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Tarski’s Fixed Point Theorem – Summary

Let (D,v) be a complete lattice and let f : D ! D be a
monotonic function.

Tarski’s Fixed Point Theorem

Then f has a unique largest fixed point z
max

and a unique least
fixed point z

min

given by:

z
max

def

= t{x 2 D | x v f (x)}

z
min

def

= u{x 2 D | f (x) v x}

Computing Fixed Points in Finite Lattices

If D is a finite set then there exist integers M,m > 0 such that

z
max

= f M(>)

z
min

= f m(?)
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Definition of Strong Bisimulation

Let (Proc ,Act, { a�!| a 2 Act}) be an LTS.

Strong Bisimulation

A binary relation R ✓ Proc ⇥ Proc is a strong bisimulation i↵
whenever (s, t) 2 R then for each a 2 Act:

if s
a�! s 0 then t

a�! t 0 for some t 0 such that (s 0, t 0) 2 R

if t
a�! t 0 then s

a�! s 0 for some s 0 such that (s 0, t 0) 2 R.

Two processes p, q 2 Proc are strongly bisimilar (p ⇠ q) i↵ there
exists a strong bisimulation R such that (p, q) 2 R.

⇠ =
[

{R | R is a strong bisimulation}
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Strong Bisimulation as a Greatest Fixed Point

Function F : 2(Proc⇥Proc) ! 2(Proc⇥Proc)

Let S ✓ Proc ⇥ Proc . Then we define F(S) as follows:

(s, t) 2 F(S) if and only if for each a 2 Act:

if s
a�! s 0 then t

a�! t 0 for some t 0 such that (s 0, t 0) 2 S

if t
a�! t 0 then s

a�! s 0 for some s 0 such that (s 0, t 0) 2 S .

Observations

(2(Proc⇥Proc),✓) is a complete lattice and F is monotonic

S is a strong bisimulation if and only if S ✓ F(S)

Strong Bisimilarity is the Greatest Fixed Point of F

⇠=
[

{S 2 2(Proc⇥Proc) | S ✓ F(S)}
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