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This note presents a proof of the famous Knaster-Tarski theorem [1]. T have
opted for clarity over brevity in the proof.

Complete Lattice A complete lattice is a partially ordered set (L, <) in which
every subset of L has a greatest lower bound (glb) and a least upper bound (lub)
in L. The lub of the empty set is denoted by | and glb of the empty set is T.
It follows that a complete lattice is never empty.

Monotonic Function over a Lattice Let f be a monotonic function over
a lattice (L, <), e, z <y = f(z) < f(y), for any z and y in L. Point z is
a (1) prefized point if f(x) < x, (2) postfized point if z < f(z), and (3) fized
point if f(z) = z. Clearly, a fixed point is both a prefixed and a postfixed point.

Theorem [Knaster-Tarski|: For any complete lattice (L, <),
1. The least fixed and the prefixed points of f exist, and they are identical.

2. The greatest fixed and the postfixed points of f exist, and they are iden-
tical.

3. The fixed points form a complete lattice.

Proof of (1) Let pre be the set of prefixed points, and p the glb of pre.
Existence of p is guaranteed since L is a complete lattice. We show that p is
both the least prefixed point and the least fixed point.

e p is the least prefixed point: For any prefixed point x,

p<xz

= {f is monotonic}
f(p) < f(x)

= {x is a prefixed point; so, f(z) < x}
flp) <

= {thus f(p) is a lower bound of pre. And, p is the glb of pre.}
flo)<p

= {thus, p is a prefixed point; and also a lower bound of pre.}
p is the least prefixed point



e p is the least fixed point: Since p is a prefixed point,

flp) <p
= {f is monotonic}

f(f(p) < f(p)
= {from above, f(p) is a prefixed point; and p is a lower bound over pre.}
p< f(p)
= {pis a prefixed point; so f(p) < p}
p=f(p)
= { pis a fixed point. Also, every fixed point is a prefixed point, and
p is a lower bound over all prefixed points.
So, p is a lower bound over all fixed points}
p is the least fixed point

Set of prefixed points

Greatest fixed point

= greatest postfixed poin
= lub of postfixed points

Complete Lattice of fixed points

Least fixed point

= least prefixed point
= glb of prefixed points
Set of postfixed points

Complete Lattice

Figure 1: Pictorial Depiction of the Knaster-Tarski Theorem

Proof of (2) proof of (2) is dual of proof of (1), using lub for glb and postfixed
points for prefixed points.



Proof of (3), The fixed points form a complete lattice: Let W be a sub-
set of the fixed points. We show the existence of the supremum of W. Dually,
W has an infimum, establishing that the fixed points form a complete lattice.
Observe that the existence of least and greatest fixed points does not guarantee
that W has a lub and glb.!

Let g = lub(W) and W= {w | ¢ <w}. Then q € W and ¢ = glb(W).

31 Wisa complete lattice: W being a subset of a complete lattice, has a
lub and glb We have q= glb(W) and ¢ S W S0, glb(W) eW. Further,

since g € W, ¢ < lub(W ), therefore, lub(W ) € W from the definition of
w.

3.2 f maps W to W: For any element w of W and x of W

w<qgand g <zx

= {f monotonic: so f(w) < f(q) < f(z)}
f(w) < f(x)

= {W is a set of fixed points; so, f(w) = w}
w < f(x)

= {w is an arbitrary element of W}
lub(W) < f(x)

= {g=lub(W)}
q<[flx)

= {definition of W}
flx) e W

3.3 From (3.1 and 3.2), f is a mappmg over the complete lattice W So, it

has a least fixed point ¢ in W. Since q is the least element of W q<q.
Thus, ¢ is the supremum of .
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LA lattice with a top and a bottom element is not necessarily a complete lattice. Here is a
counterexample due to Vladimir Lifschitz. Let R be the set of rational numbers in the closed
interval [0,1]; clearly R is a lattice under the standard order with a top and a bottom. For
any irrational number x between 0 and 1 let I be the set of numbers in R that are less than
x. Then I, does not have a lub in R.



