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Preface

These notes provide an introduction to the use of choreographies for the de-

velopment of distributed application. Before diving into choreographies, the

notes review some basic notions of software architectures in the context of

distributed applications. The material is suitable for readers with a basic back-

ground in computer science and software engineering. Concepts are first intro-

duced informally (using simple variants of UML sequence diagrams) and then

more rigorously. This presentation style hopefully will allow readers not versed

in mathematical jargon to grasp the main concepts.

For obvious reasons, these notes can only cover a portion of the spectrum

of available approaches. For instance, alternative models based on behavioural

types are not considered. Those approaches have their own merits and indeed

offer solid basis for practical software engineering of communication-centric

software. However, they cannot easily be taught in a single module as they

require a substantial background on subjects like types, type checking, and be-

havioural relations (such as (bi-)simulations or trace equivalences). I hope that

you will find this module interesting and I would like to encourage you to report

any inaccuracy (for which I apologise in advance). I thank the who engaged

with the module and provided useful insights with their questions, observations,

and discussions that also contributed to polish the material presente here. In

particular, I am grateful to Liu Zhao for having developed a nice web interface
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for ChorGram in his final project, and Shashidar Ette for his engagement and

for his questions, suggestions, and the careful proof-reading of the notes.



Acronyms

API Application Program Interface

BPMN Business Process Modelling Notation

CFSM Communicating finite-state machines

DbC Design-by-contract

G-choreography Global choreography

MSC Message Sequence Chart

SOA Service-Oriented Architecture

SOC Service-Oriented Computing

UML Unified Modelling Language
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Part I

Overview





Chapter 1

Context and motivations

Distribution, interactions, and all that

Distribution has become a prominent requirement of software. The satisfac-

tion of this requirement leads to a continuous increase in the complexity of

software. After arguing that such complexity cannot be tamed with traditional

approaches, this chapter surveys the relations between software development

and some new methods recently introduced. Finally, we will make some remarks

on distributed coordination in general and about orchestration and choreogra-

phy more specifically.

1 Distributed applications

The combined effect of the availability of devices capable of communicating and

computing and of the widespread connectivity1 is determining a transition of

applications. Big vendors, as well as small software companies, have to satisfy

the appetite of users who want their data and applications “always handy”.

Applications and devices are, and will more and more be, interconnected in

order to assist people. Software will increasingly interact and be ubiquitous in

the “cyberspace” to help people in their day-to-day activities, to automatise

1 which is characterising the urban areas of the most advanced countries
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business-to-business interactions, to operate in and interact in complex cyber-

physical environments, move through “smart cities”, etc.

What is fostering this transition? Programming languages featuring high

concurrency and message-passing seem to start becoming the favourite choice.

For instance, Google’s GoLang (golang.org) advocates channel-based com-

munication among application components. Facebook is increasingly using

Erlang and many companies are increasingly using Elixir (see e.g. https:

//blog.codeship.com/comparing-elixir-go), which is highly compatible

with Erlang since it based on its virtual machine. All these languages aim

to support high concurrency which is achieved with asynchronous commu-

nications relying on queues. Other directions are to equip existing languages

with libraries providing communication-based features; eminently, the Akka (cf.

https://akka.io/) initiative for Scala and Java.

Besides the linguistic angle (and the accompaining shift of paradim), soft-

ware development methodologies and platforms (like https://www.ibm.com/

cloud) are being developed based on “new” principles. In fact, recently concepts

like microservices, choreography, reactive systems start to be commonplace in

industrial contexts [5]. Modern platforms such as those featuring cloud comput-

ing and the internet of things can be seen as catalysing factors of this disruptive

transformation. The magnitude of this change is marked by what is envisaged

as the rise of a new enabler: the API economy [3, 13], which promises deep

transformations of the software industry. The API (after application program-

ming interfaces) space represents the latest evolution in interoperability for the

current industrial context and emphasises the realisation of clear descriptions

as the utmost form of documentation. The idea behind the API economy is

to build new services by composing other services available online and doc-

umented through their API. This composition of services yields new services

once their API is published. This is currently supported by platforms like Mash-

ery (https://www.mashery.com) or Kong (https://getkong.org) to help
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developers to combine and manage APIs (theirs and/or third partys). The API

economy appears as a transformative wave in software development, deploy-

ment, and consumption.

This rich technological environment supports fast development of applica-

tions. Basically, software is becoming ubiquitous and distributed applications are

becoming predominant in almost all sectors; besides being used in commercial

applications, distributed software is progressively adopted to assist people in any

other aspect of their life. For instance, e-health or e-government applications are

more and more crucial in modern societies. Practically, every application could

be conceived as operating in an ecosystem of distributed applications that can

be composed together to form new services. For instance, a personal trainer

app could interact with a restaurant booking system to find a diner satisfying

the users dietary constraints; another example could be a service for patients

travelling with a monitoring device whose software alerts a nearby hospital in

case of an emergency. This makes distribution one of the key requirements of

modern software.

2 New challenges

It is widely accepted that distributed systems and applications are not easy

to design, implement, verify, deploy, and maintain. Not only there are intrinsic

issues due to the underlying computational model (concurrency, physical distri-

bution, fragility of the communication networks and their low-level protocols,

etc.), but also applications have to be engineered within a strange schism. In

fact, applications are typically made of computational components that, on the

one hand, have to collaborate with each other (in order to fulfill some require-

ments) while, on the other hand, may have to compete for resources and/or

conflicting goals. Non-functional requirements make the problem even more
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intricate. For instance, different administrative domains may impose different

access policies to their services or resources. Or they may provide different (lev-

els of) services to their users. Of course, the picture gets worse when factoring

in malicious components/users that may try to spoil or take advantage of non

robust applications. For such (and other) reasons, developers are required to

carefully design their applications so that unintended behaviours do not happen

at runtime.

A key factor to consider when developing distributed applications is scalabil-

ity. In this respect, traditional technology for service composition manifests its

limitations. In fact, a widespread approach to compose services is the combina-

tion of (variants of) remote procedure call and orchestration; such architectures

do not scale smoothly to very large applications. More recently, different ap-

proaches have been considered. The most successful ones adopt technology

based on message-passing as coordination primitive: distributed components

coordinate with each other by exchanging messages. Paradigmatic languages

embedding this type of primitives are Erlang, Elixir, and GoLang, while others

such as Java and Scala feature libraries supporting the actor model [1].

The linguistic shift per se would not be enough to attain scalability; message

exchanges must be disciplined and efficient. Orchestration does not seem to

be the best coordination paradigm for message-passing programming since it

typically requires a larger volume of messages than choreography2. We advocate

choreographies as a proper way to specify and document the composition of

distributed APIs. In fact, the composition of distributed services through their

APIs is promising, but it suffers of the weakness best described by the following

quotation [31]

2 Choreography will be extensively discussed in Part II; an intuitive description of chore-
ographies is given in Section 5
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APIs aren’t difficult to create, but they can be difficult to learn, says an-

alyst Larry Perlstein at Stamford, Conn.-based Gartner Group Inc. Appli-

cation developers and vendors must constantly be thinking about whether

their APIs will be understandable to future developers. “An API is useless

unless you document it”.

The above problem has been observed in paradigms like SOC or cloud com-

puting and seems exacerbated in microservice architectures [25] that take to

an extreme the idea of loosely coupled software developments interacting by

messages passing. Microservices are revolutionising distributed software mov-

ing away from traditional monolithic applications, built around databases that

need to be shared by the different components. Although microservices enable

scalability and reduced time-to-market, developers highlight some drawbacks.

For instance, the fragmentation of software in microservices imposes the use of

well-documented interfaces to avoid catastrophic effects when changing some

of the components in an application.

3 “I have this terrible feeling of deja vu”

The issues briefly discussed above call for design and implementation method-

ologies based on rigorous grounds to precisely specify (and verify) applications

according to

• the assumptions relied upon and

• the guarantees an application should provide to its partners.

Let us look at a very simple example to illustrate those issues.
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3.1 From message-passing programs...

Consider the following simple Erlang program3:

start() ->
Pong_PID = spawn(example, pong, []), % the server starts
spawn(example, ping, [3, Pong_PID]). % the client starts

which implements a ping-pong protocol where a “ping” client and a “pong”

server interact according to the following two functions:

ping(0, Pong_PID) -> % first clause of the client
Pong_PID ! finished,

3 io:format("ping finished~n", []);

ping(N, Pong_PID) -> % second clause of the client
Pong_PID ! {ping, self()},

6 receive
pong ->
io:format("Ping received pong~n", [])

9 end,
ping(N - 1, Pong_PID).

pong() -> % clause of the server
12 receive

finished ->
io:format("Pong finished~n", []);

15 {ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,

18 pong()
end.

Function ping consists of two clauses (starting at lines 1 and 3 respectively);

the first clause is executed when ping is invoked with the first parameter set to

0 otherwise the second clause is executed. In the first case, a process running

ping sends the finished message to another process running pong and iden-

tified by the second parameter of ping and then it terminates after printing a

string on the screen (line 3). In the other case, the ping process sends a ping

message to the pong process, waits for a pong message from the other process

and invokes itself after decrementing the first parameter and printing a string

on the screen (line 8). The process running pong waits for either of the two

messages (finished and ping) and reacts as expected by the partner process.

3 No prior knowledge of Erlang is assumed.
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We recall that Erlang adopts the actor model [1] processes communicate using

“mailboxes” (in Erlang jargon), that is each process has a queue of incoming

where incoming messages from other processes are kept to be then consumed

and processed by the receiver.

A natural question to ask about the above program is: what is the “commu-

nication pattern” of the program? Our models will address such question. And,

more crucially, we will advocate explicit mechanisms ruling the “correct” use of

components such as the functions ping and pong above. For instance, is the

behaviour of a program spawning a ping process where the first parameter is

lower than 0 admissible? Or, does the following program

start() ->
Pong_PID = spawn(example, pong, []),
spawn(example, ping, [3, Pong_PID]),
spawn(example, ping, [2, Pong_PID]).

“correctly” use the functions? And what does “correct” mean here?

3.2 ...to APIs & contracts

As said, sofware has been shifting from ‘stand-alone’ applications to mobile

and dynamically composable ones. This has in turn also increased the empha-

sis on communication and interaction. In this context, it is crucial to define

and use languages, methodologies, and tools to specify, analyse, and verify

application-level protocols underlying distributed software. The typical proper-

ties of application-level protocols that are of interest extend classical protocols

like deadlock- or livelock-freedom, with progress or absence of message orphan-

age that we will define later.

We advocate the use of choreographies to foster a rigorous approach to

software development. In particular, we promote the idea that distributed ap-
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plications should be built out of precise specification of their APIs, which use

mechanisms based on message-passing to coordinate with each other. More

precisely, we envisage APIs as contracts that precisely state the expectation

they have on their execution context, and what they guarantee to other part-

ners. In fact, application-level protocols can be thought of as contracts that

stipulates the expected communication pattern or distributed components.

The notion of “contract” dates back4 to the seminal work of Floyd [14],

Dijkstra [12] and Hoare [18] who pioneered the idea of decorating software with

statements that should hold true when the control reaches them. Probably, the

most successful fallout with important practical repercussions of these research

lines is Meyer’s design-by-contract (DbC); in fact, DbC is nowadays an effective

software development technique in object-oriented programming [26]. The idea

of DbC is that the method of an object realises a precise contract between

invokers and the object expressed in terms of pre- and post- conditions. For

instance, in5

int keepGoing(int p)
// pre: p >= 0
// post: p < keepGoing(p)

int keepGoing(int p)
// pre: p < 0
// post: keepGoing(p) < p

the assertions on the left establish that if the method keepGoing is invoked with

a positive integer p, it will return an integer strictly greater than p; instead, the

assertions on the right stipulate that keepGoing returns a value strictly lower

than p when the latter is (strictly) negative.

The benefits of the DbC approach in software development is undisputed.

As a matter of fact, DbC allows programmers to avoid errors in their software

and greatly reduces defensive programming, that is the need of cluttering pro-

grams with code to check if the state of the computation meets the conditions

4 ...thence the title of this section borrowed from the famous Monty Python’s “Flying
Circus”.
5 We use a fictional syntax.
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expected by a construct before its execution. Moreover, DbC also enables the

automatic synthesis of monitors that can check the conditions stipulated in the

contracts at run-time.

Remark 1 The so called behavioural types (that constrain the reciprocal in-

teractions of distributed participants) are an example of such approaches. No-

tably, behavioural types are at the ground of a number of projects, notably

the network BehAPI: behavioural APIs (EU MSCA-RISE-2017 num. 778233)

and Behavioural Types for Reliable Large-Scale Software Systems (BETTY,

oc-2011-2-10054-EU COST Action). BehAPI is an international network of

academic institutions and small-medium enterprises (SMEs) across Argentina,

Europe, and the US; this project started in March 2018 to foster models, lan-

guages, and tools to support API-based software. BETTY has developed new

foundations, programming languages, and software development methods for

communication-intensive distributed systems. Our department has played and

plays an important role in both projects.

In classical DbC approaches contracts are specified by directly annotating

software with assertions. Instead, application-level protocols specify high-level

contracts at design level. Such difference should probably be more deeply ex-

plored as it introduces interesting questions. For instance, contracts of high-level

specifications do not guarantee the correctness of actual implementations. On

the other hand, code correctness does not guarantee that e.g. the protocol of

an application enjoys good properties. It is therefore necessary to establish clear

links between the two levels and study their complementary interplay. Although

intriguing, these types of questions are not in our scope here.

Remark 2 A possible drawback of using sophisticated contracts in distributed

applications is that design and implementation become more complex. Indeed,

this is what happens in the DbC approach in object-oriented programming men-
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tioned above.6 However, this seems to be a necessary price to pay; since the

problem is complex and simplistic approaches do not provide satisfactory solu-

tions.

4 Distributed coordination

Among the approaches to the design of distributed coordination, orchestration

and choreography are probably the most popular. They both aim to describe

the distributed workflow of components, namely they specify how control and

data exchanges coordinated in distributed applications or systems. Intuitively,

orchestration yields the description of a distributed workflow from “one party’s

perspective” [33], whereas choreography describes the behaviour of involved par-

ties from a “global viewpoint” [21]. In an orchestrated model, the distributed

computational components coordinate with each other by interacting with a

special component, the orchestrator, which at run time dictates how the com-

putation evolves. In a choreographed model, the distributed components au-

tonomously execute and interact with each other on the basis of a local control

flow expected to comply with their role as specified in the “global viewpoint”.

The dichotomy orchestration-choreography has been discussed in several pa-

pers (see e.g., [33, 7]) although, to the best of our knowledge, precise defini-

tions of those concepts are still missing and only intuitive descriptions have been

given so far. It is therefore worth clarifying further the intuitive descriptions of

orchestration and choreography given above.

There is common consensus that the distinguishing element of a choreo-

graphic model is the specification of a so-called global viewpoint detailing the

interactions among distributed participants and offering a “contract” about their

6 In this respect it is interesting the reaction of students in software engineering from
different universities reported in [29].
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expected communication behaviour in terms of message exchanges. This intu-

ition is best described in W3C words [21]:

Using the Web Services Choreography specification, a contract containing

a global definition of the common ordering conditions and constraints

under which messages are exchanged, is produced that describes, from a

global viewpoint [...] observable behaviour [...]. Each party can then use

the global definition to build and test solutions that conform to it. The

global specification is in turn realised by combination of the resulting local

systems [...]

Noteworthy, the excerpt above points out that local behaviour should be re-

alised by conforming to the global viewpoint in a “top-down” fashion. Hence,

the relations among the global and local specifications are paramount. These

aspects are addressed in [22] through an analysis of the relations between the

interaction-oriented choreographies (i.e., global specifications expressed as in-

teractions) and the process-oriented ones (i.e., the local specifications expressed

as process algebra terms). A different “bottom-up” approach has been recently

introduced in [24] that synthesise choreographies from local specifications. This

makes choreography models more flexible (for instance, choreographies have

been exploited in [23] as a contract model for service composition). Note

that – adapting the terminology of [22] – we use communicating machines

as automata-oriented choreography, as in [24].

The concept of orchestration is more controversial. We adopt a widely ac-

cepted notion of orchestration [11, 2, 32] nicely described by Ross-Talbot’s as

[35]:

In the case of orchestration we use a service to broker the interactions be-

tween the services including the human agents and in the case of choreog-
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raphy we define the expected observable interactions between the services

as peers as opposed to mandating any form of brokering.

This description envisages the distributed coordination of services as medi-

ated by a distinguished participant that – besides acting as provider of some

functionalities – regulates the control flow by exchanging messages with partner

services according to their exposed communication interface.

In Peltz’s words [33]:

Orchestration refers to an executable business process that can interact

with both internal and external Web services. The interactions occur at

the message level. They include business logic and task execution order,

and they can span applications and organisations to define a long-lived,

transactional, multi-step process model. [...] Orchestration always repre-

sents control from one party’s perspective.

The “executable process” mentioned by Peltz is called orchestrator and spec-

ifies the workflow from the “one party’s perspective” describing the interactions

with other available services, so to yield a new composed service. This descrip-

tion accounts for a composition model enabling developers to combine existing

and independently developed services. The orchestrator then “glues” them to-

gether in order to realise a new service, as done for instance in Orc [28]. This

is a remarkable aspect since the services combined by an orchestrator are not

supposed to have been specifically designed for the service provided by the

orchestrator and can in fact be (re)used by other orchestrators for realising

different services. Notice that this approach differs from the “bottom-up” one

of [24], because synthesised choreographies do not correspond to executable

orchestrators.
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Other authors consider orchestration as the description of message ex-

changes among participants from the single participants’ viewpoint without

assuming the presence of an orchestrator. For instance, in [34, 36] the local

specifications of a choreography are considered the orchestration model of the

choreography itself. This acceptation could be considered too lax because any

distributed application consists of parties that exchange information (no mat-

ter if realised with channel communication, remote method invocation, etc.).

Considering each local specification of a choreography as an orchestration may

obscure the matter; rather local specifications are tailored to (and dependent

of) the corresponding party of the choreography instead of begin independently

designed.





Part II

From Global Specifications...





Chapter 2

What is a choreography?

Think global, ...

Before venturing in the technical and formal details of our artefacts, this chapter

provides an intuitive description of choreography. We will see that the ideas

underpinning our theories are pretty practical: choreographic approaches were

indeed advocated by software industry.

This chapter adopts a semi-formal approach to introduce the most important

concepts of choreographies we will focus on and discusses the quest for more

precision.

5 An intuitive account

Let us consider again the excerpt from [21] we already saw on page 23 (bold

text is mine)

“Using the Web Services Choreography specification, a contract contain-

ing a global definition of the common ordering conditions and constraints

under which messages are exchanged, is produced that describes, from a

global viewpoint [...] observable behaviour of all the parties involved.

Each party can then use the global definition to build and test solu-

29
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tions that conform to it. The global specification is in turn realised by

combination of the resulting local systems [...]”

The first part of the quotation above envisages a choreography as a global

specification regulating the exchange of messages. The last part of the quota-

tion above yields two distinctive elements of choreographies. The first element

is the fact that the global definition can be used by each party to build its

component. The second element is that conformance checks can also be done

locally using the global contract.

Remark 3 The first element is referred to as the projectability of the choreg-

raphy, that is the possibility to determine the behaviour of all the participants of

the choreography from the global specification. In fact the description of W3C

conceptualises two views, a global and a local one, which enable the relations

represented by the following diagram:

Global

view

Local

view

System

Local

projection comply (1)

where ‘projection’ is an operation producing the local view from the global

one and ‘comply’ verifies that the behaviour of each components adhere with

the one of the corresponding local view. The second element is referred to as

realisability of the choreography, namely the property of a choreography to be

correctly implemented by distributed components. We will see that this is not

always the case.

Before continuing, let us deviate on a terminological digression. We will

use the term ‘artefact’ when referring to actual specifications embodying the

global/local views. Such embodiments may assume various forms: types [19],

programs [9], graphs and automata [24, 10], executable models [21, 4], etc.

Typically, the literature uses the (overloaded) word ‘model’ to refer to this flora
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of embodiments. We prefer the word ‘artefact’ because it allows us to refer to

different contexts and different abstraction levels without attaching yet another

meaning to ‘model’.

Let us now go back to diagram (1); this diagram depicts a beautiful idea as

it unveils the interplay between global and local artefacts and this allows us to

apply some of the best principles of computer science:

Separation of concerns The intrinsic logic of the distributed coordination is

expressed in and analysed on global artefacts, while the local artefacts refine

such logic at lower levels of abstraction.

Modular software development life-cycle The W3C description above yields

a distinctive element of choreographies which makes them appealing (also

to practitioners). Choreographies enables independent development: compo-

nents can harmoniously interact if they are proven to comply with the local

view. Global and local views yield the “blueprints” of systems as a whole and

of each component, respectively.

Such methodology suits industry as it allows the combination of parties de-

veloped independently (e.g., services) while hiding implementation details

that typically companies do not want to reveal. Moreover, the developers of

a local component can check it against the global view and have the guaran-

tee that, if the local component is compliant with the global view, the whole

application will conform to the global choreography.

Principled design A choreographic framework orbits around the following im-

plication:

if cond(global artefact) then behave(projection(global artefact))

that is, proving that a correctness condition cond holds on an abstraction

(the global artefacts) guarantees that the system is well behaved, provided

that the local artefacts are “compiled” from the global ones via a projection

operation that preserves behaviour.
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It is important to remark that a choregraphy should guarantee that the dis-

tributed interactions happen harmoniously. For instance, a choreography where

some of the participants terminate while others remain waiting for some mes-

sages to arrive, may not be considered a good choreography.

Remark 4 Harmonious execution has to be considered under the light of dis-

tributed execution based on the assumptions made on the communication model

and on the fact that each participant executes distributively.

More precisely, we require that well-behaved choreographies have the following

properties:

Graceful termination: all the participants involved in a choreography eventu-

ally terminate, or never get stuck.

No orphan-message: all sent messages are eventually received.

No unspecified-reception: each participant should receive only expected mes-

sages.

Exercise 1 Does the Erlang program obtained by replacing 3 with -1

in the first program of Section 3 (on page 17) gracefully terminate?

Briefly justify your answer.

Exercise 2 Consider the ping and pong functions of Section 3 (on

page 17). Is the second Erlang program of Section 3 (on page 17)

well-behaved? Briefly justify your answer.

We will first consider a (semi-)formal language to represent global specifica-

tions. Such language similar to UML’s sequence diagrams or, more precisely, to

message sequence charts (MSCs) http://www.itu.int/rec/T-REC-Z.120,

a standard defined by the International Telecommunication Unit used to define

communication protocol and equipped with visual and textual presention as well

a formal semantics [17].
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Id

(a) Lifeline

Id1 Id2
msg

(b) Asynchronous call

Fig. 1: Graphical elements of sequence diagrams

6 Global views as interaction diagrams

The global view of a choreography can be represented using sequence dia-

grams [27]. A sequence diagram (see also http://www.uml-diagrams.org/

sequence-diagrams.html) is an interaction diagram describing how some

components collaborate together in order to realise some functionality. Graph-

ically, components are represented as headed lifelines as depicted in Fig. 1a.

Remark 5 It is worth emphasising that we use sequence diagrams with a dif-

ferent flavour than the usual one, that is as diagrams of interactions in object-

oriented modelling. In fact, we will use a simplified version of sequence diagrams.

More precisely, the lifelines in our sequence diagrams do not represent objects,

rather participants7, namely sequential components that execute distributively.

Also, interactions do not represent method calls; rather they describe message

communications.

For us, a participant could be either a human being interacting with the sys-

tem8 or one of the software components of the system; we do not need to

specify which of the two cases apply. In fact, by Remark 5 (and as illustrated

in Fig. 1a), we may omit the class name of participants from the lifeline head

of our sequence diagrams. Our basic assumption is that interaction is possible

7 Note that a participant may be actually implemented with objects in an object-oriented
language; the crucial point would be that participants do not interact with each other
through method calls.
8 Hereafter, we use the terms ‘component’ and ‘participant’ interchangeably.
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through message exchange: this is dictated by the distributed nature of the

systems that we consider. Also, each participant is supposed to be not multi-

threaded and communication is asynchronous so our sequence diagrams will not

have the so-called ‘synchronous calls’. Moreover, we will assume that messages

are exchanged on channels (or ports) even when channels are not explicitly

mentioned in communication actions.

Example 6.1. A choregraphy for a simplified ATM-application can be depicted

as follows:

C A B
pin

amount
withdraw

ok
money

This is a very basic choreography and we will come back to it later. ˛

There are two possible ways of interpreting the diagram in Example 6.1:

Data-flow interpretation envisages the message on the arrows of a sequence

diagram as a description of what (and when) data are exchanged by par-

ticipants. In this interpretation it is often immaterial how the values are

exchanged (since the focus is on the flow of data). For instance, in the first

interaction between C and A of the diagram in Example 6.1, pin has to be

understood as C providing its personal identification number (represented by

the variable pin) to A. To make it explicit the communication channel, say

c , over which such exchange happen, one could have written pin on c . We

save this notation for labels, some special messages that will be introduced

in the following.

Communication-flow interpretation envisages the message on the arrows of

a sequence diagram as identifiers of communication channels used by par-
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ticipants when interacting. Often the values exchanged in the interaction

are not mentioned (although optionally they could be explicitly represented).

For instance, in the first interaction between C and A of the choreogra-

phy in Example 6.1, pin has to be understood as C sending a value on a

channel called pin and A waiting on that channel to receive such value. To

make it explicit the personal identification number, one could have written

pinxpin_numbery.

Unless otherwise stated, we adopt the data-flow interpretation as we are in-

terested in the coordination of communicating distributed participants where

we assume that the identities of the participants involved in a communication

identify the channel used to exchange the message. In fact, we will let A B!m

denote that participant A sends participant B the message m and let A B?m de-

note that participant B receives message m from participant A. In other words,

when channels are not explicit in sequence diagrams we use the identities of the

sender and receiver to identify the channels on which a communication action

happens.

Remark 6 As we will see more precisely later, channels (implicit or not) behave

as an unbound FIFO queue (that is, they preserve the order).

7 An execution model, informally

We give now an informal account of the communication behaviour of com-

ponents that we consider (a precise definition will be given later). Basically,

we consider communication mechanisms abstracting standard communication

primitives such as those in the TCP/IP stack or those offered by modern

message-oriented middlewares.

Each lifeline has to be thought of as a component made of an autonomous

(single) thread of execution. Lifelines show only the (observable) communi-
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cation pattern of participants in terms of their send and receive operations.

Between two consecutive interactions, a component may execute internal be-

haviour, i.e. local computation not represented in the diagram. What do we

mean by “local computation”? In a distributed system/application, a compu-

tation is local to one of the participants, say A, if the computation does not

require any interaction with other participants and it is performed (and modi-

fies) only the local state of A. An important role among local computation is

played by local decisions participants make and that can affect the interactions

to be carried out with other participants. As we will see, these decisions must

be carefully designed in order to avoid problems in the communications.

We assume that send operations are non-blocking while receive operations

are blocking. In other words, the sender continues its execution even if the

receiver is not ready to consume the message, while a receiver cannot continue

if (one of) the expected message(s) is not available.

Example 7.1. It is easy to verify that, for Example 6.1,

1. C sends her pin number to A

2. C sends A the amount of money to withdraw

3. A tells B that C intends to widthraw some money

4. B tells A that the operation is allowed

5. A gives C the money

is a possible order of execution. ˛

Exercise 3 Give a sequence of communication actions corresponding to

the execution in Example 7.1.

Remark 7 In an actual implementation, B would perform some local compu-

tation between steps 3 and 4 (for instance, B might access a local database).

Since we are interested in distributed coordination, we abstract away from such

local computations and do not represent them in our models.
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Exercise 4 Give all the sequences of communication actions which re-

spect the order in Example 7.1.

Remark 8 You are invited to figure out why the trace

C A!pin;C A!amount;C A?amount;C A?pin;A B!widthraw;

A B?widthraw;B A!ok;B A?ok;A C!money;A C?money

is not a correct answer to Exercise 4.

Although appealing for their intuitive clarity, sequence diagrams may look

odd. The following exercise is meant to highlight this.9

Exercise 5 Is the diagram below executable with asynchronous commu-

nications?

A B

a b

Justify your answer.

And what about this one?

A B

ba

Reflect on “how time flows” and how participants execute locally.

9 Exercise 5 is tricky because our execution model is not fully described yet; the exercise
should be doable with some ingenuity, but do not be worry if you cannot solve it, you
will manage after having studied the whole chapter.
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7.1 From sequence diagrams to “programs”

The execution model we are drafting here naturally yields a semantics of se-

quence diagrams based on execution traces of the communication actions of

each participant. Hence, the first step to take in order to find the execution

traces of a sequence diagram is to determine the communication actions of

participants. This is fairly simple: we just have to follow the lifeline each partic-

ipant, say A, and note down the sequence of input actions and output actions

performed by A. At the end we obtain a very simple program made of the se-

quential composition of such actions in the order determined by the lifeline of

A.

Example 7.2. For the participants of the first diagram in Exercise 5

A B!a; B A?b and B A!b; A B?a

are the programs of participants A and B respectively.10 ˛

Once we have identified the programs of participants, we have to determine

how these programs execute together ! In fact, each participant A runs indepen-

dently of the others (since participants are distributed), but at the same time A

interacts with other participants (since participants are communicating). This

will be clarified in the next section; before we have to answer another ques-

tion: When is an action of (the program of) a participant A enabled? Basically,

enabled action are the communication actions that are ready to be executed.

Our assumption that participants are single-threaded requires that an action

is enabled if all the actions preceding it have been executed. Hence, initially

only the first action of the program of A could be enabled, once it has been

executed, then the second action of the program of A could be enabled, and

so on. Moreover, a moment’s thought suggests that

10 We use _;_ for sequential composition, as usual in most programming languages.
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• in order to have non-blocking output actions, if the next action of the pro-

gram of A is an output action then it is enabled

• likewise, in order to have blocking input actions, if the next action of the

program of A is an input action, then it cannot be enabled unless the channel

contains an expected message.

We are now ready to describe the execution of sequence diagrams.

7.2 Running sequence diagrams

The third and last step finally answers the question: How do we execute se-

quence diagram? Or, putting it more precisely, how do we describe the execu-

tions of sequence diagram? As said before, we use traces for this. Intuitively,

a trace describes a possible run11 of a sequence diagram where the actions of

participants alternate, in a meaningful order. We will now to spell out what this

means to us.

Firstly, we recall the characteristics of our framework:

• channels behave as FIFO queues

• participants are single-threaded

• sending actions are non-blocking while receiving actions are blocking.

This suggests that the state of execution of a set of participants is fully deter-

mined by

1. the next communication action of each participant

2. the state of each channel (what messages are stored and in which order).

For (1) we use a sort of “program counters” that, for each principal, tell which

is the next communication action to be executed. So, let us write Apiq when the

11 At this point it should not come as a surprise that concurrent and distributed programs
may have more than one possible execution, even on the same inputs.
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“program counter” of a participant A “points” to its i-th action, that is when A

has executed its first i ´ 1 actions and is ready to execute the i-th one.

Example 7.3. For participant A in Example 7.2,

• Ap1q “ B A?b (the first action has been executed and now the second one is

ready to be fired)

• Ap2q represents that A has terminated (all actions have been already exe-

cuted).

It is a simple observation that Ap0q is the whole program of A, namely the

program where nothing has been executed yet, and A is ready to execute its

first action. ˛

For (2), the state of a channel can be simply described by the sequence of

messages, say m1 ¨ ¨ ¨mk it contains (with m1 the top of the queue and mk the

last message of the queue.

Then, a configuration maps each participant to its program and each channel

to its content and we can describe the execution of a sequence diagram in

terms of “evolution” of configurations starting from the initial configuration,

namely the configuation where every participant A is mapped to the program

Apiq and every channel is mapped to the empty sequence of messages. It is

convenient to adopt a compact notation to represent configurations; we will

write the sequence of programs followed by the sequence of channels (both

ordered alphabetically) in angled brackets.

Example 7.4. The initial configuration of the sequence diagram in Example 7.2

and the one after A executed its output are respectively written as

xAp0q,Bp0q,
A B

...
,

B A

...
y and xAp1q,Bp0q,

A B

a
...

,

B A

...
y
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Note that we can univocally determine at which point A and B arrived in their

execution and which messages are still in the channels. ˛

The possible executions of a sequence diagram are then systematically obtained

from the initial configuration as follows. We build a graph where nodes are

configurations and arcs are labelled by communication actions; such graph is

obtained applying the following procedure:

1. choose a configuration, say C, that has not been explored yet (initially, C can

only be the initial configuration)

2. for all the enabled action α in a program Apiq in C, create a configuration C1

obtained from C by

• replacing Apiq with Api`1q

• updating the content of the channel in α, namely:

– if α is an output action adding the message in α at the end of the

sequence of messages previously in the channel

– if α is an input action, remove the message in α from the top of the

sequence of messages previously in the channel

3. add an arc from C to C1 labelled with α

4. mark C as explored and C1 as not explored and repeat until all configurations

are marked as explored.

In other words, starting from the initial configuration, we systematically gen-

erate configurations by firing enabled actions; in the new configurations, the

participant who fired the enabled action continues to its next communication

action and the channel is updated; once all the enabled action of the initial con-

figuration have been considered, one continues the same process with another

node taking care of not adding a node for a configuration that is already present

in the graph. This process terminates when there are no more configurations

to consider.
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Example 7.5. Building the execution graph of the first diagram of Exercise 4

we get

xAp0q,Bp0q,

A B

...
,

B A

...
y

xAp1q,Bp0q,

A B

a
...

,

B A

...
y xAp0q,Bp1q,

A B

...
,

B A

b
...

y

xAp1q,Bp1q,

A B

a
...

,

B A

b
...

y

A B!a
B A!b

B A!b A B!a

Note that this is not the whole graph! ˛

Exercise 6 Complete the execution graph of Example 7.5.

8 More expressiveness

As said, the choreography described in Example 6.1 (cf. page 34) is very basic.

Usually, we need to add constructs to express more interesting (and precise)

choreographies. For instance, one would like to be able to express what happens

when C enters the wrong pin or tries to withdraw more money than the amount

available on her account. We extend our language of sequence diagrams to

overcome this lack of expressiveness.

8.1 Branching

Standard sequence diagrams use the so-called alternate construct to express

conditional behaviour. For our purposes it is better to use a slightly more general
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construct, called branching, that allows us to express more than two alternative

behaviours. We adopt the following notation for the branching construct:

l1 on c1

ln on cn

branch

In the branching block above, labels l1, . . . , ln are sent by a participant – the

one whose lifeline intersects the circle (not represented in the picture above) –

on channel c to another participant – the one whose lifeline is pointed by the

empty-headed arrow – to communicate how the choregraphy should proceed.

Remark 9 The ’on c’ part specifies on which channel the selection/branching

is made; we may just write the labels when the channel is understood.

We will now see that branching brings in expressiveness, but also problems.

In fact, branching-blocks will be subject to some restrictions that we will spell

out later. Let us first refine the choreography in Example 6.1 and show how

branching caters for more expressiveness.

Example 8.1. A refined choregraphy for the simplified ATM-application can be

depicted as follows:
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C A B
pin start_tx

right_pin on c
amount

withdraw
ok

money

wrong_pin on c

branch

Note that the interactions between A and B happen only if C enters a right pin

number. Also, in the case that C enters a wrong pin, the choreography stops

after A sends the label ‘wrong’ to C. ˛

Remark 10 An important observation emerging from Example 8.1 is that the

check on the pin number performed by A is an “local” computation not repre-

sented in the diagram; we will come back on this.

8.2 A note on choice and non-determinism

Two important concepts of choreographies (and more generally in parallel and

distributed computing) are the notions of choice and non-determinism. Un-

like in sequential computations, the control flow in concurrent and distributed

computations is not unique; in fact, by definition there may be many parts

of a system that may concurrently execute. This makes non-determinism un-

avoidable (besides being sometimes desirable) in distributed applications. It is

worth discussing in more detail the interplay between distributed choice and

non-determinism may lead to problems in distributed choreographies.
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8.2.1 Distributed choices

A participant A is executing an internal computation when no interactions with

other participants are required for A to progress. At design level, very often such

internal computations are abstracted away so to maintain the design simple. In

a choreography this becomes evident when considering branches; as observed

earlier (cf. Remark 10), the sequence diagram of a choreography simply de-

scribes the communication pattern of participants and, for instance, does not

detail how the selector of a branch decides which label to send. In particular,

it is crucial to establish when the choice of a participant is external or inter-

nal. For the moment internal choice an external choice can be only described

informally (later, when the automata model will be introduced, we will give a

precise definition): a participant of a choreography, say A, makes

an internal choice when its execution can proceed along two or more different

directions (that is A can execute different patterns of interactions) and the

decision about what direction to take is made without interacting with other

participants

an external choice when A has several possible alternatives to continue its

execution, but cannot progress autonomously and has to wait for interactions

with other participants (in our framework, this means that A has to wait for

inputs sent by other participants).

Example 8.2. In the branch of the choreography of Example 8.1, participant A

makes an internal choice when she decides to send either label right_pin or label

wrong_pin; instead, C makes an external choice in that branch as he cannot

progress until either of the labels is received. In other words, how C continues

his execution depends on what interactions A does (hence C does an external

choice accordingly). ˛
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8.2.2 Non-determinism

In general, non-determinism occurs in computations where at least one step of

execution is not a function of the state determined in the previous step and/or

of the input. Non-determinism is an abstraction to represent computations that

are not entirely under the control of a program. For instance, when designing

software the behaviour of users, or third-party or off-the-shelf components can

be modelled with non-deterministic constructs. A close approximation of non-

deterministic sequential computation can be obtained in usual programming via

the generation of (pseudo)random values. For instance, one could write an ’if’

statement whose guard is a randomly generated boolean value so to simulate

the non-deterministic choice between the ‘then’ and ‘else’ branches.

In distributed computations non-determinism is not only an important ab-

straction mechanism, but also an intrinsic part of the behaviour. In fact it is

practically unfeasible to make a distributed system completely deterministic.

For example, it is not possible to predict the order in which requests from in-

dependent clients arrive to a server in an asynchronous setting (unless severe

limitations that would degrade performances and efficiency are acceptable).

An intuitive way to think of non-determinism is by admitting that in some

points of the computation several alternative computations are possible without

explicitly specifying how the actual choice is made (for instance, by some internal

computation or by a scheduler that establishes which alternative to execute

next “arbitrarily”, namely regardless the state of the computation or of the

design/program).

Remark 11 It is worth to remark that non-determinism and distributed choices

are orthogonal concepts. For instance, internal choice can be deterministic or

non-deterministic and similarly for external choice. As an example, the ATM in

Example 8.1 would very likely make a deterministic choice (one could imagine

that which branch to take is established by a simple if-statement that checks
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the validity of the pin number). Instead, the behaviour of B in the model answer

of Exercise 7 could be a non-deterministic internal choice where B generates a

random number representing the time to wait for a label from A; if the label

does not arrive with such time, B sends a message on b2.

8.3 Problems with branching

As anticipated, more expressiveness yields problems; to present the problems

that branching-blocks bring in, we consider a few examples.

Unique selector. Consider the diagram in Fig. 2. After the user U starts

D U M

start
start

query
halt

respond
result

branch

Fig. 2: The “unique selector” problem

by triggering a database D and a database manager M with messages start

respectively all the participants engage in a choice so that

• if U sends label query to D then M sends message halt to D

• if instead M sends label respond to D then D sends a result result to U.

In a distributed asynchronous execution, this may lead to a deadlock. In fact, in

the branch U may (locally) decide to either communicate label query to D and
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then terminate, or wait for D to send message result. Similarly, after receiving

start, M (locally) decides whether to send halt to D and terminate, or to send

message respond. If both U and M choose to send the label to D, they will

both terminate hence, whatever branch D takes, the communications of halt or

result will not be completed.

Exercise 7 Give a choreography such that there is a deadlock due to

the fact that in a branch labels are sent to different participants by the

same participant.

Example 8.3. Deadlock configurations can be found by building the execution

graph from the sequence diagram. Consider the choreography in Fig. 3 under

the communication-flow interpretation (cf. page 34). Intuitively, a deadlock

A B

l1 on a
b

l2 on b

branch

Fig. 3: Deadlock issue

occurs when both A and B decide to send their labels; in such case in fact, A

will be stuck on the input from channel b which will never arrive, since B would

have terminated once it has sent label l2. The execution graph of the above

choreography is:
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xAp0q,Bp0q,

a

...
,

b

...
y

xAp1q,Bp0q,

a

l1
...

,

b

...
y xAp0q,Bp1q,

a

...
,

b

l2
...

y

xAp1q,B1p1q,

a

...
,

b

...
y

xAp1q,B1p2q,

a

...
,

b

‚
...

y

xAp2q,B1p2q,

a

...
,

b

...
y xAp1q,Bp1q,

a

l1
...

,

b

l2
...

y xA1p1q,Bp1q,

a

...
,

b

...
y

a!l1
b!l2

a?
l 1

b
?l2

b
!l2 a!

l 1

b!
b?

and the middle state at the bottom of the graph is a deadlock state because

A1 is stuck on the input on b which is empty and the only partner which could

communicate on b is terminated. ˛

Determinacy. The participants involved in a branching have to be able to

unambiguously determine what they have to execute after being notified a label.

Take the choreography in Fig. 4. When A is notified the label l1, she can decide

either to send on channel a or on channel b. However, depending on which of

the branches B executes, B may be waiting on the other channel. Namely, it

may happen that B chooses the first branch (and so waits on a) while A decides

to send on channel B after the notification of the label. In such case, a deadlock

will occur.

Un-notified participants. If a participant, say C, is not notified about which

branch has been chosen, then C has to have the same behaviour in any branch.

Let us reconsider the choreography in Example 8.1 (cf. page 43); there B was
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A B

l1
a

l1
b

branch

Fig. 4: Determinacy issue

not involved in the choice and still was required to be prompt to interact in case

a customer C enters a right pin. This type of choreographies are not considered

“good” because one of the participants (B in our example) may not terminate

so causing deadlocks.

Exercise 8 Modify the choreography in Example 8.1 (on page 43) so

that the un-notified problem is solved.

Exercise 9 Which of the conditions of well-behaviour the second chore-

ography of Exercise 5 (on page 37) and the choreography below violate.

C B A

l1
aa

l2
b

branch



Chapter 3

A more precise framework

I have a variety of different languages at my command,

different styles, different ways of talking, which do

involve different parameter settings. Noam Chomsky

We start now to adopt more rigorous artefacts with precise syntax and seman-

tics. There are many of such artefacts; we decided to consider only one of them

based on a workflow language (for global views) and on an automata model

(for local views). An advantage is that our approach is at the same time quite

expressive and close to other design languages such as BPMN or UML’s state

machines.

9 Global views as workflow

We will now introduce a language of workflows to express global views. This

language has a precise syntax and semantics. We start by looking at its syntax.

Let P be a set of participants (ranged over by A, B, etc.), M a set of

messages (ranged over by m, x, etc.), and Z0 the set of integers. We take

P, M, and Z0 pairwise disjoint. The participants of a choreography exchange

messages to coordinate with each other.

Definition 9.1 (Global choreography). The set G of global choreographies

(g-choreography for short) consists of the terms G derived by the grammar

51
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G ::“ AÝÑB : m (2)
ˇ̌

G;G1 (3)
ˇ̌

G | G1 (4)
ˇ̌ `

G ` G1˘ (5)
ˇ̌ ˚G@A (6)

that satisfy the following conditions:

• in interactions AÝÑB : m, we require that A ‰ B

• , called control point, is a strictly positive integer

• any two control points occurring in different positions of a g-choreography

are different (e.g., A 2ÝÑB : m | C 1ÝÑD : y is not an element of G)

• in iteration ˚G@A, A is a participant of G (e.g., ˚pAÝÑB : mq@C is not an

element of G).

For G P G, let cp
`
G
˘

denote the set of control points in G.

A g-choreography can be a simple interaction (2), the sequential (3) or parallel

(4) composition of g-choreographies the choice between two g-choreographies

(5), or the iteration of a choreography (6). In the global view, this is modelled

with interactions AÝÑB : m, which represent the fact that participant A sends

message m to participant B, which is expected to receive m.

Control points tag interactions, non-deterministic choices and iterations, and

parallel composition of g-choreographies. As we shall discuss later, sequential

composition does not require control points and iterations entail a distributed

choice. In the following, we may omit control points when immaterial, e.g.,

writing G ` G1 instead of
`
G ` G1˘. Also, the values of control points are im-

material and therefore we consider equivalent g-choreographies that differ only

on the values of control points; for instance:

A 2ÝÑB : m | C 3ÝÑD : y and A 3ÝÑB : m | C 2ÝÑD : y
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are equivalent. Moreover, we also consider equivalent choreographies that differ

just for the order of the components in non-deterministic or parallel composi-

tion; for instance,

`
G ` G1˘ and

`
G1 ` G

˘

are equivalent. Formally, _ ` _ and _ | _ are commutative operations.

Exercise 10 Give a g-choreography corresponding to the choreography

in Exercise 8 (on page 50).

Exercise 11 Give a g-choreography equivalent, but different from the

one in Exercise 10 (on page 53).

The syntax in Definition 9.1 captures the structure of a visual language

of directed graphs so that each g-choreographies G can be represented as a

rooted graph with a single “enter” control point and a single “exit” one, called

source and sink respectively. Fig. 5 illustrates our graphical notation and, before

AÝÑB : m

source node

sink node

G

G1

G G1

|

|

fork gate

join gate

G G1

`

`

branch gate

merge gate

G

ö

ö

loop entry

loop exit

interaction sequential parallel branching iteration

Fig. 5: A graphical notation for g-choreographies
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A iÝÑB : m

C jÝÑD : m

(a) G(6a), a sequential composition

A hÝÑB : m A jÝÑB : n

|

|
´

(b) G(6b), a parallel composition

Fig. 6: Examples of workflows

commenting it, a remark is worthwhile: each fork or branch gate with control

point in our pictures will have a corresponding join and merge gate with control

point ´; also, negative control points will appear only in the visual notation of

a global graph and not in its textual representation.

In the visual notation of Fig. 5, ˝ and e respectively denote the source node

the sink node; other nodes are drawn as ‚ and a dotted edge from/to a ‚-
control points singles out the source/sink control point the edge connects to.

More precisely, a dotted edge from ‚ to a boxed G means that ‚ is the source

of G; similarly, a dotted edge from a boxed G to ‚ means that ‚ is the sink

of G. For instance, in the graph for the sequential composition, the top-most

edge identifies the sink node of G and the other edge identifies the source node

of G1; intuitively, ‚ is the control point of the sequential composition of G and

G1 obtained by “coalescing” the sink control point of G with the source control

point of G1. In a graph G P G, each control point marks either a branch or a fork

gate, respectively graphically depicted as ` and | ; to each branch/fork control

point also corresponds a “closing” control point ´ marking the merge/join point

of the execution flow. Labels will not be depicted when immaterial.

Figs. 6a and 6b give an example of this construction for sequential and

parallel composition respectively (in the latter figure we omitted the control

points of interactions for readability). Fig. 6a shows why there is no need to

assign a control point to sequential composition: there is no interesting event
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at the coalescing ‚ node. Indeed, the pattern _ Ñ ‚ Ñ _ in a graph does not

yield any important event to trace and in the following we will often replace it

with a simple edge _ Ñ _).

Akin to BPMN [30] diagrams, g-choreographies yield a visual description

of the distributed coordination of communicating components. In this respect,

control points mark the nodes of the graph where communication and dis-

tributed work flow activities may happen. In fact, similarly to BPMN, commu-

nication activities and gate have a special standing in our visual notation.

Our diagrams resemble the ones in [10, 24] the only differences being that

• by construction, forking and branching control points have a corresponding

join and merge control point ´;

• there is a unique sink control point with a unique incoming edge (as in [10,

24], there is also a unique source control point with a unique outgoing edge).

Example 9.1. The g-choreography12 G(6b) in Fig. 6b (where the control points

of interactions are omitted for readability) represents a choreography where A

sends B messages m and n in any order. ˛

Exercise 12 Give a graph corresponding to the diagram in Fig. 3 (on

page 48); ignore control points.

Exercise 13 Add control points to the expression that you gave as a

solution of Exercise 12 so that the resulting term is in G.

Exercise 14 Give a g-choreography for the graph in Fig. 6b (on

page 54).

Besides being commutative, non-deterministic and parallel composition of

choreographies are associative up to control points. Namely,

12 We indexed our examples with the numbering of the figure they are in; therefore, we
will hereafter avoid cross-referencing the figures.
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`
G1 `

`
G2 ` G3

˘˘ ” ``
G1 ` G2

˘ ` G3
˘

G1 | G2 | G3 ” G1 | G2 | G3

are valid laws for all , P Z0 and all G1,G2,G3 P G such that each side of the

equations yields a choreography. This allows us to write choices with more than

two branches and, likewise, parallel compositions with more than two threads

as depicted below:

G1 G2 G3

|

|

|
´

|
´

”
G1 G2 G3

|

|

|
´

|
´

” G1 G2 G3

|

|

where in the last graph we ignore the control point of the parallel gate.

10 Towards a precise semantics

The semantics of a choice-free g-choreography G P G (i.e. a g-choreography

that does not contain _ ` _ terms) is a partial order, which represents the

causal dependencies of the communication actions specified by G.

Choices are a bit more tricky. Intuitively, the semantics of
`
G ` G1˘ consists

of two partial orders, one representing the causal dependencies of the commu-

nication actions of G and the other of those of G1. In the following, we will use

hypergraphs as a compact representations of sets of partial orders.
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10.1 Basic definitions

For us, communications take place on channels; hence, communication actions

operate on channels. In our models, a channel is identified by (the names of

the) participants involved in the communications on such channel. Formally, a

channel is an element of the set

C :“ ␣pA,Bq P P ˆ P ˇ̌
and A ‰ B

(
(7)

and we let A B denote the channel pA,Bq to avoid cumbersome parenthesis.

The set of events E (ranged over by e, e1, . . .) is defined by

E :“ E ! Y E? Y Z0 (8)

where E ! :“ Cˆ␣
!
(ˆZ0ˆM and E? :“ Cˆ␣

?
(ˆZ0ˆM.

Sets E ! and E? , the output events and input events, respectively represent

the “observable” effect of sending actions and receiving actions. We shorten

pA B, !, ,mq as A B!m and pA B, ?, ,mq as A B?m. As it will be clear later, events

in Z0 correspond to control points and represent “non-observable” events, like

(the execution of) a choice or a merge. In other words, events in Z0 correspond

to local computations that do not involve interactions among components.

Before continuing, we need to introduce some auxiliary notions.

We give two functions to extract the elements of communication events.

The functions sbj : E Ñ P and act : E Ñ C ˆ ␣
?, !

( ˆM, respectively called

the subject and the communication action of an event are defined by

sbj
`
A B!m

˘ “ A and sbj
`
A B?m

˘ “ B

act
`
A B!m

˘ “ A B!m and act
`
A B?m

˘ “ A B?m
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In words: the subject of an output is the sender and the subject of an input is

the receiver while the communication action of an event is the underline output

or input once the control point of the event is dropped. We take both sbj and

act to be undefined on Z0 and extend cp to events, namely cp
`
e
˘

returns the

control point of event e.

Another auxiliary notion is the dual of an event; for an input event A B?m P
E? , the dual event is the output event A B!m P E? and, similarly, the dual of an

output event A B!m P E? is the input event A B?m P E? .

Remark 12 Obviously, duality is a simmetric relation, namely e is dual of e1 if,

and only if, e1 is dual of e.

For a communication event e P EzZ0, we write e P G when there is an

interaction AÝÑB : m in G such that e P ␣A B!m,A B?m
(
, and accordingly E Ď

G means that e P G for all e P E.

10.2 Hypergraphs and their order

Fixed a set V of vertexes, a (directed) hypergraph on V is a relation H Ď 2Vˆ2V ,
namely an element in H, called hyperarc (or hyperedge), is a pair L ṽ , ṽ 1 M that

relates two sets of vertexes, the source ṽ and the target ṽ 1. The vertexes of

our hypergraphs H are drawn from the set of events E and hyperedges impose

an order on such events: LE,E1 M P H represents the fact that each event

in E1 causally depends on all events in E. Let cs, ef : 2E ˆ 2E Ñ 2E be the

maps respectively returning first and second component of two related sets

of vertexes, that is: if h “ LE,E1 M then cs
`
h
˘ “ E are the causes of h and

ef
`
h
˘ “ E1 are its effects. Given H,H1 Ď 2E ˆ 2E , define the hypergraph13

H ˝H1 “ ␣
L cs

`
h
˘
, ef

`
h1˘ M

ˇ̌
h P H, h1 P H1, ef

`
h
˘X cs

`
h1˘ ‰ H(

13 You are invited to check that H ˝H1 indeed respects our definition of hypergraph.
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E “ t e1 ¨ ¨ ¨ em u

P H

E1 “ t e1
1 ¨ ¨ ¨ e1

i u

P H1

H ˝H1 Q

L
E
,E

1M

E2 “ t e2
1 ¨ ¨ ¨ e2

n u

L
e 1i ,E

2M

LE
,E

2
M

Fig. 7: A happens-before relation

That is, H ˝ H1 is a generalised relational composition of H and H1 that es-

tablishes a causal order between sets of events E and E1 when there are two

other non-disjoint sets of events E1 and E2 such that events in E happens

before those in E1 according to H and events in E2 happens before those in

E1 according to H1. In other words, H ˝H1 is the “concatenation” of H and H1.

Intuitively, the events in E cause all the events in E2 due to the dependency of

the event e1
i from the events in E and the fact that e i causes all events in E2.

Example 10.1. Fig. 7 aims to give a visual description of how operation _ ˝_

composes hyperedges in a simple example. The composition of LE,E1 M P H and

L e1, E2 M P H1 (with e1
i P E1 and L e1, E2 M P H1) yields that LE,E2 M P E ˝ E1

(thick arrow on the left) induced by the underlying causal relations (thin arrows

on the right). ˛

A sequence of hyperedges in a hypergraph H

LE0, E1 M, LE1
1, E2 M, . . . , LE1

k , E
1
k`1 M (9)

is a chain if E i X E1
i ‰ H for each 1 ď i ď k and we say that E0 causes Ek`1

or, equivalently, that Ek`1 causally depends on E0. An alternative definition of

this relation can be also given as the reflexo-transitive closure H‹ of H with
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respect to the composition relation _ ˝_, namely

H‹ :“
ď

n

H ˝ ¨ ¨ ¨ ˝Hlooooomooooon
n-times

Remark 13 Chains of hyperedges (like the one in (9)) can be characterised in

terms of the _‹ operation. In fact, it is easy to see that E causes E1 in H if,

and only if, LE,E1 M P H‹.

This construction is fundamental in the next definition.

Definition 10.1. A happens-before relation is a hypergraph H on E such that

1. for all h P H, cs
`
h
˘X ef

`
h
˘ “ H

2. for all e ‰ e1 P H we have that e is dual of e1 when cp
`
e
˘ “ cp

`
e1˘,

3. if E causes E1 in H then there are no two sets E1 and E1
1 such that

E X E1 ‰ H, E1 X E1
1 ‰ H, and E1

1 causes E1.

Basically, an hyperedge LE,E1 M in a happens-before relation relates two sets of

(pairwise distinct) communication events, the source E and the target E1, and

represents the fact that each event in the source happens before each of event

in the target. Therefore,

• an event cannot happen before itself (condition 1 of Definition 10.1),

• two events have the same control point only if they are dual of each other

(condition 2 of Definition 10.1), and

• there cannot be circular dependencies among events (condition 3 of Defini-

tion 10.1).

A happens-before relation H induces a relation pH Ď E ˆ E on the vertexes of

H as follows

pH :“
ď

LE,E1 MPH
E ˆ E1
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A B!x

A B?x

B A!y

B A?y

(a) H(8a)

A B!x

A B?x

A B!y

A B?y

´

(b) H(8b)

A B!x

A B?x

A B!y

A B?y

´

(c) H(8c)

Fig. 8: Some happens-before relations

Basically, pH are the causal dependencies among the vertices in H and xe, e1y P pH
when e precedes e1 in H. In fact,

ĎH :“ zpH‹q

yields a partial order on the vertices of H.

In the following, we will tacitly assume that sets of events E Ď E respect

control-points, namely that for all e, e1 P E, act
`
e
˘

is the dual of act
`
e1˘

when cp
`
e
˘ “ cp

`
e1˘. Also, to avoid cumbersome parenthesis, singleton sets14

in hyperarcs are shortened by their element, e.g., we write L e, E M instead of

L teu, E M.

Remark 1. Note that H ˝H1 may not be a happens-before relation.

Exercise 15 Give two happens-before relations H and H1 such that H ˝
H1 is not a happens-before relation.

Example 10.2. Some happens-before relations are depicted in Fig. 8; relation

H(8a) and H(8b) contain only simple arcs, while the relation H(8c) contains two

hyperedges:

14 A singleton set is a set containing just one element.
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L ,
␣
A B!x,A B!y

(
M and L

␣
A B?x,A B?y

(
,´ M

Intuitively,

• H(8a) establishes a total causal order from the top-most to the bottom-most

event; this is the simplest possible scenario: each event happens in order from

the top-most one to the bottom-most one.

• H(8b) represents a choice at control point between the left and the right

branch; basically after happens either one (but not both) of its successors

happens.

• H(8c) represents the parallel execution of two threads at the control point

; note that the hyperedge L ,
␣
A B!x,A B!y

(
M of H(8c) relates the event to

both A B!x and A B!y “at the same time”, which formalises the idea that

has to happen before both its successors and both successors happen.

Note the correspondence among the control points in H(8b) and in H(8c). ˛

Exercise 16 Consider the following hypergraph

A B!x

A B?x

A B!y

A B?y

and give all the reasons why the hypergraph is not a happens-before

relation. Justify your answer.

10.3 Composing happens-before relations sequentially

We will see that the semantics of a choreographyG is a happens-before relation.

The way such relation is built is by (inductively) “composing” the semantics
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of the sub-choreographies of G. This section considers the simple, yet non

fully trivial, case of sequential composition of happens-before relations. In later

sections we will see more complex cases.

Given a happens-before relation H and a hyperedge h P H, we write e P h
to shorten e P cs

`
h
˘ Y ef

`
h
˘
; also, e P H shortens Dh P H : e P h. We define

the maximal and minimal events of a hypergraph H respectively as

maxH “ ␣
e P H ˇ̌ @h P H : e R cs

`
h
˘(

minH “ ␣
e P H ˇ̌ @h P H : e R ef

`
h
˘(

Example 10.3. With reference to Fig. 8, we have minH(8b) “ minH(8c) “
␣(

and maxH(8b) “ maxH(8c) “
␣´(, while the minimal and maximal elements of

H(8a) are A B!x and B A?y respectively. ˛

Exercise 17 Give the sets of maximal and minimal events for the graph

in Exercise 16 (on page 62).

As we will see, the semantics of a g-choreography G (when defined) will

always be made of hyperedges where either the source or the target is a singleton

and hyperedge of the form L A B!m,A B?m M for each interaction AÝÑB : m in

G. Also, hyperedges made only of communication events will be of importance

in order to establish the existence of the semantics. In particular, we define

fstH “ ␣
LE,E1 M P H ˇ̌ pE Y E1q X Z0 “ H ^

@h P H‹ : ef
`
h
˘ “ E ùñ cs

`
h
˘ Ď Z0

(

lstH “ ␣
LE,E1 M P H ˇ̌ pE Y E1q X Z0 “ H ^

@h P H‹ : cs
`
h
˘ “ E1 ùñ ef

`
h
˘ Ď Z0

(
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namely, fstH and lstH are the sets of the hyperedges involving the “last” and

the “first” communication events of a happens-before relation H.

Example 10.4. With reference to Fig. 8, we have

fstH(8a) “
␣
L A B!x,A B?x M

(
and lstH(8a) “

␣
L B A!y,B A?y M

(

while H(8b) and H(8c) have the same set of “first” and the “last” communication

actions (fstH(8b) “ fstH(8c) “ tL A B!x,A B?x M, L A B!y,A B?y Mu “ lstH(8b) “
lstH(8c)). ˛

We can now define seqpH,H1q, the sequential composition of relations H

and H1 on E as follows:

seqpH,H1q :“ H YH1Y
␣
L e, e1 M

ˇ̌ Dh P lstH, h1 P fstH1 :

e P h ^ e1 P h1 ^ sbj
`
e
˘ “ sbj

`
e1˘(

The sequential composition of two happens-before relations H and H1 preserves

the causal dependencies of its constituents (namely those in H Y H1) and es-

tablishes dependencies between every event in lstH and every event in fstH1

with the same subject.

Example 10.5. Fig. 9 depicts the sequential composition seqpH,H1q where H “
A B!x Ñ A B?x and H1 ranges over the happens-before relations

A C!y B C!y C B!y A B!y C D!y

Ó Ó Ó Ó Ó
A C?y B C?y C B?y A B?y C D?y

(10)

Normal arrows represent the dependencies induced by the subjects and dot-

ted arrows represent dependencies induced by the sequential composition (the

meaning of stroken arrows will be explained in Section 11). Basically a causal
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A B!x

A B?x

A C!y

A C?y

(a)

A B!x

A B?x

B C!y

B C?y

(b)

A B!x

A B?x

C B!y

C B?y

(c)

A B!x

A B?x

A B!y

A B?y

(d)

A B!x

A B?x

C D!y

C D?y

(e)

Fig. 9: Examples of sequential composition

relation is induced whenever a participant performing a (last) communication

of H also starts a communication in H1. ˛

11 The semantics of g-choreographies

The semantics of g-choreography is a the partial map rr_ss defined below that

given a g-choreography G returns a happens-before relation capturing legal

executions of the communications in G. We have rrGss defined only if G is

a “good” g-choreography. Following [16], function rr_ss is defined as per the

clauses from Eqs. (11) to (16) below.15

The semantics of an interaction AÝÑB : m is straightforward:

rrAÝÑB : mss “ tL A B!m,A B?m Mu (11)

namely, the send part A B!m of the interaction must precede its receive A B?m

part. This reflects the intuition that the receiver cannot “consume” a message

before the sender has made it available. Notice that the control point is neces-

15 Here we first give a simplified version of the semantics which is less general than the
one defined in [16].
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sary to distinguish among events that carry the same communication actions,

but happen in different parts of a choreography.

The semantics of iteration is also straightforward:

rr˚G@Ass “ rrGss (12)

namely, the causal order on the events of a loop is simply given by the order on

the events of its body.

The semantics of sequential composition is more tricky than the previous

cases as g-choreographies may not always be sequentially composed together.

We define

rrG;G1ss “

$
’&
’%

seqprrGss, rrG1ssq if wspG,G1q
undef otherwise

(13)

where, setting R :“ cs
`
lst rrGss˘ˆ ef

`
fst rrG1ss˘,

wspG,G1q ðñ {`
seqprrGss, rrG1ssq˘‹ Ě pR

establishes the well-sequencedness condition. The semantics of sequential com-

position G;G1 is determined by the happens-before relations as computed by

seqprrGss, rrG1ssq provided that they cover the dependencies between the last

communication actions of G with the first actions of G1. This condition ensures

the soundness of the composition; when such condition does not hold, then

there is a participant A in G1 that cannot ascertain if all the events of G did

happen before A could start.

Example 11.1. The compositions in Fig. 9 correspond to the composition of

the semantics of AÝÑB : x with the semantics of

A jÝÑC : y B jÝÑC : y C jÝÑB : y A jÝÑB : y C jÝÑD : y
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respectively. All those compositions are sound, barred the one in Fig. 9e which

violates well-sequencedness; in fact, the stroken edge depicts the missing de-

pendency required by well-sequencedness. ˛

For the parallel composition16 G | G1 we have

rrG | G1ss “

$
’&
’%
rrGss Y rrG1ss YH if wf pG,G1q
undef otherwise

(14)

where, setting H :“ tL ,min rrGss Ymin rrG1ss M, L max rrGss Ymax rrG1ss,´ Mu, the

side condition

wf pG,G1q ðñ act
`rrGss˘X act

`rrG1ss˘X L? “ H

established the well-forkedness condition. In words, we take the union of the

dependencies of G and G1 provided that G and G1 satisfy well-forkedness, namely

that the input events of G and G1 are disjoint so to avoid that the actions

corresponding to the events in a thread are confused with those in other threads.

Exercise 18 Draw the happens-before relation for the semantics of the

g-choreography

G “A 1ÝÑB : x | A 2ÝÑB : y (15)

Justify your answer.

The semantics of non-deterministic choice involves the most complex side

condition:

16 In this and the following clauses, the semantics of a composed g-choreography is
defined if rrGss and rrG1ss are defined.
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rr`G ` G1˘ss “

$
’&
’%
rrGss Y rrG1ss YH if wbpG,G1q
undef otherwise

(16)

where H “ tL ,min rrGss M, L ,min rrG1ss M, L max rrGss,´ M, L max rrG1ss,´ Mu and the

definition of the notion of well-branchedness (wbpG,G1q) is given by:

Definition 11.1. A choice G ` G1 is well-branched, in symbols wbpG,G1q, if

both the following conditions hold:

1. there is at most one active participant in G and G1 and

2. all the other participants in G and G1 are passive.

In Section 11.1 we define active and passive participants (cf. Definitions 11.2

and 11.3 below). Intuitively, a participant is active when it selects which branch

to take next from a choice while a participant is passive when it is either not

involved in the choice of it is “told” about which branch to follow. Besides

the dependencies induced by G and G1, rr`G ` G1˘ss contains those making

(the control point of the branch) precede all minimal events of G and G1;

similarly, the maximal events of G and G1 have to precede the conclusion of the

choice (marked by the control point ´). Notice that no additional dependency

is required. In fact, during one instance of the g-choreography either the actions

of the first branch or the actions of the second one will be performed.

11.1 Active & passive roles...easily

The semantics of a choice is defined provided that the well-branchedness con-

dition holds. Such condition formalises the intuitive notion discussed in Part II

which is based on the notions of active and passive participant, that respectively

single out participants that do not make an internal choice, namely participants

that do not select whether to execute G or G1 and those participants instead

that (internally) select which branch to execute.
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We first give some auxiliary definitions. Given a participant A P P and a

happens-before relation H, the A-part of H is the happens-before relation

H@A “
ď

LE1,E2 MPH

␣
LE1@A, E2

@A M
(

where, writing A P e when A occurs in act
`
e
˘
,

E@A “ te P E ˇ̌
A P e _ e P Z0u

Y tcp
`
e
˘ ˇ̌
e P E X E ! ^ A R eu

Y t´cp
`
e
˘ ˇ̌
e P E X E? ^ A R eu

Intuitively, the A-part of H “focuses” on the dependencies of the events executed

by A in H.

Remark 14 We use cp
`
e
˘

and ´cp
`
e
˘

for outputs and inputs respectively, so

that different events not belonging to A remain distinguished.

Definition 11.2. Let G,G1 P G such that rrGss and rrG1ss are defined; fix a

participant A P P and let E “ Ť
hPfst rrGss@A

␣
e P h ˇ̌

sbj
`
e
˘ “ A

(
and E “

Ť
hPfst rrG1ss@A

␣
e P h ˇ̌ sbj

`
e
˘ “ A

(
. Participant A P P is passive in G ` G1 if

1. E “ H ðñ E1 “ H, E Ď E? , and E1 Ď E?
2. act

`
E
˘X act

`
E1˘ “ H

where act
`
E
˘ “ tact

`
e
˘ ˇ̌
e P Eu and act

`
E1˘ “ tact

`
e
˘ ˇ̌
e P E1u.

Thus, the behaviour of a passive participant A in G ` G1 is determined by the

sets E and E1 in Definition 11.2 (those are the sets of first communications of

A in G and G1 respectively). Either A does not perform any communication in

G and in G1 or any first communication that A performs in G must be an input

and it must not be confused with any of the communications that A performs

in G1, and viceversa.
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Exercise 19 Identify the passive participant of the graph in Fig. 8b (on

page 61)

Definition 11.3. Let G,G1 P G such that rrGss and rrG1ss are defined; fix a

participant A P P and let E “ Ť
hPfst rrGss@A

␣
e P h ˇ̌

sbj
`
e
˘ “ A

(
and E “

Ť
hPfst rrG1ss@A

␣
e P h ˇ̌ sbj

`
e
˘ “ A

(
. Participant A P P is active in G ` G1 if

1. E ‰ H, E1 ‰ H, E Ď E ! , and E1 Ď E !
2. act

`
E
˘ X act

`
E1˘ “ H

Thus, the first actions of participant A in G ` G1 must be an output actions

(at least one in each branch) and each first output in G must be different from

each first output in G1.

Exercise 20 Identify the active participant of the graph in Fig. 8c (on

page 61). Justify your answer.

Example 11.2. The following g-choreography:

G(8b) “
`
A 1ÝÑB : x ` A 2ÝÑB : y

˘

has a defined semantics. In fact, the choice in G(8b) is well-branched:

• participant B is passive (receiving either A B?x or A B?y in the point of

branching) and

• participant A is active (sending either A B!x or A B!y in the point of branch-

ing).

The hypergraph in Fig. 8b is the happens-before relation yielding the semantics

of G(8b). ˛

Let us consider a slightly more involved example with three participants.
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Example 11.3. Consider the following g-choreography:

G(11.3) “
`´

A 1ÝÑB : x;B 2ÝÑC : y
¯
`

´
A 3ÝÑC : z;C 4ÝÑB : w

¯˘
(17)

We now verify that the semantics of G(11.3) is

A B!xA B?x

B C!y B C?y

A C!z A C?z

C B!wC B?w

´

We need to check that the choice is well-branched. Consider A first; we have

rrG(11.3)ss@A “ A B!xA B?x

´

A C!z A C?z

´

´

note that the actions

carried by the first com-

munication events of A

are A B!x (in the “left”

branch) and A C!z (in

the “right” branch),

which are different out-

puts

therefore A is active while for B we have

rrG(11.3)ss@B “ A B!xA B?x

B C!y B C?y

´

C B!wC B?w

´

note that the actions

carried by the first com-

munication events of B

are A B?x (in the “left”

branch) and C B?w (in

the “right” branch),

which are different out-

puts



72

and therefore B is passive. Similarly we can verify that C is also passive since it

receives B C?y in G and A C?z in G1). ˛

Exercise 21 Draw the happens-before relation for the semantics of the

g-choreography

G “`A 1ÝÑB : x ` A 2ÝÑC : y
˘

(18)

Justify your answer.

11.2 Applying semantic equations

Let us see how to apply the equations of the semantics of g-choreographies to

get happens-before relations (if any). For this we consider the following global

graph:
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which is a more sophisticated version17 of the atm example considered in Ex-

ample 8.1 exploiting the greater expressiveness of g-choreographies.

Remark 15 Note that in the global graph above, several interactions run in

parallel. Also, the diagram above clearly identifies the scope of branches, fork-

join points, and loops.

Since our semantics is defined according to the syntax of g-choreographies, it

helps to consider the textual presentation of the diagram above.

17 Control points are omitted for simplicity.
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Gatm “ CÝÑA : card ; ˚Gauth@C

Gauth “ CÝÑA : auth ;
`
Gok ` Gko

˘

Gok “ AÝÑC : authOk;AÝÑB : accessGranted;
`
Gwdw ` Gquit

˘

Gwdw “ CÝÑA : withdraw;AÝÑB : withdraw;
`
Galw ` Gdny

˘

Galw “ BÝÑA : allow;AÝÑC : money

Gdny “ BÝÑA : deny;AÝÑC : card

Gquit “ CÝÑA : quit;AÝÑC : card | AÝÑB : quit

Gko “ Gpar;BÝÑA : failedAttempt

Gpar “ AÝÑB : accessFailed | AÝÑC : authFail | AÝÑC : card

Note that the syntax above ignores all the control points that are immaterial

to the construction of the semantics. In particular, no control point decorates

interactions since each of them has a unique occurrence in the g-choreography;

observe that this immediately implies that all the fork-join g-choreographies in

Gatm are well-forked.

We have

rrGatmss “ seqprrCÝÑA : cardss, rr˚Gauth@Cssq
“ seqp C A!card

C A?card

, rrGauthssq if wspCÝÑA : card,Gauthq

To determine the semantics of Gatm is therefore necessary to first find out what

is the semantics of Gauth. To do this, it is convenient to start ascertaining the

semantics of the last four sub-g-choreographies (since they do not depend on

any other sub-g-choreography); in fact, if any of these semantics were unde-

fined, it would be pointless to compute the rest of the semantics.

Let us start with Galw:
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rrGalwss “ seqprrBÝÑA : allowss, rrAÝÑC : moneyssq
“ seqp B A!allow

B A?allow

,
A C!money

A C?money

q if wspBÝÑA : allow,AÝÑC : moneyq

“
B A!allow

B A?allow

A C!money

A C?money

where in the last equation the diagonal arrow is the one added by seqp, q, which

makes the side condition wspBÝÑA : allow,AÝÑC : moneyq hold. Basically, We

have to verify that the order induced by the happens-before relation computed

above contains

cs
`
lst B A!allow

B A?allow

˘ˆ ef
`
fst

A C!money

A C?money

˘ “tpB A!allow,A C?moneyqu

which is indeed the case. And, with a similar reasoning, we have that the se-

mantics of Gdny is

rrGdnyss “

B A!deny

B A?deny

A C!card

A C?card

We now turn our attention to Gquit:
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rrGquitss “ seqp C A!quit

C A?quit

, rrAÝÑC : card | AÝÑB : quitssq

“

A C!cardC A!quit

C A?quit

A B!quit

A C?card A B?quit

´

where it is easy to see that also in the case the well-sequecedness condition

holds; note that the dashed arrow can be omitted because it can be obtained

by transitive closure.

Provided that wspGpar,CÝÑA : quitq holds, for Gko we have:

rrGkoss “ seqprrAÝÑB : accessFailed | AÝÑC : authFail | AÝÑC : cardss, C A!quit

C A?quit

q

“

A C!cardA C!authFail

A C?authFail

A B!accessFailed

A C?cardA B?accessFailed

´

C A!quit

C A?quit

where it is to verify that the well-sequecedness condition holds (since all the

causes of each “last” communication edge of the parallel composition precede

the effect of the input C A?quit); as before, the dashed arrow can be omitted

because it can be obtained by transitive closure.
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To compute the semantics of Gwdw we have two options, depending on how

we associate the sequential compositions (recall that the sequential composition

is associative); if we associate “on the left”, we have the equation below provided

that the well-sequecedness condition holds:

rrGwdwss “seqprrCÝÑA : withdraw;AÝÑB : withdrawss, rr`Galw ` Gdny
˘ssq (19)

Note that the first part is very similar to Gdny, hence:

rrCÝÑA : withdraw;AÝÑB : withdrawss “
C A!withdraw

C A?withdraw

A B!withdraw

A B?withdraw

(20)

For the second part, after verifying that wbpGalw,Gdnyq holds, we just have to

add the “gluing” edges connecting minima and maxima of the branches to the

branch and merge control points. Since

• B is active; in fact, its the first actions in both branches are different outputs

• both A and C are passive since their first actions in the two branches are

different inputs

we have that the choice is well-branched, hence

rr`Galw ` Gdny
˘ss “

´

B A!allow

B A?allow

A C!money

A C?money

B A!deny

B A?deny

A C!card

A C?card

(21)

Hence, from (19), (20), and (21) we can check that the well-sequecedness

condition hold and we derive:
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rrGwdwss “

C A!withdraw

C A?withdraw

A B!withdraw

A B?withdraw

B A!allow

B A?allow

A C!money

A C?money

´

B A!deny

B A?deny

A C!card

A C?card

where the edges obtainable by transitive closure have been omitted.

Proceeding as done for Gwdw we can compute the semantics of Gok as

rrGokss “

A C!authOk

A C?authOk

A B!accessGranted

A B?accessGranted

C A!withdraw

C A?withdraw

A B!withdraw

A B?withdraw

B A!allow

B A?allow

A C!money

A C?money

´

´

B A!deny

B A?deny

A C!card

A C?card

A C!cardC A!quit

C A?quit

A B!quit

A C?card A B?quit

´

We can now reconsider
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rrGauthss “ seqprrCÝÑA : authss, rr`Gok ` Gko
˘ssq

“ seqp C A!auth

C A?auth

, rr`Gok ` Gko
˘ssq

“
C A!auth

C A?auth rest of rrGkoss
´

rest of rrGokss
,A C!authOk

´

´

where the second equation is valid if wspCÝÑA : auth,
`
Gok ` Gko

˘q and the

dashed edges represent the hyperedges connecting events with the same subject

of their source in the semantics of Gok and Gko; note that again the well-

sequecedness conditions is satisfied once such edges are added.

Finally, the semantics of Gatm is obtained by applying once more the definition

of seqpG,G1q and verifying that the well-sequecedness condition holds between
C A!card

C A?card

and rrGauthss; so, we obtain

rrGatmss “

C A!auth

C A?auth

C A!card

C A?card rest of rrGkoss´rest of rrGokss
,A C!authOk

´

´

11.3 A generalisation of well-branchedness

The notion of well-branchedness given in Section 11.1 can be made more gen-

eral. In fact, such notion rules out some g-choreography that are “reasonable”.

We show this in the following example.

Example 11.4. Take the following variant of the g-choreography G(11.3) in Ex-

ample 11.3:
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G(11.4) “
`´

A 1ÝÑB : x;B 2ÝÑC : y;B 6ÝÑD : z
¯
`

´
A 3ÝÑC : z;C 4ÝÑB : w;B 7ÝÑD : z

¯˘

We have that rrG(11.4)ss@A and rrG(11.4)ss@C are very similar to those in Exam-

ple 11.3. For rrG(11.4)ss@B we have:

A B!xA B?x

B C!y B C?y

B D!z B D?z

´

C B!wC B?w

B D!zB D?z´

note that the actions carried

by the first communication

events of B are A B?y (in the

“left” branch) and C B?w (in

the “right” branch), which are

different outputs

which still ensures that B is passive. However, for rrG(11.4)ss@D we have:

´

´

B D!z B D?z

´

´

B D!zB D?z´

The first communication events of D carry the same action in both branches;

this violates both the conditions of active and passive participants and make

the g-choreography G(11.4) according to Definition 11.1. ˛

Intuitively, the g-choreography G(11.4) in Example 11.4 is “reasonable”, despite

our definition rules it out as non well-branched. In fact, participants D has

the same behaviour independently of the branch chosen in the choice; in other

words, D is oblivious of the choice and, with its communications, D cannot

mislead the participants actually involved in the choice (namely, A and B in this

case).
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We will now introduce a more general notion which admits more well-

branched g-choreography, including G(11.4) in Example 11.4. The generalised

notion of well-branchedness relies on the concept of “common” part, with re-

spect to a participant A, of the two happens-before relations H and H1 corre-

sponding to the branches of a choice.

For a happens-before relation H we define

pH “ txe, e1y P E ˆ E ˇ̌ DLE,E1 M P H : e P E and e1 P E1u Ď E ˆ E

Also, given a graph G, observe that the happens-before relation (if any) rrGss
yields an order ďGĎ E ˆ E defined as

e ďG e
1 ðñ rrGss is defined ^ xe, e1y P zrrGss‹

Remark 16 The order ďG is partial, namely there might be e and e1, events

of G, for which neither e ďG e1 nor e1 ďG e.

Before introducing the notion of reflectivity, we set some terminology. Two

vertexes e1, e2 P H are independent in a hypergraph H if there are h P H and

e1
1, e

1
2 P ef

`
h
˘

such that, for each i , j P t1, 2u, xe1
i , e jy P zpH‹q ðñ i “ j ;

also, for a participant A P P, a set of vertices E Ď H is A-uniform in H if

EXZ0 “ H, sbj
`
E
˘ “ tAu, act

`
E
˘

is a singleton, and each e ‰ e1 P E are not

independent and are such that txe, e1y, xe1, eyu XzpH‹q “ H.

Definition 11.4. Given a participant A P P, a partition V of a subset of

vertices of H A-reflects a partition V 1 of subsets of vertices of H1 if there is a

bijection f : V Ñ V 1 such that the following conditions hold:

• for each E P V both E and fpEq are A-uniform and act
`
E
˘ “ act

`
fpEq˘

• @E2 P V, e2 P E2, xe1, e2y P pH : sbj
`
e1
˘ “ A ùñ `DE1 P V : e1 P E1 ^

@e P E2, e1 P e1 : xe, e1y R pH ^ @e1
2 P fpE2qDe1

1 P fpE1q : xe1
1, e

1
2y P xH1˘



82

H H1
The relations H and H1 have to be
thought of as specifying the causal re-
lations of two branches of a distributed
choice. All the vertexes of E P V and of
fpEq have the same subject.
The bijection f preserves both actions
and causality relation in all the sets E P
V. So, any predecessor e1 in H of a
vertex e2 P E2 with the same subject of
e2 must be in a set E1 of V. Moreover,
the f-images of E1 and E2 must reflect
such order in H1. Such condition must
also hold for the inverse of f.

@E2 P V fpE2q

fpE1qDE1 P V
e1 De1

1

e2 @e1
2

f

Fig. 10: Reflectivity

• @E1
2 P V 1, e1

2 P E1
2, xe1

1, e
1
2y P xH1 : sbj

`
e1
1

˘ “ A ùñ `DE1
1 P

V 1 : e1
1 P E1

1 ^ @e P E1
2, e

1 P e1
1 : xe, e1y R xH1 ^ @e2 P f -1pE1

2qDe1 P
f -1pE1

1q : xe1, e2y P pH
˘
.

An intuitive explanation of this notion is given in Fig. 10. Reflectivity allows

us to generalise the notions of active and passive participants, and therefore it

makes well-branchedness more general.

For a participant A P P, two g-choreography G,G1 P G, a partition V of a

subset of vertices of rrGss, and a partition V 1 of a subset of vertices of rrG1ss we

say that pE,E1q is the A-branching pair of G ` G1 with respect to V and V 1 if

V 1 A-reflects V and

$
’’’’’&
’’’’’%

E “ Ť
cs
`
fst prrGss@Aq˘ z ŤV

and

E1 “ Ť
cs
`
fst prrG1ss@Aq˘ z ŤV 1

we write pE1, E2q “ divV,V 1
A pG,G1q when E A-reflects E1 with respect to V

and V 1 (otherwise divV,V 1
A pG,G1q is undefined). Intuitively, the behaviour of A

in the two branches G and G1 can be the same up to the point of branching

divV,V 1
A pG,G1q. The notion of A-reflectivity is used to identify such common

behaviour (i.e., all events in E and E1) and to ignore it when checking the

behaviour of A in the branches. In fact, by taking the A-only parts of these

hypergraphs and selecting their first interactions (that is the A-branching pair
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E, E1) we identify when the behaviour of A in G starts to be different with

respect to behaviour in G1.

11.3.1 Active and passive roles

The intersection of sets of events E [ E1 disregards control points: E [ E1 “
tact

`
e
˘
: e P Eu X tact

`
e1˘ : e1 P E1u. A participant A P P is passive in G ` G1

with respect to V and V 1 if, assuming pE,E1q “ divV,V 1
A pG,G1q, the following

hold

E [ te P G1 ˇ̌ Ee1 P E1 : e ďG1 e1u “ H E Y E1 Ď E?
E1 [ te P G

ˇ̌ Ee1 P E : e ďG e1u “ H E “ H ðñ E1 “ H

Thus, the behaviour of A in G and G1 must be the same up to a point where

she receives either of two different messages, each one identifying which branch

had been selected. Clearly, A cannot perform outputs at the points of commu-

nicating system. We say that a participant A is passive in G ` G1 if such E and

E1 exist.

A participant A P P is active in G ` G1 with respect to V and V 1 if, assuming

pE,E1q “ divV,V 1
A pG,G1q,

E Y E1 Ď E ! E [ E1 “ H E ‰ H E1 ‰ H

Thus, the behaviour of A in G and G1 must be the same up to the point where

she informs the other participants, by sending different messages, which branch

she choses. We say that a participant A is active in G ` G1 if such E and E1

exist. Interestingly, if one takes the empty reflection in the determination of

active and passive roles, the definition above yield exactly the same notion of

Definition 11.1.
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11.3.2 Some examples

When it exists, the active participant is the selector of the choice. Unlike the

one in Definition 11.1, the more general notion well-branchedness does not

require the selector to exist. For instance, the choreography

AÝÑB : m AÝÑB : m

`

`
´

“ `
AÝÑB : m ` AÝÑB : m

˘

is well-branched even if it has no active participant. The simple notion of Defi-

nition 11.1 does not hold also for the following example:

AÝÑB : m;BÝÑC : x ` A jÝÑB : m;BÝÑC : y

here the problem is that the two branches have the same first interactions,

so the communication action of say A in one branch occurs also in the other

branch. Instead, using reflection on the L A B!m,A B?m M and L A B!m,A B?m M,
our framework establishes that B is active, and both A and C are passive, making

the choicewell-branched.



Part III

...To Local Specifications





Chapter 4

Local views as automata

...act local!

This chapter reviews the automata model that we adopt to specify local views.

We illustrate the precise relation between global specifications and local ones

using the notion of projection (already informally discussed in Part II). This

model is very close to some programming languages such as Erlang and the

actor model of Scala.

12 An intuition of projections

As discussed in § 1, an appealing aspect of choreography is the possibility of

obtaining local viewpoints from global ones. This is often achieved by projecting

the global viewpoint.

An intuitive description of projections can be given using sequence diagrams.

For this we consider the diagram in Fig. 11 (the actual choreography described

in such diagram is immaterial for our purposes). The diagram in Fig. 11 can be

“projected onto each one of the three participants” WebSite, WareHouse, and

Bank so to obtain a specification of each of them. We consider projection as

the operation of focusing on a single role of the choreography at the time. This

is achieved by “blurring” any other participant. For instance, the projection of

87
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Fig. 11: A sequence diagram borrowed from http://msdn.microsoft.com/
en-us/library/dd465153.aspx

the diagram with respect to WebSite could be thought of as being represented

by the following figure

while the one of the WareHouse by the following one
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The above idea is rather informal and the projections do not correspond to

any meaningful model of specification. Instead, a projection operation can be

precisely defined on global graphs as we explain in the following.

12.1 Communicating Machines

The model of communicating finite-state machines (CFSMs) was proposed

in [6] as a convenient setting to analyse communication protocols. Informally,

this model uses finite state automata (aka machines) to represent the behaviour

of distributed participants that interact exchanging messages. When a machine

sends a message to another machine, the message is “stored” into a queue

accessible to the receiver. Dually, a machine willing to input a message visits

its queues and consumes the message (if any).

In order to adopt CFMSs to represent local viewpoints of choreographies we

fix some sets, notations, and terminology.

The set of labelss (ranged over by ℓ) is

L :“ ␣
ε
( Y C ˆ ␣

!
(ˆM Y C ˆ ␣

?
(ˆM (22)
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Intuitively, an element ℓ P L denotes either an internal computation (ε) or a

communication action; more precisely, ℓ “ pA B, !,mq denotes an output on

channel A B of the symbol m PM and ℓ “ pA B, ?,mq denotes an input from

channel A B of the symbol m PM. Hereafter, we adopt the (more evocative)

notation A B!m instead of pA B, !,mq and likewise we use A B?m instead of

pA B, ?,mq. Elements in C ˆ ␣
!
( ˆM are called sending actions and those in

C ˆ ␣
?
(ˆM are called receiving actions.

Remark 17 Elements of L are basically either the actions of communication

events in E? Y E ! or internal computations ε.

Given a set X, one can form words on X, namely sequences x1 ¨ ¨ ¨ xn of

elements of X; the set of words on X is customarily denoted as X‹. We consider

two types of words, the words onM and those on L; for this, letM˚, ranged

over by w , (resp. L˚, ranged over by φ) denote the set of finite words on M
(resp. L) with ε a distinguished symbol (not in M or in L) representing the

empty word. Write |φ| for the length of a word φ, and φ ¨ φ1 or φφ1 for the

concatenation of words φ and φ1 (we overload these notations for words over

M).

A communicating finite-state machine is a finite-state automaton whose

transitions are labelled by actions.

Definition 12.1 (CFSM). An A-communicating finite-state machine is a fi-

nite transition system given by a 4-tuple M “ pQ, q0,M,Ñq where

• Q is a finite set of states,

• q0 P Q is the initial state, and

• Ñ Ď Q ˆ L ˆ Q is a set of transitions such that A “ sbj
`
ℓ
˘

for each

pq, ℓ, q1q PÑ; we write q ℓÝÑ q1 for pq, ℓ, q1q PÑ (and q ÝÑ q1 when ℓ is

immaterial).

Example 12.1. The following machine
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q0

initial & sending

q1 q2

qe final

AB!
m AB!n

AB!n AB!
m

specifies the behaviour of the first participant of the choreography in Exam-

ple 9.1 (cf. page 55). ˛

Exercise 22 Give the machine of participant B of the choreography in

Example 9.1 (on page 55).

Given a CFSM M “ pQ, q0,M,Ñq, it is also convenient to establish some

terminology: a state q P Q is a

• final state if it has no outgoing transition

• sending state if all its outgoing transitions are labelled with sending actions

• receiving state if all its outgoing transitions are receiving actions

• mixed state otherwise.

Exercise 23 List all the final, sending, receiving, and mixed stated of

the machine in Example 12.1 (on page 90).

We will need to consider the following special class of CFSMs.

Definition 12.2 (Deterministic CFSMs). A communicating finite-state ma-

chine M “ pQ, q0,M,Ñq is deterministic iff it has no transitions labelled

with ε for all states q P Q and all actions ℓ P L

if q ℓÝÑ q1 and q ℓÝÑ q2 then q1 “ q2

Example 12.2. It is a simple observation that the CFSM in Example 12.1 is

deterministic according to Definition 12.2. ˛
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Remark 18 Sometimes, a CFSM is considered deterministic when q S R!mÝÝÝÑ q1

and q S R!m1ÝÝÝÝÑ q2 then m “ m1 and q1 “ q2. Here, we follow a different definition

in order to represent branching constructs.

By putting together CFSMs we obtain communicating systems:

Definition 12.3 (Systems). Given an A-CFSM MA “ pQA, q0A,M,ÑAq for

each A P P, the tuple S :“ pMAqAPP is a communicating system. A config-

uration of S is a pair s “ xq ; wy where q “ pqAqAPP with qA P QA and

where w “ pwA BqA BPC with wA B PM˚; component q is the control state and

qA P QA is the local state of machine MA. The initial configuration of S is

s0 “ xq0 ; fy with q0 “ pq0AqAPP and f a map assigning to each channel the

empty word ε (namely, fpA Bq “ ε for all A B P C).

Given a tuple xty “ pti qiPI over an index set I, trjs “ tj for each j P I;
for instance, for a system S “ pMAqAPP and B P P, SrBs “ MB. Hereafter,

for each participant A P P, we fix a machine MA “ pQA, q0A,M,ÑAq and let

S “ pMAqAPP be the corresponding communicating system.

Definition 12.4 (Reachable states and configurations). Given a system S,

a configuration s 1 “ xq1 ; w1y of S is reachable from another configuration

s “ xq ; wy of S if, and only if, either of the following conditions holds:

1. qrSs S R!mÝÝÝÑS q1rSs is a transition in SrSs

a. q1rAs “ qrAs for all A ‰ S, and

b. w1rS Rs “ wrS Rs ¨m and w1rA Bs “ wrA Bs for all A B ‰ S R; or

2. qrRs S R?mÝÝÝÑR q1rRs is a transition in SrRs

a. q1rAs “ qrAs for all A ‰ R, and

b. wrS Rs “ m ¨w1rS Rs and w1rA Bs “ wrA Bs for all A B ‰ S R.

3. qrBs εÝÑB q1rBs is a transition in SrBs

a. q1rAs “ qrAs for all A ‰ B, and
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b. w “ w1.

Write s ℓùñs 1 when s reaches s 1 with an action ℓ.

Condition (1b) in Definition 12.4 puts m on channel S R, while (2b) gets m

from channel S R. Finally, condition (3b) establishes that internal computations

do not modify any communication buffer.

Definition 12.5 (Reachability). Let s1
ℓ1¨¨¨ℓmùùùñsm`1 hold iff, for some config-

urations s2, . . . , sm we have that s1
ℓ1ùñs2 ¨ ¨ ¨ sm ℓmùñsm`1. The set of reachable

configurations of S from s is

RCpS, sq “ ␣
s
ˇ̌
there are ℓ1, . . . , ℓm and a configuration s 1 of S s.t. s ℓ1¨¨¨ℓmùùùñs 1(

The set of reachable configurations of S is RCpSq “ RCpS, s0q where s0 is the

initial configuration of S.

Exercise 24 Let S be the communicating system consisting of the fol-

lowing CFSM

A B

q0

q1 q2

q3

A B!1
A B!tt

A B!2

A B!ff A B!”bye”

q0

q1 q2

q3

A B?1
A B?tt

A B?2

A B?ff A B?”bye”

B A!ff

Show that a configuration of the form xpA1,B2q ; wy cannot be in

RC2pSq.
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Exercise 25 The communicating system of Exercise 24 (on page 93)

has an infinite number of reachable configurations. Would the addition

of transition q3
B A?ffÝÝÝÑ q3 make the reachability set of the new system

finite? Justify your answer.

We can now precisely define well-behaved (or safe) communicating system.

Definition 12.6 (Well-behaved (or safe) systems). Fix a communicating

system S and let s “ xq ; wy be one of its configurations. We say that s

is a

deadlock configuration if wrA Bs “ ε for all A B P C, qrAs is a receiving state

or final statefor every A P P, and there is R P P such that qrRs S R?mÝÝÝÑR q

for a state q, i.e., all the buffers are empty, there is at least one machine

waiting for a message, and all the other machines are either in a final state

or receiving state;

orphan-message configuration if there is a A B P C such that wrA Bs ‰ ε
and for all configurations xq1 ; w1y reachable in S from xq ; wy, w1rA Bs
is a prefix of wrA Bs, i.e., there is at least a non-empty buffer whose top

message is never consumed;

unspecified-reception configuration if there exists R P P such that qrRs is a

receiving state, there is S R P C such that |wrS Rs| ą 0, and qrRs S R?mÝÝÝÑR

q1rRs implies that wrS Rs R mM˚, i.e., qrRs is prevented from receiving any

message from any of its buffers and there is at least a non-empty buffer of

R.

Communicating system S is well-behaved if for each of its configurations

s P RCpSq, s is neither a deadlock, nor an orphan-message, nor an unspecified-

reception configuration.

The definition of deadlock and unspecified-reception configuration are borrowed

from [8, Def. 12].
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12.2 Projecting g-choreographies to CFSM

Given two CFSMsM “ pQ, q0,Ñq andM 1 “ pQ1, q0,Ñ1q, writeM\M 1 for the

machine pQ Y Q1, q0,Ñ Y Ñ1q; observe that M and M 1 have the same initial

state. Also, M XM 1 denotes Q X Q1. The product of M and M 1 is defined as

usual as M bM 1 “ pQ ˆQ1, pq0, q1
0q,Ñ2q where

`pq1, q1
1q, e, pq2, q1

2q
˘ PÑ2 if,

and only if,

`pq1, e, q2q PÑ and q1
1 “ q1

2

˘
or

`pq1
1, e, q

1
2q PÑ1 and q1 “ q2

˘

We also let ∆pMq denote the CFSM obtained by determinising (using e.g.,

the classical algorithms [20]) M when interpreting it as finite automata on the

alphabet L.

In the following, we let q0, qe , qe 1, q0, q0, qe , and qe range over a fixed set

that we use as set18 of states of CFSMs projected from a graph. Let G be a

g-choreography, the function G Óq0,qeA yields the projection (in the form of a

CFSMs) of the choreography over the participant A using q0 and qe as initial

and sink states respectively.

Definition 12.7 (Projection). The projection of a g-choreography G P G on

a participant A P P and states q0 ‰ qe is the CFSMs defined as follows:
18 Any infinite set can be chosen to represent states.
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G Óq0,qeA “

$
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’%

tq0 , qe u if G “ BÝÑC : m, A ‰ B, and A ‰ C

q0 qe
A B!m if G “ AÝÑB : m

q0 qe
B A?m if G “ BÝÑA : m

G1 Óq0,qe 1
A \G2 Óqe 1,qe

A if G “ G1;G2, q0 ‰ qe 1 ‰ qe , and

G1 Óq0,qe 1
A XG2 Óqe 1,qe

A “ tqe 1u
G1 Óq0,qeA \G2 Óq0,qeA if G “ G1 ` G2 and

G1 Óq0,qeA XG2 Óq0,qeA “ tq0, qeu
G1 Óq0,qeA ˆG2 Óq0,qeA if G “ G1 | G2

G1 Óq0,qA \Gls \ Ges if G “ ˚G1@A

G1 Óq0,qA \Glr \ Ger if G “ ˚G1@B with A ‰ B

and B participant of G1

where in the last two cases we define

Gls “
`
AÝÑB1 : loop_q0 | ¨ ¨ ¨ | AÝÑBh : loop_q0

˘ Óq,q0A

Ges “
`
AÝÑB1 : exit_qe | ¨ ¨ ¨ | AÝÑBh : exit_qe

˘ Óq,qeA

Glr “
q q0

A B?loop_q0 and Ger “
q qe

A B?exit_qe

with tB1, . . . ,Bhu the set of participants of G1 different from A and q being

the only state shared between Gls, Ges, and G1 Óq0,qA \Gls \ Ges (resp. Glr,

Ger, and G1 Óq0,qA \Glr \ Ger). Moreover, messages loop_q0 and exit_qe do

not occur elsewhere in the g-choreography.

We now give an intuition of the different cases of Definition 12.7. First note

that the map _ Óq0,qe_ always returns a CFSMs with a unique initial state q0

and final state qe in all but the first case where states q0 and qe collapse into a

set. This invariant of the construction allows to compose machines according

to the operations of the g-choreographies.
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To project an interaction with respect to a participant A we have to consider

three possibilities: (i) that A is not involved in the interaction, (i i) that A is

the sender of the interaction, and (i i i) that A is the receiver of the interaction.

Possibility (i) is dealt with in the first case: the resulting machine has a single

state (made by “collapsing” q0 and qe in a set) and no transitions (as expected).

Possibility (i i) is considered in the second case: obviously, the resulting machine

has a single transition labelled with the output action. Possibility (i i) is consid-

ered in the third case and it is similar to the previous one, the only difference

being that the label is now the input action.

Example 12.3. The projections of AÝÑB : m with respect A and B and the states

and are

A B!m and A B?m

respectively. ˛

The fourth case of Definition 12.7 yields the machine for the sequential

composition of two g-choreographies G1 and G2. The intuition is very simple

and can be explained following this graphical representation:

q0

machine of G1
qe 1

machine of G2
qe

In words, first one builds the CFSMs for G1 and G2 so that the final state

of the former is used as the initial state of latter (this is represented by the

dotted lines connected to qe 1). In this way, whenever the transitions of the first

machine reach the final state, the transitions of the second machine can start,

so realising the (expected) sequential behaviour.

The fifth case, for the branch of G1 and G2 is also simple: provided that

the respective machines only share initial and final state. Consider the following

graphical representation:



98

q0

machine of G1 machine of G2

qe

Namely, the resulting machine just follows either the executions of the machine

of G1 or the ones of the machine of G2 just because the initial state is in

common.

The sixth case takes care of the machine of parallel composition. This is

obtained pretty straightforwardly by taking the product of the two machines of

G1 and G2.

Exercise 26 Give the machines G Ó,A and G Ó,B for the g-choreography

G “ AÝÑB : m | AÝÑB : m1.

Exercise 27 Let G be the g-choreography of Exercise 26 (on page 98)

and C be a participant different from A and B. Give the CFSM G Óp,q,p,q
C .

Finally, the last two cases deal with iteration. We have to distinguish two

cases depending on whether we project with respect to the participant that

controls the iteration. If A controls the iteration then the resulting machine

simply connects the machine of the body G1 of the iteration with a machine

that is the projection of a “looping” machine Gls or of an exiting one Ges.

The former machine sends to any other participant in the body the message of

looping back to the initial state, instead Ges sends the other participants the

message to move to the final state qe . Graphically:
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q0

machine of G1

q

machine of Gls

AÝÑBi : loop_q0

machine of Ges

AÝÑBi : exit_qe

qe

The last case considers when the controller of the loop is a participant B ‰ A

and it is similar to the previous one.
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Appendix A

Refreshing basic notation

A set is a collection of elements. Some special sets are given a name, for instance

Z is the set of integers and H is the empty set (that is the set that contains no

elements). A fundamental notion is the membership relation between individuals

and sets which states when an element belongs to a set; we write x P X to

express that the individual x is a member of the set X. For example ´1 P Z
means that´1 is a member of the set Z, namely´1 is an integer). The negation

of P is R (for example ´1.0 R Z means that ´1.0 is not an integer).

Another important notion (and natural) is set inclusion: X is included in Y ,

written X Ď Y if each element of X is also an element of Y (which could be

written more succinctly as if x P X then x P Y ).

Given a set, it is often necessary to consider the set of all its subsets. For

instance, one could be interested in all the possible subgroups of a given face-

book group. The set of subsets (or parts) of a given set X is often denoted as

2X and it is defined as

2X “ ␣
Y
ˇ̌
Y Ď X(

This notation is evocative of the fact that on finite sets the following fact holds:

If X if a finite number set with n elements then there are 2n sets in 2X .
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Fixed a set U and two subsets X Ď U and Y Ď U, it is pretty straightforward

to define the usual operations on sets as follows:

X X Y “ tx P U ˇ̌
x P X ^ x P Y u (A.1)

X X Y “ tx P U ˇ̌
x P X _ x P Y u (A.2)

XzY “ tpx P U ˇ̌
x P X ^ x R Y u (A.3)

that respectively define intersection, union, and difference.

A set can be specified either by enumerating its elements or by defining the

characteristic property that each element of the set has. In the first case we

just put in curly brackets the comma-separated list of elements while in the

second case we write

tx P Y ˇ̌ ¨ ¨ ¨ u

that reads the set of elements x in (the set) Y such that ¨ ¨ ¨ . For

instance, the set V of integers between ´1 and 2 can be written

t´1, 0, 1, 2u (A.4)

or

tx P Z ˇ̌ ´ 1 ď x ď 2u (A.5)

(Sometimes, which set x ranges over is omitted because clear from the context;

so the example above could be written as tx P Z ˇ̌ ´ 1 ď x ď 2u provided that

it is understood that x is an integer.) Recall that in (A.4) it is immaterial that

elements are listed more than once or that they are listed in a particular order.

This implies that
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t´1, 0, 1, 2u and t0,´1, 1, 0, 2u

denote the same set. More generally, when are two sets equal? The answer

to this question is simple: sets X and Y are equal, written X “ Y , when each

element of X is also and element of Y , and vice versa. Note that not necessarily

X “ Y if X is included in Y ; for example the set of even numbers is included in

Z but there are integer numbers that are not even. In fact, it is easy to verify

that equality of sets is defined in terms of a “double” inclusion:

X “ Y if X Ď Y and, vice versa, Y Ď X.

Given two formulae, say F , F1, and F2, it is useful to adopt symbols to

represent logical connectives such as ’not’, ’and’, ’or’, and ’implies’ that are

respectively written ␣, ^, _, and ùñ . For example,

x ą 0 ^ x mod 2 “ 0 ^ x P Z

states that x is a positive even integer. Implication basically a conditional state-

ment, for instance

px P Z^ x ą 0q ùñ p´x ă 0^ x P Zq (A.6)

states that if x is strictly positive its negation is strictly negative (figure out why

the paranthesis are important). In the previous implication, the formula x “ 0
is called hypothesis (or antecedent and the formula x ‰ 1 is called thesis (or

consequent). It sometimes happen that both F1 ùñ F2 and F2 ùñ F1 hold;

in this case F1 and F2 are said (logically) equivalent, written F1 ðñ F2.

Formulae like (A.6) above are not “really meaningful” until we specify what

is the scope of x . For instance, can we establish if

x “ 2x ^ x P Z
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is true or false? The answer is ’no’ because we do not know how variable x is

quantified. A variable can be quantified either universally of existentially :

• a universal quantification is written @x P Y : ¨ ¨ ¨
• an existential quantification is written Dx P Y : ¨ ¨ ¨

The former reads for all element x of Y , ¨ ¨ ¨ and the latter reads there

is an element x in Y , ¨ ¨ ¨ ; example

@x P Z : Dy P Z : y “ ´x

states that each integer has an opposite. Conventionally, a variable is assumed

universally quantified when quantifiers are missing.

What do the following formulae state?

X Ď Y ðñ @x P X : x P Y
X “ Y ðñ X Ď Y ^ Y Ď X

Another useful construction on sets is the so called cartesian product (or just

product) of X and Y , denoted as X ˆ Y and made of all the pairs px, yq such

that x P X and y P Y . A relation on X and Y is a subset of the set X ˆ Y . For

example, if S is the set of students and M is the set of modules, the relation

containing a pair ps,mq only if student s is registered on module m would be a

subset of S ˆM.

A special category of relations are functions: given R Ď X ˆ Y , we say that

R is a function from X to Y (written R : X Ñ Y ), if the following hold:

@x P X : @y , y 1 P Y : px, yq P R ^ px, yq P R1 ùñ y “ y 1

which states that for each element x of Y there is a unique element y of Y such

that x and y are in the relation R. In such case, we say that X is the domain of

R and Y is the codomain of R. For instance, the relation o “ tpx, yq P Z ˇ̌
x “
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´yu is the function that map each integer to its opposite. If R : X Ñ Y and

x P X then Rpxq denotes the (unique) element that R relates to x ; we say that

R assigns x (the value) Rpxq. For instance, op3q is the number ´3. In general,

functions may assign the same value to more elements of their domain. For

instance, consider the function nameOf : Persons Ñ Strings that assign the

string of the name of a person to that person. There are many elements in the

domain who have the same value (that is there are may people with the same

name). The functions for which this does not happen are called injective, more

formally, we say that R : X Ñ Y is an injective function when

@x, x 1 P X : : Rpxq “ Rpx 1q ùñ x “ x 1

Another class of interesting functions is the one characterised by the following

property:

@y P Y : Dx P X : Rpxq “ y

Such property establishes that for all elements y of the codomain there is an

element of the domain whose value through R is y . For instance, the function

ownerOf : carOwner Ñ soldCars is surjective. When a function is both injective

and surjective we call it bijective. Such functions establish that each element of

the domain has a unique related element in the codomain, and vice versa. This

means that their inverse is also a function, where the inverse R´1 of a relation

R is defined as:

R´1 “ ␣py , xq ˇ̌ px, yq P R(

An example of bijiective function is the function o returning the opposite of

an integer (defined above). Bijective function are important because the define

one-to-one relations among sets.
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