CS 267: Automated Verification

Lecture 2: Linear vs. Branching time. Temporal
Logics: CTL, CTL*. CTL model checking
algorithm. Counter-example generation.

Instructor: Tevfik Bultan

Linear Time vs. Branching Time

* In linear time logics we look at the execution paths
iIndividually

* In branching time logics we view the computation as a tree
— computation tree: unroll the transition relation

Transition System Execution Paths Computation Tree

Computation Tree Logic (CTL)

« In CTL we quantify over the paths in the computation tree
* We use the same four temporal operators: X, G, F, U

 However we attach path quantifiers to these temporal
operators:

— A : for all paths
— E : there exists a path

 We end up with eight temporal operators:
— AX, EX, AG, EG, AF, EF, AU, EU

CTL Semantics

Given a state s and CTL properties p and q

S|P
s |=-p
SI=FPpAC
SI=FpvVv(
So|=EXp

Iff
iff
Iff
Iff
iff

Iff

L(s, p) = True, where p € AP
nots|=p

s|=pands|=q
s|=pors|=q

there exists a path s, s4, S,, ... such that
si|=p
for all paths sy, s4, Sy, ..., S{|= P

CTL Semantics

So [FEG P
So |=AG p
So|=EFp
Sy |= AF p
so|=pPEUQ
So |=p AU Qg

Iff

Iff

Iff

Iff

Iff

iff

there exists a path s, s4, S,, ... such that
foralli=0, s, |=p

for all paths s, s4, S5, ..., foralli = 0,
Si|=p

there exists a path s, s, S,, ... such
that there exists ani = 0 such that s, |=p
for all paths s, s4, S,, ..., there exists
ani=0, suchthat,s; |=p

there exists a path s, s, s,, ..., such

that, there exists ani = 0 such that s, |= g
andforall0<j<i,s|=p

for all paths s, s4, S,, ..., there exists an
i=0 such that s|=q and for all O< j< i, s|=p

CTL Properties

Transition System Computation Tree
P P
e
s3|=p s3|=EXp
s4|=p S3|I=FEX=-p
s1|==-p s3|=-AXp
s2|=-p s3|[=-AX-p
s3|=EGp
s3|l=-EG-p
s3 |[=FAF p
s3|=EF -p
s3|=-AF-p

CTL Equivalences

« CTL basis: EX, EU, EG

AXp=-EX-p
AGp=-EF -p
AFp=-EG-p

pAUgq=-((-qEU(-par-q)) v EG-Qq)
EFp=True EUp

 Another CTL basis: EX, EU, AU

CTL Model Checking

« Given a transition system T= (S, I, R) and a CTL property p
Tl=p Iff for all initial state s, s |=p

Model checking problem: Given a transition system T and a
CTL property p, determine if T is a model for p (i.e., if T |=p)

For example:
T |[F? AG (= (pc1=c A pc2=c))
T |F? AG(pc1=w = AF(pc1=c)) n AG(pc2=w = AF(pc2=c))

* Question: Are CTL and LTL equivalent?

CTLvs. LTL

« CTL and LTL are not equivalent

— There are properties that can be expressed in LTL but
cannot be expressed in CTL

* For example: FG p

— There are properties that can be expressed in CTL but
cannot be expressed in LTL

» For example: AG(EF p)

* Hence, expressive power of CTL and LTL are not
comparable

CTL”

« CTL* is a temporal logic which is strictly more powerful than
CTL and LTL

« CTL* also uses the temporal operators X, F, G, U and the
path quantifiers A and E, but temporal operators can also
be used without path quantifiers

CTL”

« CTL and CTL* correspondence

— Since and CTL property is also a CTL* property, CTL" is
clearly as expressive as CTL

 Any LTL f property corresponds to the CTL* property A f

— i.e., LTL properties have an implicit “for all paths”
quantifier in front of them

— Note that, according to our definition, an LTL property f
holds for a transition system T, if and only if, for all
execution paths of T, f holds

— So, LTL property f holds for the transition system T if and
only if the CTL* property A f holds for all initial states of T

CTL”

« CTL” is more expressive than CTL and LTL

* Following CTL* property cannot be expressed in CTL or
LTL

_ A(FG p) v AG(EF p)

Model Checking Algorithm for Finite State Systems

[Clarke and Emerson 81], [Queille and Sifakis 82]

CTL Model checking problem: Given a transition system T =
(S, I, R), and a CTL formula f, does the transition system

satisfy the property?

CTL model checking problem can be solved in
O(If] x (ISI+[R]))

Note that the complexity is linear in the size of the formula and
the transition system
— Recall that the size of the transition system is
exponential in the number of variables and concurrent
components (this is called the state space explosion
problem)

CTL Model Checking Algorithm

 Translate the formula to a formula which uses the basis
- EXp,EGp,pEUQ

o Start from the innermost subformulas

— Label the states in the transition system with the
subformulas that hold in that state

* |nitially states are labeled with atomic properties

« Each (temporal or boolean) operator has to be processed
once

* Processing of each operator takes O(|S|+|R])

CTL Model Checking Algorithm

* Boolean operators are easy

— =p : Each state which is not labeled with p should be
labeled with —-p

— p A q: Each state which is labeled with both p and g
should be labeled with p A g

— p v g : Each state which is labeled with p or q should be
labeled with p v q

CTL Model Checking Algorithm: EX p

« EX piseasytodoin O(|S|+|R|)
— All the nodes which have a next state labeled with p
should be labeled with EX p

O—-O——¢

p, EXp
D)@

p, EXp

CTL Model Checking Algorithm: p EU g

* p EU q: Find the states which are the source of a path
where p U g holds

— Find the nodes that reach a node that is labeled with g
by a path where each node is labeled with p

 Label such nodes with p EU g
— It is a reachability problem which can be solved in O(|S]
+R])
* First label the nodes which satisfy g with p EU g

* For each node labeled with p EU q, label all its
previous states that are labeled with p with p EU g

CTL Model Checking Algorithm: p EU g

T o S
(s—(2)

CTL Model Checking Algorithm: EG p

« EG p: Find infinite paths where each node on the path is
labeled with p, and label nodes in such paths with EG p

— First remove all the states which do not satisfy p from
the transition graph

— Compute the strongly connected components of the
remaining graph, and then find the nodes which can
reach the strongly connected components (both of which
can be done in O(|S|+|R|)

— Label the nodes in the strongly connected components
and the nodes that can reach the strongly connected
components with EG p

CTL Model Checking Algorithm: EG p

A strongly connected
component

Verification vs. Falsification

* Verification:
— Show: initial states C truth set of p

 Falsification:
— Find: a state € initial states N truth set of =p
— Generate a counter-example starting from that state

* Model checking algorithms can be modified to generate a
counter-example paths if the property is not satisfied

— without increasing the complexity

« The ability to find counter-examples is one of the biggest
strengths of the model checkers

Counter-Example Generation

Remember: Given a transition system T= (S, |, R) and a
CTL property p T |= p iff for all initial state s &I, s |=p

Verification vs. Falsification
— Verification:
« Show: initial states C truth set of p
— Falsification:
* Find: a state € initial states N truth set of =p
* Generate a counter-example starting from that state

The ability to find counter-examples is one of the biggest
strengths of the model checkers

General Idea

* We can define two temporal logics using subsets of CTL
operators

— ACTL: CTL formulas which only use the temporal
operators AX, AG, AF and AU and all the negations
appear only in atomic properties (there are no negations
outside of temporal operators)

— ECTL: CTL formulas which only use the temporal
operators EX, EG, EF and EU and all the negations
appear only in atomic properties

* Given an ACTL property its negation is an ECTL property

An Example

 |f we wish to check the property AG(p)

 We can use the equivalence:
AG(p) = = EF(-p)

If we can find an initial state which satisfies EF(-p), then we
know that the transition system T, does not satisfy the
property AG(p)

Another Example

« |f we wish to check the property AF(p)

 We can use the equivalence:
AF(p) = -~ EG(-p)

If we can find an initial state which satisfies EG(-p), then we
know that the transition system T, does not satisfy the
property AF(p)

Counter-Example Generation for ACTL

« Given an ACTL property p, we negate it and compute the
set of states which satisfy it is negation - p

— =pis an ECTL property

 If we can find an initial state which satisfies = p then we
generate a counter-example path for p starting from that
initial state by following the states that are marked with - p
— Such a path is called a witness for the ECTL property

- P

Counter-example generation for ACTL

* In general the counter-example for an ACTL property
(equivalently a withess to an ECTL property) is not a single

path
* For example, the counter example for the property AF(AGp)
would be a witness for the property EG(EF-p)
— It is not possible to characterize the witness for
EG(EF-p) as a single path
 However it is possible to generate tree-like transition graphs
containing counter-example behaviors as a counter-
example:
— Edmund M. Clarke, Somesh Jha, Yuan Lu, Helmut
Veith: “Tree-Like Counterexamples in Model Checking”.
LICS 2002: 19-29

Counter-example generation for LTL

— Recall that, an LTL property f holds for a transition system
T, if and only if, for all execution paths of T, f holds

* Then, to generate a counter-example for an LTL property f,
we need to show that there exists an execution path for

which =f holds.

— Given an LTL property f, a counter-example is an
execution path for which —f holds

What About LTL and CTL* Model Checking?

« The complexity of the model checking problem for LTL and
CTL* are:

= (ISI*+[R]) x 224

« Typically the size of the formula is much smaller than the
size of the transition system

— So the exponential complexity in the size of the formula
is not very significant in practice

