Mg SiheA
Mgy sth-(q,M,1)>4{sq] : &(M,1)}

| QDELEG|

|QSEL]

Table VII.  Typing rules for queues

r-PsA s P>A Aendonly
|GINIT] | WEAK |
Mo PrA s PoAxd

MM-sPoA My QoA 2N =0
|GPAR]

Msus P QoA
MsPoA co(As) r.a:(G)FsPoA
. |GSRe T |GNRey
Mhrs (vs)PeA\s s (va)PsA

MX:STx:SFPr{y:T} MX:STH: QA

| GDEF|
s def X(x,y) =Pin Q>A

Table VIII.  Typing rules for processes

Message typeare the types for queues: they represent the messagesnazhinithe
queues. Thenessage send typll,U) expresses the communication togllfor k € N

of a value or of a channel of tydé. Themessage selection tyge(1,|) represents the
communication to alpy for k € I of the label andT; T’ represents sequencing of message
types. For example>({1,3},0k) is the message type for the mess#Be1,3},0k). A
generalised typés either an action type, or a message type, or a messagedjpedd

by an action type. Typ&;T represents the continuation of the typeassociated to a
gueue with the typd associated to a pure process. An example of generalisedsype
®({1,3},0k); 1 {{3},string); ?(3, date); end.

We start by defining the typing rules for single queues, incltthe turnstile- is deco-
rated with{s} (wheresis the session name of the current queue) and the sessiaomenvi
ments are mappings from channels to message types. The gqoetg has empty session
environment. Each message adds an output type to the ctypendf the channel which
has the role of the message sender (Table VIl lists the typileg for queues).

In order to type pure processes in parallel with queues, wd f®use generalised types
in session environments and further typing rules. Table Kéis the typing rules for pro-
cesses containing queues. The judgenient P>A means thaP contains the queues
whose session names aresinRule | GINIT | promotes the typing of a pure process to the
typing of an arbitrary process, since a pure process doesomdain queues. When two
arbitrary processes are put in parallel (ru@Par |) we need to require that each session

ACM Journal Name, Vol. V, No. N, Month 20YY.



Global Progress in Dynamically Interleaved Multiparty Sessions : 11

name is associated to at most one queue (condHior’ = 0). In composing the two
session environments we want to put in sequence a messagagi@n action type for the
same channel with role. For this reason we define the conipositetween local types
as:

T;T' if Tisamessage type

T«T'=(T,T if T isamessage type

i otherwise

where L represents failure of typing. We exterdo session environments as expected:
AxAN =A\domA)udN\domA)U{c:T«T |c:TeA&c:T e}

Note thats is commutative, i.e A=A’ = A’ «A. Also if we can derive message types only
for channels with roles, we consider the channel varialbléisé definition of« for session
environments since we want to get for examfye end} x {y: end} = L. An example of
derivable judgement is:
Fist PIs:(3,{1,2},0k) > {S[3] : ©({1,2},0k);!({1},string); (1, date);end}
whereP = s[3]! ({1}, "Address");s[3]?(1,date); 0.

More on Communication Type System

Definition 3.1. Theprojection of the generalised local type T ortadenoted byl | q,
is defined by:
;T if q = pk for somek € N,
(MMLUYTY) = 0T T TR
T Iq otherwise
T if q = pk for somek € N,
ANy rq= DT Te AR
T Iq otherwise
@{li:Ti [ q}iar if q=pk for somek € N,
Tilq if q# pk Vke N and
Tilq=Tjlq
foralli,jel.
&{li:Ti I q}ier if q=p,
Tilq ifq#p
(&(p, {li : Titia)) q= vk e M and
Tila=Tjlq
foralli,jel.

(@0 {li: Tidier)) Ta =

@l;T' 1 q if g=pkfor somek e M,
T 1q otherwise

(&(M1)T) [q= {

(Ut.T) Tq=pt(T[q) tlq=t end[q=end

Definition 3.2. Theduality relationbetween projections of generalised local types is
the minimal symmetric relation which satisfies:

end < end toat TT = put.Taut.T &I1U; T U; T

VielT; D<1Til — @{h ZTi}i€| M&{h ZTil}i€|

Jiell =i &TxT, = &;Tx<x&{li: Tit}ic

ACM Journal Name, Vol. V, No. N, Month 20YY.



12 . L. Bettini et al.

Definition 3.3. A session environmeatis coherent for the sessior(isotationco(A, s))
if S[p]: T €AandT [ q#endimplys[q]: T’ € AandT | q< T’ | p. A session environment
Ais coherentf it is coherent for all sessions which occur in it.

Subject Reduction. Since session environments represent the forthcoming eoriam
cations, by reducing processes session environments eagehThis can be formalised
as in [Honda et al. 2008] by introducing the notion of reductf session environments,
whose rules are:
—{slp]: (M, U); T.sfpj] :2p,U); T’} = {sfp] : M\ j,U); T,s[pj] : T'}if jen
—{slp]: T &M {li : Titier)} = {slp]: T:&(M,1i);Ti}
—{slp] : &(M,1); T,slpj] : &(p, {li : Titier)} = {slp]: &(M\ j,1);T,slpj]: Ti}

if j €N andl =I;
—{slpl : {@O.U); T} = {sp]: T}  {s[p]: &(@1);T} = {slp]: T}
—AUDA = NUNifA = A
The first rule corresponds to the reception of a value or cildmnthe participanp;, the
second rule corresponds to the choice of the I&beehd the third rule corresponds to the
reception of the labelby the participanp;. The fourth and the fifth rules garbage collect
read messages.

Using the above notion we can state type preservation uedertion as follows:

THEOREM 3.4 TYPE PRESERVATION. If I s P>A and P—* P/, thenl s P/ >4/
for some/\’ such thath =* A'.

Note that the communication safety [Honda et al. 2008, Ténads.5] is a corollary of this
theorem. Thus the user-defined processes with the globas typn safely communicate
since their runtime translation is typable by the commutcetype system.

4. FROM USER SYNTAX TO RUNTIME SYNTAX VIA TYPES

Given a user proce$sand the set of global types associated to the service idenstifihich
occur free or bound iR we can add the sender and the receivers to each communication
by getting in this way a process in the runtime syntax. We defimo mappings with
domain the set of user processes: the first one (denot&by u|) depends on a global
type G and on a service identifier, while the second one (denote by * y|) depends

on an action typd and on a channel variabje The mappind G T u] (Table IX) calls

the other mapping with the appropriate projection and chbvariable when it is applied

to a session initiation on the identifieyand leaves the process unchanged otherwise. The

ulnj(y).P) =ulnj(y).|G I 1 +y|(P)

( W-1G1

(ulpl(y)-P) =ulpl(y). |G I'p  YJ(P)

(pref;P) = pref;|G T u](P) u ¢ pref
(if ethen Pelse Q) =if ethen |G T u|(P) else |G T u|(Q)

EP\ )=1G T uJ(P)| |G Tul(Q
(

(

(

0)=0

(va)P) = (va)|G T uj(P)

def X(xy) =Pin Q) =def X(xy) = |G t uJ(P)in |G T u/(Q)
X(ey)=X{ey)

wherepref is any session initialization or communication command.

G T ul

Table IX. Application of a global type and a service identifi@ a user process.
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Global Progress in Dynamically Interleaved Multiparty Sessions 13
[XM, 9T +yl(y!(e);P) =yKM,e); [T $y|(P)
[2(p, 9T ¥ y](Y2A%);P) =y2p,X); | T ¥ y|(P)
[HM,T)T 3y (YY) P) =y (MY ) [T *y)(P)
[T +y](YHy)P) =y H{y); P
(2, T')T $yl(yAY))iP) = -((pA/));LT FyI(LT +Y](P)
[o(N.{i: Thia) $yl(yol;:P) = ya (p.1): [T 3 y)(P) jel
(&, (1 T # v) (& (1 Phic) =& o (s £ [T # yJ(P) i)
[T F y|(pref;P) =pref;| T 1 y|(P) y & pref
[T #y|(ifethen Pelse Q) =if ethen |T $y|(P)else [T ty|(Q)
[T +y](PIQ =T +y](P)|Q y¢Q
[T +y/(PIQ=P[[T +y](Q y¢P
lend $y|(0)=0
[T $y]((va)P) = (va)[T $y|(P)
[T $yj(def X(xy) =Pin Q) =def X(xy) = [T Y ](P)in [T $y/(Q)
whereT’ = |T gy 4 X|(Q)
[T +y/(X{ey)) =X(eY)
Table X. Application of a local type and a channel variable tsser process.
4.9 Tuyuxuy'<e> P)=|T 5y5X](P)
12p,S):T 5y s X[ (y2(0):P) = [T 2y X (P)
LU T T 2y g XIoty))p) = [T uyum )
e, T):T 2y s X (2A(Y):P) = [T 2y s X[ (P)
(&M {li : Tikier) by g X](y&lj;P) = [T 1y 5 X|(P) jel
&5l Ther) 53 2 X011 - Rt 2 TiaybX|(P) jel&Xep,
[T oyt X|(pref;P) =T 1ygX|(P) y & pref
[ToygX|(ifethenPelse Q) =T fyh X](P) XeP
[ThyiX|(ifethenPelse Q) =T fyhX](Q) XeQ
[TayaXJ(P1Q) =[TaysX](P) XeP
[TayaXJ(PIQ) =Tyt X/(Q XeQ
[TayaX]((va)P)=[T hyh XJ(P)
[ThysX](defX'(xy)=Pin Q)= [Ty XJ(Q) X#X!
[ToysX](X(ey)) =T
Table XI. Application of a local type and a channel variabtel a process variable to a user process.

mapping| T ¥ y| (Table X) adds the sender or the receiver to the communitatidich
use the channel and it does not affect the other processes. An interesteugsel is the
fifth one, in which| T’ $ y'| is applied to the body of the channel receptiorfT’ is the
action type ofy). In the last but one claugg is the unique type such thgt’ 1 y|(X(ey))
occurs in (the evaluation of)l T y|(Q). More precisely we evaluate this type by applying
to Q the mappind T 1yt X]() defined in Table XI.

In order to get the runtime version of an user prodesse need to apply td® the
mapping|G T u|, for each service identifierwhich occurs free or bound i, whereG is
the global type ofi. Note that whenu is a bound variable we need to appl@ T x| only
to the scope ok.

We say that a closed user proc&ss ¢ [y1?(x1); Q1] - ..

[Ym?(Xm); Qm] with bound ser-

vice identifiersx, ...,

the protocols described Iy, . ..
(G} T a)eeL (€yr20xa); [G1 T xa](Qu)]..

Xm and service namegy with ¢ € L is a correct implementation of
,Gm andG;, for ¢ € L if we can derive

[Ym?(Xm); [Gm T Xm] (Qm)]) >0

ACM Journal Name, Vol. V, No. N, Month 20YY.



14 . L. Bettini et al.

from{a,: G, | (€ L}.

5. PROGRESS

This section studies progress: informally, we say that @¢ss has the progress property
if it can never reach a deadlock state, i.e., if it never reduo a process which contains
open sessions (this amounts to containing channels wiglsyahd which is irreducible in
any inactive context (represented by another inactivege®cunning in parallel).

Definition 5.1 Progress A processP has theprogress propertyf P —* P’ implies
that eitherP’ does not contain channels with roles®r| Q — for someQ such that

P’ | Qis well typed and) /—.

We will give an interaction type system which ensures thattytpable processes always
have the progress property.

Let us say that @hannel qualifielis either a session name or a channel variable.cLet
be a channel, its channel qualifi&c) is defined by: (1) it =y, then{(c) =v; (2) else if
c=sp|, then{(c) =s. LetA, ranged over by\, denote the set of all service names and alll
channel qualifiers.

The progress property will be analysed via three finite seism sets.4#” and & of
service names and a s#tC AU (A x A\). The set#” collects the service names which are
interleaved following the nesting policy. The s@tcollects the service names which can
be bound. The Cartesian produci A, whose elements are denoted< A’, represents
a transitive relation. The meaning #f< A’ is that an input action involving a channel
(qualified by)A or belonging to servicé could block a communication action involving
a channel (qualified by}’ or belonging to servicd’. MoreoverZ includes all channel
qualifiers and all service names which do not belongftoor % and which occur free in
the current process. This will be useful to easily extéhih the assignment rules, as it will
be pointed out below. We call” nested service se# bound service setnd# channel
relation (even if only a subset of it is, strictly speaking, a relajidret us give now some
related definitions.

Definition 5.2. LetZ :=0| Z,A | Z,A <A’

1) #0(e} = {,%’U{a} if e= a?s a session name

B otherwise.
Q) Z\A = M <M | M <A€R&MAA&MAAU{N [N cZ &N #A}

(B) Z\\ = {9?\)\ if A is minimal in%

€ otherwise.

4) %97 = (RUA)"

(5) pre(£(c),#) = Z#W{l(C)}W{l(c) <A |AcR&L(c)#A}
whereZ™" is the transitive closure of (the relation part of) and A is minimalin # if
AN <A eXR.
Note, as it easy to prove, thatis associative. A channel relationvgll formedif it is
irreflexive, and does not contain cycles. A channel relatis channel fre€cf (%)) if it
contains only service names.

Tables XIll and XllI give the interaction typing rules. Thedlgements are of the shape:
OFP» Z; /4 ;% whereO is a set ofassumptionsf the shapX[y] » Z ; A ; #
(for recursive definitions) with the variabjerepresenting the channel parameteXof
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Global Progress in Dynamically Interleaved Multiparty Sessions : 15

OFP» %, NV, A OFP» %, NV, A
{MCasT} {MAcc}
O Fan|(y).P » Z{a/y}; N ; B © Falp|(y).P » Z{a/y}; N ; B
OFP» %, V% OFP» %, NV, %
{MCAsTN} {MAccN}
O ran|(y).P » Z\\y; /' U{a}; # O Falp|(y).P » Z\\y; A U{a}; B
OFP» Z;, N, B f(Z\Y) OFP» Z;, N B f(Z\Y)
— {MCasTB} — {MAccB}
O Fuln|(y).P » Z\\y; A BU{u} O Fupl(y).P » Z\\y; A ; BU{u}

OFP» Z, NV ;B
—— {S
O tcl(MN,e);P » {{(c)}uz; V; BI{e}

ND}

OFP» Z, N A
O+ c?q,x);P » pre(¢(c),#); N ; B

{Rcv}

OFP» %, N, A
O Fcl{(p/,c));P » {£(c),4(c),e(c) <L) YWZR; N ; B

{DELEG}

OFP» Z; /B  ZC{lc),y, l(c) <y}
O+ cX(q,y);P » {lc)}; N B

{SRec}

OFPw» %, NV, A
OFca(MI);P» {{CUR; NV ;A

{seL}

OFPR » %; N, B Viel
O Fc&(p, {li : R}ic1) » pre(t(c),\%i); A %

i€l i€l iel

{BRaNCH}

Table XIl. Interaction typing rules |

We say that a judgeme@ P » %Z;.4"; % is coherentif: (1) Z is well formed;
2 Zn (N UB) =0. We assume that the typing rules are applicable if and ibrihye
judgements in the conclusion are coherent

We will give now an informal account of the interaction tygirules, through a set of
examples. It is understood that all processes introductttiexamples can be typed with
the communication typing rules given in the previous sectio

The crucial point to prove the progress property is to astuse a process, seen as
a parallel composition of single threaded processes andegu€annot be blocked in a
configuration in which:

(1) there are no thread ready for a session initializatiam, (of the formaln|(y).P or

alp|(y).P). Otherwise the process could be reactivated by providimgth the right
partners;

(2) all subprocesses are either non-empty queues or pescessting to perform an input
action on a channel whose associated queue does not offppespaiate message.
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16 . L. Bettini et al.

O+-P» Z, N, % OFQw» %' ; N, B OFPw» Z; N, B agRIN
{Conc} {NRes}
OFP|Qw» 2wX , NVUN; BUR OF(vaP » %, ./ ; $\a

O, X[yl » Z; ./ ; & X{ec) » Z{l(c)/y}; N ; BU{e} fvas)

OXy|» Z; N B-Pw» %, N, B OXN»Z, N, B-Qw X' N, B
OFdefX(xy)=PinQw» %, V", &

{DEF}

OFP» Z, N, B OFQw» %, N B
OFifethenPelseQ » ZWH ; N UN;, BUR

{1e}

——— {inact} {Qmrr}
OFO0O» 0;0;0 OFs:a» 0;0;0

OFs:hp» Z,0;, %
©Fs:h-(q,NV) » Z; 0; BU{V}

{QADDVAL }

OFs:hw» 2;0,%
©Fs:h-(q,p,8[p]) » {s¢,s<StwZ%; 0, #

{QADDsEss}

OFs:hw» Z,0; B OFP» %, NV, A

{oset} {sres}
©Fs:h-(q,M1) » 2,0, % Ok (vs)P » Z\s;, N B

Table XIIl. Interaction typing rules II

Progress inside a single service is assured by the comntiomidgping rules in§ 3.
This will follow as an immediate corollary of Theorem 5.3.€Tthannel relation is essen-
tially defined to analyse the interactions between servittgs is why in the definition of
pre(¢(c), %) we put the conditiorf(c) # A. A basic point is that a loop it represents
the possibility of a deadlock state. For instance take thegsses:

PL = b[1](y1).a]2)(22).y1?(2,X); 22! (1, false); O

P, = b[2](y2).a[1](z1).z222(2,X); y2! (1, true); 0.
In proces$?; we have that an input action on servizean block an output action on ser-
vicea and this determinds < a. In proces$> the situation is inverted, determiniag< b.
In P, | P, we will then have a loop. < b < a. In factP; | P, reduces to

Q = (vs)(vr) (912(2,x);r[1]1(2,false); 0| r[2]2(1,X);s[2]! (1, true); 0)

which is stuck. It is easy to see that servieesndb have the same types, thus we could
changeb in ain P, andP, obtainingP; andP; with two instances of serviceand a rela-
tiona < a. But alsoP;] | P, would reduce t®@. Hence we must forbid also loops on single
service names (i.e., the channel relation cannot be reflgxiv

Rule {Rcv} asserts that the input action can block all other actionB,imhile rule
{SEND} simply add¥(c) in # to register the presence of a communication actidp.im
fact output is asynchronous, thus it can be always perforfRate { DELEG} is similar to
{SEND} but asserts that a use &it) must precede a use 6fc’): the relation?(c) < £(c’)
needs to be registered since an action blockKiiey also blockg(c').
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Global Progress in Dynamically Interleaved Multiparty Sessions : 17

Three different sets of rules handle service initialisagidn rulesfMCasT}-{MAcc},
which are liberal on the occurrences of the chanrielP, the service namareplaces in
Z. Rules{MCAsSTN}-{MAcCCcN} can be applied only if the channghkssociated ta is
minimal in% .This implies that onca is initialised inP all communication actions on the
channel with role instantiating must be performed before any input communication ac-
tion on a different channel iR. The name is added to the nested service set. Remarkably,
via rules{MCAsTN}-{MACCN} we can prove progress when services are nested, gener-
alising the typing strategy of [Coppo et al. 2007]. The ril&&CAsTB} and{MAccs}
addu to the bound service set wheneueis a service name. These rules are much more
restrictive: they require thatis the only free channel i and that it is minimal. Thus
no interaction with other channels or services is possifileis safely allowsu to be a
variable (since nothing is known about it before executixcept its type) or a restricted
name (since no channel with role can be made inaccessiblm@te by a restriction on
u). Note that rule{ NREes} requires thah occurs neither ir#Z nor in.+".

The sets 4" and £ include all service names of a procd3svhose initialisations is
typed with{MCASTN}-{MAccN}, {MCasTB}-{MAcCcCB}, respectively. Note that for a
service name which will replace a variable this is assurethbyconditional) addition of
e to Z in the conclusion of ruld SEND}. The sets#” and.%Z are used to assure, via the
coherence conditio® N (4" U %) = 0, thatall participants to the same service are typed
either by the first two rules or by the remaining four. Thisiigaial to assure progress.
Take for instance the procesdgsandP, above. If we type the session initialisation lon
using rule{MAccnN} or {MAccs} in P, and rule{MCAsT} in P, no inconsistency would
be detected. But ruléConc} does not typd™ | P, owing to the coherence condition. In-
stead if we us§ MAcc} in P, we detect the loop < b < a. Note that we could not use
{MCAsTN} or {MCasTB} for bin P, sincey, is not minimal.

Rules{MCasTN}-{MAccN} are useful for typing delegation. An example is process
B of the three-buyer protocol, in which the typing of the sidgess

2! ({1}, quote - contrib 99); 2! {(1,y2)); & (1, {ok : 0, quit : 0})
givesz < y,. So by using rulefMCAsT} we would get first < y, and then the cycle
y2 < b < y». Instead using rulé MCASTN} for b we get in the final typing of B either
{a};{b};0 or 0;{a,b}; 0 according to we use eith¢MCAST} or {MCASTN} for a.

Rule {SRec} avoids to create a process where two different roles in theessession
are put in sequence. Following [Yoshida and Vasconcelo308 call this phenomenon
self-delegation. As an example consider the processes

P =Db[1](z).a[1](y1).y1!((2,2));0

P, = b[2](22).a[2](y2).Y2?((1,X)); X?(2,W); 25! (1, false); O
and note thaP; | P, reduces tqvs)(vr)(s[1]?(2,w); 5[2]!(1, false); 0) which is stuck. Note
thatPy | P, is typable by the communication type system Buis not typable by the inter-
action type system, since by typiggl((1,x)); x?(2,w); 2! (1, false); 0 we gety» < z, which
is forbidden by rule{ SRec}.

A closed runtime procesB is initial if it is typable both in the communication and in
the interaction type systems. The progress property ised$ar all computations that are
generated from an initial process.

THEOREM 5.3 PROGRESS All initial processes have the progress property.

Itis easy to verify that the (runtime) version of the threguer protocol can be typed in the
interaction type system witha}; {b}; 0 and 0{a, b}; 0 according to which typing rules we
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use for the initialisation actions on the service nan&herefore we get
COROLLARY 5.4. The three-buyer protocol has the progress property.
5.1 Proof of the Progress Theorem

In the following definitions and proofs we assume that allsidered processes are well
typed with the communication type system of Section 3.

LEMMA 55. IfOFs:h-m» Z;0; Zthen®@ Fs:m-h» Z; 0; 4.
PrROOF By induction orh. O
LEMMA 5.6 SUBSTITUTION LEMMA. LetO P » Z; 4 ; A.

(1) Letvg %Z. Then® - P{v/x} » Z; N ; %' where#' = BU{V};
(2) ©FP{sp|/y} » Z{s/y}; N ; %.

PROOF By inductionom® =P » Z; /4"; 4.

(1) By induction onP. The only interesting case is wheris a service nama, thus,P =
x[nj(y).P’ or P = x[n|(y).P’ and the last applied rules af¢1CasTB} or {MAcCCB},
respectively. Let us considBr= x[n|(y).P’ (the other case is similar). FrofMCASTB}
we have tha® P » #'; 4; % such thatcf(%'\\y) andZ = %' \\y. Now,
P{a/x} =an|(y).P". Since, by hypothesisf(%’\\y), thus we can applfyMCASTB},
obtaining® + alnj(y).P’ » Z; .+ ; 8U{a}. Note that this judgements is coherent
since by hypothesia ¢ .

(2) Easily follows from the definition of(c).

O

THEOREM 5.7 TYPE PRESERVATION UNDEREQUIVALENCE. If P is well typed and
OFPw» Z;, /;BandP=P,then@ P » Z; 4 ; B.

ProoF Standard inductionos. O

THEOREM 5.8 TYPE PRESERVATION UNDERREDUCTION. If Piswelltyped and® +
Pe» %, /;%and P—* P then@ P » %', 4", & forsome# C #, N C N
and%' C A.

PROOF By induction on— and by cases on the last applied rule.
- [Link]. By hypothesis
O Fanj(y1).Pi| al2)(y2).P | ... | aln](yn).Pn » Z; 4"; B.

This judgement is obtained by applying rdl€onc} to the subprocessefn|(yn).Pn,

all)(y1).Pr,...,a[n—1](Yn-1).Pr—1. Then we have:

—O Fan|(yn).Pn » %n; M Bn

—O Fall|(y1).PL » %1; M P

—O Fan—1(yn-1).Ph-1 » Zn-1; Sn-1; $n-1

whereZ = Wi<jcnZ and A = Ui<jcn M and Z = Ui<ij<n%i. Point 2. of the
the coherence condition (see page 15) implies that the {INBSAST}, {MAcc}

cannot be used for the same session name with the {&3AsTN}, {MACCN},

{MCasTB}, {MAccB}.
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We consider the case in whih has been typed with ruleMCASTN} or {MCAsTB}
and eactP, (1 <p < n—1)with {MAccN} or {MAccs}.
Then for each (1 <i <n)we musthav®® - R » %/; .4'; % such thatZ =
K \\Yi, N C N, B C % (y is minimal inZ]). By Lemma 5.6(2) we have
© ER{sfil/vi} » Zi{s/vi}: A" A
By using{CoNc} (and{QINIT}) we have
O F Pi{s[1]/y1}|...|Pn{SIN|/yn}|s: & » Z'; N B
whereZ' =Y Z/{s/yi},./' =UA" and#' =|JZ%,. Note that this judgement is
coherent since must be minimal inZ’ and%’' N (A" U%A') = 0.
By using{SRes},
© k= (vs)(P{s[1]/y1}|... Po{sn] /yn}Is: 2) » Z'\s; A" &

Finally it is easy to see tha#’ \ s= Z (by the minimality of they; in %] and ofsin
AN, N' C N andHB C B.

[Send]. By hypothesi® + g[p]!(M,€);P | s:h » %Z; .4"; %, which is obtained by
applying rule{ CoNnc}. Thus,
O© +9p](M,€e);P » %1, N P OFs:hw» %, 0; %

whereZ = %1W %> and B = %1 U HB,. The first judgement can only be obtgined by
{SEND}, i.e.,© F P » Z1; A ; % such thatZ1 = {s} U#; and A1 = 2, U{v}.
By using rules{QADDVAL } and{CoNc} we obtain

©FP|s:h-(p,M,v) » ZWR2; N ; BLU(B2U{V}).

Now note thatZ] W %, C % and %, U ($,U{v}) = A.

[Deleg]. Proceed as in the previous case, thus obtaining
O r9p{(q,SP));P » %1; N ;%1  OFs:hw %;0; %

whereZ = %1 W%, and B = %1 U %,. By inverting rule{DELEG} we obtain® +
Py %i; N, %1 whereZ1 = {s,s,s< S }wW%;. By using rule§ QADDSESS and
{CoNc} we have

O FP|s:h-(q,p,S[p]) » Z1W{sS,s<S}WH0; N ; B1UBs.

[Label]. Similar to [Send] but simpler (using ru{€ SEL} instead off QADDVAL }).

[Recv]. By hypothesis® I spj]?(q,X);P | s: (q,M,v)-h » Z; 4", 2. Proceed as
in the case of rule [Send], thus obtaining

O Fspj]2Aq,X);P » %1; N ; B OFsi(qNV)-he %;0; %
whereZ = %1 W %, and# = %, U %,. By inverting rule{ RECV} we obtainr® - P »
Ry, N, PB1 whereZy = pre(s,#;). By Lemma 5.6(1) we obtai® - P{v/x} »
Ry N3 $B1U{Vv}. Moreover we hav® s:h » %,; 0; B, whereB, = B5U{v}.
Applying { Conc} we get

(1) © FP{v/x} [s:(q,M\],v)-h > 1022, N3 BLU{V}U Sy
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and note that?] W %, C %1 %, and%,U{v} U %, = B.
If v=ais a service name, themc %, implies thata ¢ %, W %, and soa & %1 & %>.
Then (1) is coherent.

[Srec]. By hypothesi®) I s[p|?(q,¥));P | s: (q,p,S[p]) -h » Z;.+"; B. Proceed-
ing as before,

O Fsp]A(q,y);P » {s}; #; %1  OFs:(qpSp])-h» %;0; %

whereZ = {s} W%, and%# = 91U %,. In particular (inverting ruld SREC}) we have
©FP» %, N, $1whereZz] C {s,y,s<y}. Moreover, by{ QADDSESS (and
Lemma5.5) we have th@ -s:h » %#,; 0; %> such thatZ, = {s,S,s< S} W.%,.

By Lemma 5.6(2), we hav® + P{S[p']/y} » Z#{; A"; %1 wherez] C {s, s, s<

s'}. By applying rule{ Conc} we obtain

O FP{S[p]/y} |s:h » Z{wWRy; N B1UBo.
Lastly it is easy to see that this statement is coherent aatdafiv %7, C %.

[Branch]. By hypothesisd F S[pj]&(q,{li : R}iel) | s: (q,M,lig) -h » Z2; A", B.
By inverting the rules we have

—OFPR » %; N; % Viel

—O+Fs:(q,Mliy)-h» Z2';0;, #

— % = pre(S,Wic) Z)WE', N = Uic) M, B =Uic) BiURB .

By applying rule{Conc} to the reduced process we obtain

O FPR,|si(q,N\jliy)-h» ZWZ; Ny Big VR

and the result follows easily.
[If-T, If-F]. Straightforward.

[Def]. Let's assumé® - def X(X,y) = Pin (X{(e,s[p]) | Q) » Z; .#"; 4. Note that by
rule | DEF| y is the only free channel which can ocdirBy inspecting the inference
rule, as before, we must have:

(@ @ =0,Xy|» %, N A,

(b) @ -Pw» %' N, B,

(c) @ FX(esp]) » Z'{s/y}; #'; B U{e};

d) &@+-Qw» %" N, B”;

whereZ = #'{s/yyw#",. N = N"UN" B =RBU{esuB"

By Lemma 5.6 we hav® - P{v/x}{slp]/y} » Z{s/y}; 4 ; #'U{v} and then by
rule {Conc} @ + (P{v/x}{slp]/y} | Q) » #Z; .4 ; % sincee | vimplies%#'U{e} =
2#'U{v}. By rule {DEF} we conclude® - def X(x,y) = Pin (P{v/x}{s[p]/y} | Q) »
Ry N B.

[Scop, Pat, Defin, Str]. For the congruence rules the tHelamvs from the induction
hypothesis.
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LEMMA 5.9. f T PrAand® P » Z; 4 ; A, then:
(1) slp]: T eAand T end imply s€ %;
(2) se Z impliesA(s[p]) # end for somep.

PrROOF Standard by inductionof. O

LEMMA 5.10.f @ P » #Z; .4; % and ag Z U4/ and P= ajn|(y).P or P=
alp](y).P’, then no channel with role occurs ia.

PROOF The last applied rule must begMCAsTB} or {MAccs} and then we must
have® P » Z%'; 4 ; % andZ = %' \\y. Note that the conditionf (%’ \\y) prevents
channels with roles to occur i7’. 0O

In the following definition we us€] ] to denote a context with a hole defined in the
standard way.
Definition 5.11Precedence (1) The channet precedes’dn the proces® if one of
the following condition holds:
—P =C[c?(q,X); Q] andc’ occurs inQ;
—P =C[c!{(p,¢));QJ;
—P =CJc?((q,Y)); Q] andc’ occurs inQ;
—P =CJc&(q,{li : B}ie1)] @andc’ occurs inP, for somei € I;
—P =CJs:h-(q,p,S[p']) - W] andc = s[p] andc’ = S[p/].
(2) The channet weakly precedes i the proces® if eitherc precedesg’ in P or one of
the following condition holds:
—P =C|c!(M,e); Q] andc’ occurs inQ;
—P = CJc!{{p, co)); Q] andc’ occurs inQ.

LEMMA 5.12. If O FP » Z;.4"; % and dp|] precedes’p’] in P and s# &, then
s<seX.

PROOF By induction onP. O

LEMMA 5.13. Let P be initial and P—* P'.

(1) If s[p] weakly precedes][g] in P/, then either s£ S orp =q;
(2) fP=P |s:N-(q,p,S[p])-hthen§+#s.

PrROOF We show both points simultaneously by induction-en*. In an initial P there
are no channels with roles. As for the induction step we distlie more interesting cases.
- Rule [Link] creates a new channel with a unique distingedshole for each parallel
process. Both 1. and 2. follow trivially by the induction togpesis.

- When the reduction step is obtained by rule [Srec] we must ba(q,p,s[p’]) -h. By
induction hypothesis we must has¢ . By Theorem 5.8 we can derive a channel relation
for the left hand side of the reduction rule [Srec] using titeriaction typing ruld SRec}.
Therefores|p] ands'[p’] are the only channels with role ¥ s[p'] /y} and point 1. follows
immediately.

- When the reduction step is obtained by rule [Deleg] note tha session delegation
command must have been typed by riU2ELEG|. For this reason we gefp| # S[p’].
Sinces[p| precedes[p’] in the session delegation command, then by inducsiens
impliesp = p’. We then conclude# s

O
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Definition 5.14. Definell between processes, message queues and local types, as fol-
lows:
c(M,e);PONN,S;T c?q,x);P0?q,S);T
c{(p’,c);PONNTYT c(qy);POAq,T)T
c® (M 1i);POS(N {li: Titie) c&(q,{li:R}tia) D&, {li: Ti}icr)
(q,M,v)-hOWM,S;T (q,p,slp])-hONKM,T);T
(g, ) -hOa(N{li:T}tia) Xec)OT
wherei € 1.

Definition 5.15. A proces® isreadyin a proces®) if one of the following conditions
holds:
—Q=P;
—Q=P | Rfor someR;
—Q = (va)RandP is ready inR, for someR, a;
—Q = (vs)RandP is ready inR, for someR, s,
—Q =def D in RandP is ready inR, for someR, D.

Definition 5.16. —Aninput processs a value sending, session delegation or label
selection.

—An output processs a value reception, session reception or label branching.

—The identifieru is thesubjectof U[n|(y).P andu[p](y).P.

—The channet is the subjectof c!(M,e); P, c?(q,x);P, c!{p’,c');P, c(q,Y));P, c®
(M,1);Pandc&(q, {li : R}ial)-

—An outputtype is a type of the shape,U); T, (N, {l; : Ti}ici ), or&(M,1);T.

—An inputtype is a type of the shapér?, U ); T, or &(p,{li : Ti }ia)-

LEMMA 5.17. Assume that

—OFP» %, N %,

—Z contains service names which are not bigger than channdlsraies and less than
at least one channel with role;

—no ready process in P is an output or a conditional or a preaeg| or a session initial-
isation on a variable.

Then P contains one ready session initialisation on a freeise name which belongs to

ZIN.

PROOF If Pis a session initialisation on a free service name whichrggdoZz U 4
there is nothing to prove. Otherwise the proof is by indutta P.

P cannot be a session initialisation on a free session namehveltes not belong to
Z\J ./, since otherwiseZ could not contain channels with roles by Lemma 5.10.

P cannot be an input process since otherwise by Lemma 5.12wmehaith role would
be less than all channels with roles which occugin

fP=pP | P, thenZ = %18 %, and®© =P, » %1; M, B1and@ =P, » %Zy; N5 PBo
for some#1, %>, since the last applied rule for derivilg - P » %2; .4"; % must be
{ConNc}. Note that at least one betweéh and%, must contain session names which are
not bigger than channels with roles and less than at leastltarenel with role. Therefore
by induction eitheP, or P, contains a ready session initialisation on a free serviceena
which belongs tazZ U 1.
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If P=def X(x,y) =P in Q, then®,X]y| » Z'; NV'; A +Q » XZ; N, & since
the last applied rule for derivin® =P » %'; 4"; ' must be{DeF}. Therefore by
inductionQ contains a ready session initialisation on a free serviogenahich belongs to
RIN.

If P=(va)P, then®@ P » %; 4 ; ' where#' = #\aandag ZU./, since
the last applied rule for derivin@ I (va)P » %; .4/ ; 2 must be{NREs}. Therefore by
inductionP’ contains a ready session initialisation on a free serviceenahich belongs
toZuU.N.

O

LEMMA 5.18. Assume that

— ks PoA;

—OFP » %; ./ ; Ais proved without using ruléSRes};

—s is minimal inZ;

—no $p| precedes|g] withp # q in P;

—no ready process in P is an output, a conditional, a procafis& session initialisation
on a free channel or on a variable.

Then:

(1) if A(s[p]) is an input type then P contains a ready input process Q withesit §p]

such that Q1 A(s[p]);

(2) if A(s[p]) is an output type then P contains the queué sind hO A(s[p]).

PrROOF The proof of both points is by induction ¢h Note thatP cannot be a session
initialisation on a bound channel, i.e. we cannot hBve (va)Q whereQ is a session
initialisation on the channel, since in that case the channel relation@should contain
a < sand this is impossible by Lemma 5.10.

(1). If Pis aninput process, then by Lemmas 5.12 and 5.13 the sulfjeechast bes[p):
obviouslyP is ready. Note thaP is a user process and thEn- P>A by Lemma A.2(1).
We getP O A(s[p]) by Lemma A.1(8), (10) and (A.1).

If P=Py | P>, then by Lemma A.2(6X = 21 U3 andA = Ay x Ay andl 5, P >Ag and
I 5, P>As. Since an input type is never a message type we have Aitlef) = A1(s[p])
or A(s[p]) = Ax(s[p]). AssumeA(slp]) = Ai(s[p]). Moreover, since the last applied rule
mustbe{CONC},©@ - P, » Z1; N1; B1andO + P » %o; No; Br and X =718 X>.
Note that by Lemma 5.97; containss. Moreovers is minimal in %, since#1 C Z%.
Therefore by inductiorP, contains a ready input proce§swith subjects[p] such that
QUA(s[p]).

If P=def X(x,y) =P in Q, then by Lemma A.2(9),X : ST,x: Sk Pr>y: T and
I, X:STks QrA. Moreover®, X[y| » Z'; /', 8 +Q » #; N ; B, since the last
applied rule for derivin® P’ » %’; #"; ' must be{DEF}. Therefore by induction
Q contains a ready input proce®awith subjects[p] such thaQ 0 A(s[p]).

If P=(va)P, then by Lemma A.2(8),a: (G) = P'>A. Moreover, since the last ap-
plied rule for deriving® + (va)P’ » #; 4" ; Z mustbe{NREsS},O P » %; N ; #'
where# = %' \aanda ¢ #Z U .4 . Therefore by inductio®’ contains a ready input
procesX) with subjects|p] such thaQQ 0 A(s[p]).

(2). If Pis a queue, then it must be the quessnd the result follows from Lemma A.3.

If P=P; | P, then by Lemma A.2(6Y = 31U, andA = Ay x Ay andl Bz, Pr>Ag
andrl s, P> Ay, We consider the cagi(sp]) = A1(S[p]); A2(S[p]), the other cases being

ACM Journal Name, Vol. V, No. N, Month 20YY.



24 . L. Bettini et al.

similar or simpler. As in the proof of (1) we g = Z1 W %> and® - P, » %1 ; N1; PB1.
Note that by Lemma 5.9(1; contains. Therefore by inductio®; contains the queugh
andh O A(S[p)).

If P=def P, in P, or P= (va)P’, the proof proceeds as in the case of (1).

O

Proof of Theorem 5.3 [Progress].
Let Py be initial andPy —* P.

If P does not contain channels with roles there is nothing togarov

If a ready sub-process &fis an output process, théhis reducible.

If a ready process iR is a conditional, the® would reduce, sincP is closed (beind
closed) and any closed boolean value is eith@ror false. Similarly if a ready process of
P is a process call it can be reduced.

No ready process iR is an accept/request on a variable siRds closed.

If one ready process iR is an accept/request on a free charméhena must be in the
domain of the standard environmdntused to typeé? andP. Even if in P there are not
enough partners to apply rule [Link], usifiga) we can build a proce<9 containing the
missing partners which are necessary in order to applyRtt@.

Otherwise leP = (v8)Q, wheresis the set of all session names which occurimBy the
Type Preservation Theorems A.6 and B.8 well typed both in the communication and in
the interaction type systems. This implieQ » %Z; A", % for someZ, 4, . LetA
be the session environment@f Note that by construction we do not use riRes} for
derivingZ. All minimals in % cannot be service names names since otheriseuld
contain one ready initialisation on a free service name hyiba 5.17. So there must be
a session namgwhich is minimal. By Lemma 5.9(2) and the coherencédhere must
bep, q such thatA(s[p]) =T, A(s[q]) = T’ andT | g>a T’ | p. Without loss of generality
we can assume thatis an input type and’ is an output type. Then Lemma 5.18 implies
thatQ contains a ready input proceBssuch thalR 0 T and the queus: hwith h O T’.
ThereforeP reduces by rule [Recv].

6. CONCLUSIONS AND RELATED WORK

The programming framework presented in this paper reliethemroncept of global types
that can be seen as the language to describe the model ofthibuted communications,
i.e., an abstract high-level view of the protocol that adl frarticipants will have to respect
in order to communicate in a multiparty communication. Thegpammer will then write
the program to implement this communication protocol; theteam will use the global
types (abstract model) and the program (implementatioggtwerate a runtime represen-
tation of the program which consists of the input/outputrafiens decorated with explicit
senders and receivers, according to the information pealid the global types. An alter-
native way could be that the programmer directly specifiessénders and the receivers
in the communication operations as our low-level procegbessystem could then infer
the global types from the program. Our communication aneradtion type systems will
work as before in order to check the correctness and the gge@f the program. Thus
the programmer can choose between a top-down and a bottatylemf programming,
while relying on the same properties checked and guarabte#te system.

We are currently designing and implementing a modelling spekification language
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with multiparty session types [scribble ] for the standasflbusiness and financial proto-
cols with our industry collaborators [UNIFI 2002; Web Sees Choreography Working
Group ]. This consists of three layers: the first layer is dgldype which corresponds to
a signature of class models in UML; the second one is for asagi®n models where sig-
natures and variables for multiple conversations are rated; and the third layer includes
extensions of the existing languages (such as Java [Hu20@8]) which implement con-
versation models. We are currently considering to extersdnttodelling framework with
our type discipline so that we can specify and ensure predoegxecutable conversations.

Multiparty sessions. The first papers on multiparty session types are [BonelliGoh-
pagnoni 2008] and [Honda et al. 2008]. The work [Bonelli arapagnoni 2008] uses
a distributed calculus where each channel connects a nestepoint and one or more
slave endpoints; instead of global types, they solely useugsion-free) local types. In
type checking, local types are projected to binary sessem¢hat type safety is ensured
using duality, but it loses sequencing information: hen@gpess in a session interleaved
with other sessions is not guaranteed.

The present calculus is an essential improvement from [ldatdal. 2008]; both pro-
cesses and types in [Honda et al. 2008] share a vector of elsagimd each communication
uses one of these channels, while our user processes arad tyiods are simpler and user-
friendly without these channels. The global types in [Hoetlal. 2008] have a parallel
composition operator, but its projectability from globallbcal types limits to disjoint
senders and receivers; hence it does not increase exjiyessiv

The present calculus is more liberal than the calculus ohftéoet al. 2008] in the use
of declarations, since the definition and the call of resgrgirocesses are obliged to use
the same channel variable in [Honda et al. 2008]. Simildréydelegation in [Honda et al.
2008] requires that the same channel is sent and receiveshfmrring subject reduction,
as analysed in [Yoshida and Vasconcelos 2007]. Our caladlves this issue by having
channels with roles, as in [Gay and Hole 2005] (see the exaatplage 17). As a conse-
guence some recursive processes, which are stuck in [Hdreda2®08], are type-sound
and reducible in our calculus, satisfying the interactipetsystem.

Different approaches to the description of service-ogdmhultiparty communications
are taken in [Bravetti and Zavattaro 2007; Bruni et al. 2008][Bravetti and Zavattaro
2007], the global and local views of protocols are descrinetivo different calculi and
the agreement between these views becomes a bisimulatisredo® processes; [Bruni
et al. 2008] proposes a distributed calculus which proviesmunications either inside
sessions or inside locations, modelling merging runnirgsises. The type-safety and
progress in interleaved sessions are left as an open prablgBruni et al. 2008].

Progress. The majority of papers on service-oriented calculi onlyuasghat clients
are never stuck insidesinglesession, see [Acciai and Boreale 2008; Dezani-Ciancaglini
et al. 2008; Honda et al. 2008] for detailed discussiondu@ting comparisons between the
session-based and the traditional behavioural type sgstémobile processes, e.g. [Yoshida
1996; Kobayashi 2006]. We only say here that our interadifpe system is inspired by
deadlock-free typing systems [Kobayashi 1998; 2006; \ieshP96]. In [Acciai and Bore-
ale 2008; Dezani-Ciancaglini et al. 2008; Honda et al. 20§i8]ictured session primitives
help to give simpler typing systems for progress.

The first papers considering progress for interleaved aessiequired the nesting of
sessions in Java [Dezani-Ciancaglini et al. 2006; Coppb 2087] and SOC [Acciai and
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Boreale 2008; Lanese et al. 2007; Bruni and Mezzina 2008}.prasent approach signifi-
cantly improves the binary session system for progress @zfDi-Ciancaglini et al. 2008]
by treating the following points:
(1) asynchrony of the communication with queues, which anla progress;
(2) a general mechanism of process recursion instead offtited permanent accepts;
(3) a more liberal treatment of the channels which can be aent
(4) the standard semantics for the reception of channels mies, which permits to get
rid of process sequencing.
None of the previous work had treated progress acrossémeztfdynamically interleaved
multiparty sessions.

Acknowledgements. We thank Kohei Honda and the Concur reviewers for their com-
ments on an early version of this paper and Gary Brown for dliglooration on an imple-
mentation of multiparty session types.
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A. PROOFS
A.1 Proof of Subject Reduction for the Communication Type System
LEMMA A.1l INVERSIONLEMMA FOR PURE PROCESSES (1) If T Fu: S, then u
SerT.
(2) If T I true: S, then S=bool.
(3) If I false: S, then S= bool.
(4 fF'-ejandey: S, therm ey, e : bool,S= bool.
(5) If T +aln|(y).P>A, thenl Fa: (G) andln - PeAy: G [ Landpn(G) <n.
(6) If T +alp](y).P>A, thenl Fa: (G) andl - P>Ay: G| p.
(7) fT+ci{M,e);P>A, thenA=A c:!(M,S);T andl -e:Sandr -P>A c:T.
(8) IfT'+c?(q,x);PrA, thenA =4 c:?(q,S);T andlN,x: SFP>A' c: T.
(9) IfT+cl{{p,c));PrA, thenA=A c:{p,T');T,c: T’ and
rEPoA.c:T.
(10) f M +=c?(q,y));P>A, thenA =4 c:?(q,T');T andlr' - PoA c: T,y: T',
(1) T Fca(M,lj);P>A, thenA =4 c: (M, {li: Ti}ier) andl - P>A',c: T; and
jel
(12) f T Fc&(p,{li:R}ici)>A, thenA=A' c: & (p,{li: Ti}ie)) andl FR>A'C: Ty Vie
l.
(13) f =P | QA thenA=AUA” andl - P>A" andT + QA" where dom) N
domA") = 0.
(14) If T I if ethen P else Q> A, thenl™ - e: bool andl' - P>A andll - Q> A.
(15) If T' = 0> A, thenA end only.
(16) If T+ (va)PrA, thenla: (G) - PrA.
(17) I, X:STHX{ec)>A, thenA=A c: T andl e: S andd’ end only.
(18) If I def X(x,y) =Pin Q>A, thenl, X :ST,x: SFPr{y: T}andlN X:STF QrA.
LEMMA A.2 INVERSIONLEMMA FOR PROCESSES (1) If 'z P>Aand Pis a pure
process, the = 0 andl - P A.
(2) IfT kg s: @>A, thenA = end only.
(3) IfT g s:h-(q,M,Vv)>A, thenA = A" {s[q] : (N, S)} andl g s:heA'andl v S.
(4) T g s:h-(q,p,Sp]) >4, thenA = A {s[q] : /(p,T')} andT g s:h>A" and
Sp]: T €A
(5) fI kg s:h-(q,M,1)>A, thenA = A" {s[q] : &(M,I)} andT g s:he A",
(6) Ifr Fs P | QDA, thenX = 21Uy andA = AV EFAY) andl |—zl P>Aq andl |—22 QI>A2.
(7) fT s (vs)PrA, thenz =¥\ s andA = A'\ s andco(&',s) andl ks P4,
(8) If I s (va)PrA, thenl a: (G) ks PrA.
(9) If T s def X(x,y) =Pin QpA, thenl [ X :ST,x: SFPry: T andlN X:STks QrA.
LEMMA A.3. (1) IfT kg s:(q,M,Vv)-heA, thenA = {s[q] : M, } «A"andT g
s:heAandlM-v:S.
(2) T g s:(q,p,S[p])-h>A, thenA = {s[q] : Kp,T')} * A" andTl g s: h>A" and
Sp]: T €A
(3) T kg s:(q,M,l)-h>A thenA = {s[q] : (M, 1)} x4 andl g s:h> A
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THEOREM A.4 TYPE PRESERVATION UNDEREQUIVALENCE. If I s P>A and P=
P, thenl s P'>A.

PROOF By induction or=. We only consider some interesting cases.

- [P|0=P]. First we assumé& s P>A. By I ¢ 00 and by applyind GPAR | to
these two sequents we obtdif-s P|0>A.
For the converse direction assumeys P|0>A. Using A.2(6) we obtainf Fs P>A,
I s O>Ap whereA = ApxNp, S =3 UY" and¥' NZ” = 0. Using A.2(1) we get
" = 0, which impliesz = ¥, andl - 0> A,. Using A.1(15) we gef\; end only and
we concludd™ s P>A; x Ay by applying| QWEAK |.

- [P| Q=Q| P]. By the symmetry of the rule we have only to show one direttio
Supposd” +s P | QrA. Using A.2(6) we obtaid s P>As, I s QA where
A=A xNy, 5 =3'UT" andZ'NZ" = 0. Using| GPAR | we getl ks Q | P> Ay x Ag.
Thanks to the commutativity of, we getA, « A; = A and so we are done.

- [PI(QIR=(P|Q)|R]. Supposd s P | (Q|R)>A. Using A.2(6) we obtain
Ity PeA, T Esr Q| R>Ap whereA = A x Ay, £=3'UY" andZ’ NY’ = 0. Using
A2(6) we obtair” '—Z/l/ QI>A21, I |—z/2/ R>Ay» WhereAz = N1 xDoo, = Za{ n 2/2/ and
2{UZj = 0. Using [GPar] we geft Fsiusy P | Qe Arx Az, Using | GPAR| again we
getll 5 (P | Q) | R>Az x Apg x App and so we are done by the associativityofThe
proof for the other direction is similar.

- [s:(q,0,v)-h=s:h]. Using A.3(1) we obtaif s (q,0,v)-h>A, whereA = {g[q] :
10,9} A" andl g s:h>A"andl Fv: S, Using the equivalence relation dnwe
get{slq] : (0,9} + A ~ 4.

O

LEMMA A.5 SUBSTITUTION LEMMA. (1) If I',x: SEFP>Aandl - v: S, thenl -
P{v/x}>A.
(2 FrEPrAy:GJp,thenl -P{sp]/y}>A,sp]: G p.

ProoFE Standard inductionoR. [

THEOREM A.6 TYPE PRESERVATION UNDERREDUCTION. If ks P>Aand P—*
P/, thenl s P'>A’ for someA’ such thatA = A’. MoreoverA coherent impliegy
coherent and\ closed impliegY closed.

PrROOF

- Case[Link]
aln|(y1)-Pr [ a2](y2) P2 | ... [an](yn)-Pn — (vS)(PL{s[1]/y1}|...[Pa{S[n]/yn}[s: 2).
Assumel 5 aln|(y1).P1 | @2](y2).P> | ... | a[n](yn).Pa>A, thenZ = 0 and

rEan)(y.).Pula2(y2).Po | ... |an)(yn).Pa>A
by Lemma A.2(1). Using Lemma A.1(13) more times we have
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M é[n] (yl).P1|>A1
ralij(yi).Pedi (2<i<n)
whereA = [J_; Ai. Using Lemma A.1(5) on (1) we have
Ma:(G)
M- P1DA1,y1 :G f 1
and pr{G) < n. Using Lemma A.1(6) on (2) we have
MN-a:(G)
F'ER>ALY Gl (2<i<n).
Using Lemma A.5(2) on (3) and (4)
Mg ReS]/yi} > Li,si] i GTi (1<i<n).
Using | CoNnc| more times on (5) we have
[ Pu{s[]/ys}]...|Pa{sln]/yn} > | (&0, sfi] : G T1).
i=1

Note that .

U@is]:Gri)=A,81:G[1,....5n:Gn
i=1

Using |GINIT], |QINIT] and| GPaR] on (6) we have

M Fisp Pu{S[1]/y1}|-.-[Pa{SIN]/yn} | S: 2 >A S G T L,...,sn:G[n

Using | QScoPg| on (7) we have
o (vS)(Pu{s[1]/y1}|-..|Pa{s[n] /yn} | s: &) >A

since
(AS[1]:GT,...,9n:Gn)\s=A.
- Case[Send]
gp]i(M,e);P|s:h—P|s:h-(p,M,v) (el V).
Assume

ks slpli(M,e);P|s:h>A.
Using Lemma A.2(1) and A.2(6) we haZe= {s} and
I+ slp]!(M,e);P>Ay
r '_{s} s:heA;
whereA = A, xA;. Using A.1(7) on (9) we have
Ay = A, Sp): H(ML,S);T
N-e:S
M PoA;LSp]:T.
Using | QADDVAL | on (10) and (11) we have
Mg sth-(q,M,v)> 02 {s[p] : 1(M, S}
Using |GINIT] on (12) and thenGPaR | on (12), (13) we get
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Mg Pl s:h-(q,M,v)> (8 {sp] : 1(M,9)}) * (AL, 8[p] : T).

Note that
(D2; {slp] : (M, 9)}) * (A1, 8[p] : T) = Bz* (A, 8[p] : /M, S);T).

- Case[Recv]
slpjl?(a,X);P [ s:(q,M,v)-h— P{v/x} | s: (q,M1\ j,v)-h (j€m).
Assume
I Fs slpj]?2(q,X);P | s: (q,M,v)-heA.

By A.2(1) and A.2(6) we hav& = 0 and

M Fspj]2q,x); P4y (14)
rF{S}SZ(q,n,V)~hDA2 (15)
where
A= Az * Al.

Using Lemma A.1(8) on (14) we have
A1 = A, Spj] 12, 9); T
r,x:SkPrALSp]: T (16)
Thanks to Lemma A.5(1) from (16) we gEt- P{v/x}>A},s[pj] : T, which implies by
rule |GINIT|
I o P{v/x}>A%,9pj] : T. (17)
Using Lemma A.3(1) on (15) we have
Do = {slq] : (N, )} x4
r F{s} S: hDA/Z (18)
N-v:S
Applying rule | QADDVAL | on (18) we get
[ (@ M\ j,v)-he{slg]: (M\ |, 9} +45 (19)
Using rule| GPAR | on (17) and (19) we get
Mg PLV/X}] (@, M\ J,v) - he ({S[a] [T\ |, S) } = A) # (A9, S[pj] = T).
Note that
({sla] : (N, )} + &%) * (A, 8fpj] :%q, S);T) = ({sla] : M\ J,S)} * %) * (&g, S[pj] = T).

- Case[Label]
sp]e(M,1);P|s:h—P|s:h-(p,M,I)
Assume
ks slpl@ (M,1);P|s:heA

Using Lemma A.2(1) and A.2(6) we hae= {s} and
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I spl@ (M,1);P>A; (20)
r F{s} s:heA, (21)
where
A:Az*Al

Using Lemma A.1(11) on (20) we have fo= 1 (j € 1):
Ay =07, 8[p] - (M, {li : Tikier)
MPoALT,. (22)

Using rule| QSEL | on (21) we have

I'l—{s}s:h-(p,I'I,I)I>A2;{s[p]:EB(H,I>}. (23)
Using | GPAR | on (22) and (23) we have

r |_{s} P | s:h- (p,n,|)D(A2;{S[p] : 69<|_|,|>}) *( /1,S[p] :Tj)'
Note that
D (A, 80p] - (M, {li : Titier)) = (B2; {s[p] : &(M,1)}) * (A, 8[p] : ).

- Case[Branch]
slpjl&(a, {li : R}ier) [s:(q,Mlig)-h— PRy [s:(q,M\jlip)-h (jen) (oecl)
Assume
Ms S[pj]&(q,{h : R}iel) | S: (q,|_|,|i0) -hA.
Using Lemma A.2(1) and A.2(6) we hae= {s} and
I slpjl&(q, {li : R}ie) > (24)
r'—{S}SZ(q,n,ho)-hDAz (25)
where
AZAz*A]_:Az*Al.
Using Lemma A.1(12) on (24) we have
A = Aél.vs[pj] : &(q’{li : Ti}iE')
F-R>ALSp T Viel. (26)
Using Lemma A.3(3) on (25) we have
Do = {slq] : (M, 1)} =45
r |_{s} S: hDA/Z. (27)
Using |QSEL | on (27) we get
g st(@, M\ julig) -he{sla] : @M\ 1)} 05, (28)
Using | GPAR| on (26) and (28) we have
s Po s1(a, M\ juli) -he ({Sla) : @(M\ ji lir) } % A) + (A, S[pj] : Tig).-
Note that
({slal : &(M, i)} = 85) = (A, 8[pj] & (q, {li : Tikier)) =
({sla] - @(M\ j,1i) } * Do) * (A9, Sfpj] : Tip).

O
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