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1 Introduction

In programming languages, types have been introduced as a sort of partial specification of program
“behaviours”. Coming from type theory, a branch of mathematical logic, types and type systems are
used to declare the domain of program variables and the range of functions and procedures, defining
constraints that can be effectively checked at compile-time. This is particularly evident in the case of
functional programming languages like Haskell [1], whose type system can derive the type Int->Bool
for, say, the program odd while checking that this is consistent with the actual code of the program. This
typing serves two goals: first, any application of odd to a string, boolean, or any argument that does not
qualify as an integer will not type check, as well as any use of, say, odd(7) in a context expecting a value
that is not a boolean will be rejected by the system after the static analysis of the code, so preventing
run-time errors. Second, the semantic piece of information that types convey is useful as a structuring
principle for the programmer, helping, e.g. in the design of complex classes in object-oriented languages.

Type systems have been primarily used for sequential programs, whose behaviour can be described
in functional terms as input-output relations. In this setting, types are computational invariants of the
processes that compute function values. Exploiting type systems in the case of concurrent programs is
more challenging. This is mainly because the semantics of the latter are essentially about the interaction
among communicating processes, which are non-functional and can hardly be captured by the types of
the exchanged messages only.

A crucial step toward using types to reason about concurrent programs has been the development of
Milner’s m-calculus [12,[13]. In the m-calculus, channels are themselves messages that can be passed
around so that types attached to channels can be more expressive. Indeed, type systems inspired by typed
dialects of the m-calculus not only enforce error-freeness properties similar to those mentioned above in
the sequential case, but also may express (to a certain extent) properties like deadlock-freeness (the
concurrent program cannot get stuck) and lock-freedom (no component of the program can get stuck).

Among such developments, a remarkable one was the introduction of the notion of Session Type
[9]. A session type can be looked at as the description of an “interaction protocol” from the point of
view of the single participants interacting on a two-sided communication channel. More precisely, it is
a structured set of constraints that a process has to respect when interacting with a partner through its
endpoint of a channel. Let us assume that we have a client connected to a server via a channel c. If the
server can be used, say, to check the equality of two integers, the following type for the client’s endpoint
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¢y

of ¢ describes the correct sequence of the client’s actions (where ‘?’ and ‘!’ stand, respectively, for the
input and output action), and are followed by the sort of communicated value.

!Int.!Int.?Bool

Dually, the server has to behave on its endpoint of ¢ as described by

7Int.?Int. !Bool

Roughly, type systems based on session types do ensure () that a channel is used exactly by two partic-
ipants; (b) that the types associated to the two endpoints of the channel are “dual”; (c) that the partici-
pants’ interactions on their respective sides of the channel respect what is prescribed by their type. As
happens in general with types, session types provide only a partial description of the concurrent compu-
tation carried on by the client and the server, but it is nonetheless a remarkable piece of information in
case there was an automatic or semi-automatic way to ensure that the exchange of data between them
does conform with what the types describe. It is worth recalling that session types also manage to de-
scribe branching behaviours, similarly to what we shall see later on. The “binary” specification is used
to distinguish them from their multiparty version: our main topic here, which we now begin to address
in the sequel to this introduction.

As hinted above, in binary session types, an interaction protocol between two participants is de-
scribed in terms of the communication behaviours of the single participants on their respective endpoints
of the channel connecting them. The “coherence” of the two separate behaviours concerning the implic-
itly assumed overall protocol, is guaranteed by the notion of duality. It is natural, however, to try and
provide also explicit descriptions of protocols from a global point of view, in contrast with the local ones
previously considered. The global protocol for our simple client-server example, by assuming p to be
the name of the client and q that of the server, could be represented by the expression

p— q:Int.p — q:Int.p — q:Bool

This linear sequence of interactions is sufficient in case the server q just computes the equality predicate
on integers. What, however, if q were able to compute both the equality predicate and the factorial
function? In case p wished to safely use both the above q’s features, the interaction protocol should
contain a branch, depending on p’s needs. How can p communicate to q its intention to pursue one
branch of the protocol rather than the other one? To this aim, one can introduce a particular sort of data
— whose element we call “labels” — as a tool allowing selection among protocol branches. The protocol
driving the interactions between p and q is now

_ equal : p — q:Int.p — q: Int.q — p:Bool.End
P fJact :p—q:Int.q — p:Int.End

In actual scenarios, concurrent systems can have more than two participants. Moreover, it is reason-
able to expect a process to have access to more than one channel, to interact with many other processes.
Even if type systems with binary session types can control and provide guarantees on what happens on
the single channels in isolation, it is not possible, however, to control the overall behaviour of several
interacting processes. The actions of a process can be interwoven among the several sessions repre-
sented by private channels, making it hard, if not impossible, to predict the overall behaviour of a system
from what happens in a single session and its local channels. MultiParty Session Types [10l], MPST,
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have been introduced to describe and control the communication behaviour of concurrent systems where
several participants may intervene.

Type systems with multiparty session types are essentially particular choreographic formalisms.
These sorts of formalisms are characterised by the coexistence of two different views of concurrent
systems: the global and the local views. The former is a description of the overall behaviour of the
system interconnecting several participants, whereas the latter is the description of the behaviours of the
single participants. MPST formalisms use particular global views called global types, whereas the local
views are “two-layered”: a layer of processes and a layer of local types. The latter can be looked at as
an abstract description of the former. In contrast, in the present chapter, we treat a particular multiparty-
session formalism, dubbed Simple MultiParty Sessions [4} 2], SMPS. In such a formalism the local
view is “single-layered” and the relationship between the global and the local views is approached from
a somewhat orthogonal perspective than in MPST. We also propose a simplified version of standard
MPST, enabling us to clarify their relationship with SMPS. Many notions of concurrency theory, when
needed, are introduced in a simplified way to make the discussion as self-contained as possible.

2 Global Views as Global Types

Unlike binary session types, global types describe interaction protocols from an outer perspective. More-
over, such protocols take into account an arbitrary, though finite, number of participants. As a simple
example, we now consider a simplified version of the classical Travel Agency protocol.

Travel Agency

The system consists of three participants: c, the customer; a, the travel agency; and s, the
travel service. The customer sends to the agency a string specifying where she would like
to go on vacation. The agency then replies with a number (the price of the trip), accord-
ing to which the client decides either to accept the offer or to reject it. In the first case the
client sends a string specifying the date of his vacation to the service affiliated to the agency,
whereas in the second case she communicates a number representing the fact that she did
not accept the agency’s offer and at the same time quantifying the quality of the service
notwithstanding the offer refusal.

In the style of the examples in the Introduction, this protocol is described by the following expression:

accept.c — s:String. End

c — a:String.a — c:Int.c — a .
& { reject.c — s:Int.End

To obtain a more intelligible version of a protocol, we may decide not to distinguish among sequential
and branching flow of control and use labels also when there are no branches:

accept.c — s:date(String).End

c — areq(String).a — ciprice(Int).c — a { reject.c — sinodeal (Tnt).End

On the other hand, if we focus on the structure of the interaction, we may disregard the (ground) types
of the labels and keep just the latter, which we shall refer to as messages:

accept.c—s:date.End
reject.c—s:nodeal .End

ey

c—raireq.a—C:price.c—»a {
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Abstracting from the message types strengthens the uniformity we intend to pursue, since now there is
no difference between labels like accept and reject, used for denoting different branches in a protocol
and labels like price, used for naming data items.

It is worth remarking that usually, the representation of a protocol is independent of the synchro-
nization model (synchronous or asynchronous) of the communications among the participants related to
the protocol. We shall briefly discuss synchronous and asynchronous communication models later on in
Section 31

Infinite protocols It is natural to expect concurrent systems to have unbounded behaviours of poten-
tially infinite length. In the above example, c might ask for the price of another destination in case
the price is not accepted. Hence a should be able to answer an unpredictable number of c’s requests.
As in actual client/server systems, ¢ should also explicitly communicate to a her intention to quit the
interaction. The protocol should hence look as follows:

accept.c—s:date.End
accept.c—s:date.End
c—aireq.a—ciprice.c—»a | reject.c—aireq.a—C:price.c—a{ reject.c—a:req...etc.
quit.c—s:nodeal. End
quit.c—s:nodeal. End

This protocol looks like a tree with an infinite branch (the one representing the case of ¢ keeping on
infinitely rejecting offers and making new requests). Of course infinite tree{] makes perfect sense from
a mathematical point of view. In actual implementations of concurrent systems what we can handle,
however, are only finite representations of them. Such finite representations can easily be devised in
cases such as the one above, since the tree is regular. A regular tree is a possibly infinite tree with only a
finite number of subtrees. There is a plethora of formalisms for providing finite representations of regular
trees. Our example can be represented as a recursive expression, like

accept.c—s:date.End
Ht.c—areq.a—C:price.c—a{ reject.t
quit.c—s:nodeal. End

or as the solution of the following recursive equation,

accept.c—s:date.End
G = c—aireq.a—cprice.c—a{ reject. G
quit.c—s:nodeal.End

or also by using an automaton.

Since we are interested in a theoretical investigation of the relationship between global and local
views of systems of concurrent processes, we choose to look at protocols in the most abstract way, so
dealing directly with them as possibly infinite objects. What we need now is a formal mathematical tool
for defining them and proving their properties.

LA tree can be infinite either because it possesses branches of infinite length, or because it has nodes with an infinite number
of children. In our setting we assume the number of possible messages to be finite, so we do consider the former possibility.
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Coinduction The infinite objects we need to handle are essentially infinite trees, used for the represen-
tation of protocols, and infinite lists (called traces), used for the representation of possible evolutions of

multiparty sessions (parallel compositions of abstract communicating processes).
COMMUNICATIONS

Let us consider triples of the form (p,4,q), where p and q are participants’ names and 4 is a message,
that we represent as pAq for short. We use these triples to describe the exchange of message A from
participant p to participant q and call them communications belonging to the set €. On these, we impose
the natural condition p # q. Let us now assume that in a system we can observe only events that are
communications, i.e. we abstract away anything but message exchanges since we are interested in in-
vestigating only the communication properties of systems. Let us also assume that we can observe only
one event at a time. So that, even if two events happens simultaneously, we can look at them as if they
happened in sequence. The description of what happens in a concurrent system through such sequences
of observations is usually called interleaving operational semanticsﬂ

TRACES
A possible sequence of communication events is called a trace. The fact that a system can follow an
infinite protocol entails that we have to consider also infinite traces, that is infinite sequences of com-
munications. As far as traces are concerned, such an informal definition of trace suffices. But what in
the case of more structured infinite objects? We can recur to formal coinductive definitions. These come
in several possible forms. We briefly sketch coinductive definitions via formal systems, a method called
rule coinductiorﬂ The set Tr of traces can hence be formally defined by

pAqe® teTr
ecTr p/lq-teTl‘

T3]

where “-” is the sequence concatenation operator.
These rules can be read in two ways: top-down or bottom-up, or more precisely: inductively or coinduc-
tively.

The inductive reading goes forward from the premises to the conclusion; in the case of Tr the above
rules specify how its elements are constructed starting with € (representing the empty sequence), which
belongs to Tr unconditionally since the first rule has no premises (it is an axiom). The second rule states
that if we have previously constructed some 7 € Tr, then by choosing any pAq € € we can construct the
new trace pAq-t and conclude that pAq -t € Tr. In any case, the statement ¢ € Tr labels the root of a
derivation which is a finite tree, and indeed the trace ¢ itself is finite. By saying that Tr is inductively
defined by the above rules, we are defining Tr as the set of all finite sequences of communications.

The coinductive reading of these rules proceeds backward from the conclusion to the premises,
specifying what we can observe of a trace in one step. This becomes apparent with the second rule,
which now tells that what we can observe of a trace pAq -t € Tr, different than &, is that it begins with a
communication pAq € % and continues with some ¢ € Tr that can be observed using at least one of the
same rules. Since, in particular, there is no bound to the number of times in which we can use backward
the second rule above, the derivation of a statement ¢+ € Tr can be infinite, in which case the trace 7 is
infinite as well. Therefore, by saying that Tr is coinductively defined by the above rules, we are formally
defining Tr as the set of all finite and infinite sequences of communications.

2 A concurrent process can be given other kinds of semantics. An instance is the true concurrency semantics, where several
events can be observed simultaneously.

3Rule coinduction is a particular case of definition via the greatest fixed point of a suitable functor; for uniformity, we shall
use rule coinduction only, even when it would be more natural to use the general principle. The interested reader is referred to
[14, Ch.2] and the literature cited there.
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As a notational convention, rules that we wish to be coinductively interpreted, are represented with

double lines, like
pAqe€ teTr

ecTr pAq-t € Tr
Rules can also be presented in a form that is more familiar to computer scientists, such as productions
of a Chomsky grammar. In particular, the above rules can be presented by

Tr:= ¢ | pAq-Tr or Tr ;=" ¢ | pAq-Tr

according to whether the inductive or the coinductive interpretation is intended. We shall later provide
the meaning of global types in terms of coinductively defined traces.

Given a system of communicating processes (a notion that we shall make formal later on), we can
say that their interleaving semantics is a subset of the coinductively defined set Tr. Let us now precisely
define the set of global types, namely the formalisation of our “protocols”. We assume to have the
following denumerable sets: messages (ranged over by A,A',4;,...), participant names (ranged over
by p,q,r,s...) and indexes (ranged over by i, j,[). Besides, we use I,J,... to range over finite sets of
indices.

Definition 2.1 (Global types) Global types are defined by:
G :::coind End ‘ p—)q:{)«,‘.G,‘},‘el

where [ # 0 and A; # A; for i, j € I and i # j. We restrict the set of global types to the regular ones, and
we call G the set of global types.

We are not considering specific indices. We could use, for instance, natural numbers as indices. In

that case, if wehad I = {1,2,...,n}, p—q:{1:.G, }ic; would stand for the expression p—q:{1,.G1, 1,.G,,.

We use the set notation to express the fact that the order of the elements inside the curly bracket is
inessential, i.e.

p—q:{cucu.End, sertete.End} and p—q:{serrete.End, cucu.End}

have to be considered as the very same global type. The symbol End is used to denote the protocol that
does not require anything. We shall omit writing trailing End’s in global types whenever the reading is
so enhanced, and denote p—q:{1.G} by p—q:1.G.

Definition 2.2 (Participants) Given G € & we define the set of participants of G, written prt(G) by the
coinductive rules deriving judgments of the form p € prt(G):

pe{rs} kel peprt(Gg)

p € prt(r—s:{1;.Gi}ier) p € prt(r—s:{1;.Gi}ier)
We define prt(G) as the set of all p such that p € prt(G) is derivable.

Exercise 1 Show that prt(G) is finite for any G € & (hint: use the fact that G is regular).
CORRECTNESS AND COMPLETENESS
Let us now try and better understand what we meant when we wrote that a protocol (1.e. a global type) is

a structured set of constraints that some given processes are expected to respect during their interaction.
* A global type is a correct description of a system behaviour when it represents at most all the
traces of the semantics of the system.

* A global type is a complete description of a system behaviour when it represents at least all the
traces of the semantics of the system.
In choreographic formalisms, one usually aims at having a global view to be a correct and complete
description of the overall behaviour of the corresponding local views.

. An.Gal.
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What traces does a global type represent? A natural answer to this question is to take the sequences
of messages corresponding to the branches of the (finite or infinite) syntactic tree of the type. In the case
of the Travel Agency example, such a tree is the following:

c—s:date
coft
Y
e
c—a:reject

c—areq  a—cprice c—aireq  a—c:price

——————————

c—s:nodeal
@

The strings corresponding to all the finite branches above can be described via the following regular
expression.

(crega - apricec)(crejecta - creqa - apricec)*(caccepta - cdates - End + cquita - cnodeals - End)

To these we have to add the infinite string (creqga - apricec- crejecta)® corresponding to the only infinite
branch of this tred]
However, this interpretation seems unreasonable in general. Indeed, while in the sequence

creqa - apricec - caccepta - cdates - End

we can easily recognize that there is a causal dependency among the interactions (as each of them — but
the first — involves a participant present in the previous one), this is not the case, for example, in the
following global type:

p—q:A.r—s:A'.End

In fact, under the given interpretation of types, the single trace
pAq-ri’s

would not be a correct description of the behaviour of a concurrent system formed by the interacting
participants p, q, r, s such that p and q exchange the message A while r and s the message A’, because in
a decentralized system, as it is, nothing might force any of these interactions to happen before the other
one.

As shown by the examples we have just seen, the issue is not fixed by postulating that the operator
on traces is commutative, as this is not the case when there are causal dependencies. Rather, we should
consider “-” as representing a sequentialisation constraint only for communications sharing at least one
participant. Let us consider again p—q:A.r—s:A’.End. Apart from the order of the communications, such
a global type tells of a system where p sends A to q and r sends A’ to s. Such communications are clearly
independent from each other. So the sequence pAq-rA’s just represents one possible interleaving of them.
How can we make also the sequence rA’s - pAq be included in the meaning of p—q:A.r—s:A’.End?

LABELLED TRANSITION SYSTEMS

9

The technical tool for achieving our goal, which is common in the theory of concurrent processes, is
the notion of labelled transition systems (LTS). An LTS over a set X of states, and with respect to a set
Act of observable events, often called actions, is a ternary relation — C X x Act x X; writing x — y for

4The writing s is that of denumerably many copies of s sequentially concatenated.
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(x,a,y) € —, we mean that a system in the state x may perform the action a entering a new state y. This
can be extended to finite sequences a; - --a, € Act® by setting

ap-ay . a dan
x%y if Hxl,...,xn,l6X.x—'>x1~-xn,1—>y

where if n = 0 then we assume that a; - - - a, is the empty sequence € and y = x. We also write x —* y for
x> y for some (finite) s.

Exercise 2 Turn the informal definition of x = y for s € Act* into an inductive definition.

We can associate to each x € X the set of the finite traces out of it by setting:
Tr"(x) = {s € Act’ |y e X. x 5 y}

To this definition, we have to add something to treat the case of infinite sequences out of x. Let Act®
be the set of infinite sequences t = a; - --a, --- of denumerably many actions from Act; then we define
Act™ = Act” U Act® to be the set of finite and infinite sequences over Act. For any a € Act and s € Act™
the sequence a-s € Act™ begins with a and continues with s.

Definition 2.3 Ler (X, Act,—) be an LTS and x € X, then the set Tr(x) of finite and infinite traces out of
x is coinductively defined by the rules

acAct x5y seTr(y)

€€ Tr(x) a-s € Tr(x)

Exercise 3 Suppose that both x = y and y LA hold; show that both the finite sequence abab and the
infinite sequence abab--- are in Tr(x). What if we drop the axiom € € Tr(x) from Definition 2.3]?

Exercise 4 We say that the LTS (X, Act,—) is finitely branching if for all x € X the set {y € Act|Ja €
Act. x % y) is finite.

Given a finite sequence s € Act” and a finite or infinite sequence t € Act™ we say that s is a prefix of
tift =s-t' for somet’ € Act™. Show that if the LTS is finitely branching then

Tr(x) = {r € Act™ | Vs prefixof t Iy € X. x > y} (2)

Explain why the hypothesis that the LTS is finitely branching is essential for the above to hold (hint:
consider the Konig’s Lemma from set theory, which states that a finitary tree — namely, finitely branching
— is infinite if and only if it has an infinite branch).

Coming back to the problem of defining the semantics of global types, we set X =¥ and Act = %.
Then we expect that

A
p—q:A.r—s:A . End 2% r—s:1/.End

since we wish that pAq can be the first communication we observe in a system whose overall behaviour
is described by this global type. Nonetheless, we should also have

p—q:A.r—s:A’.End s, p—q:A.End

since rA’s could be observed first, being its participants different from both p and q. This motivates the
two rules in the definition below.
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Definition 2.4 (Inductive LTS for global types)

[G—EComm] ; ( j€ ])
p—q: {A,,'.Gi}ig M Gj

G 2% G viel  {pa}nfrs}=0

[G—IComm]
r—s:{4.Gi}ies LU NN {%.G}}ier

We can formally show that p—q:A.r—s:A’.End ﬂ p—q:A.End holds. In fact we obtain the following
derivation by means of the above rules:

r—ss:A/End % End

p—q:A.r—s:A’.End s, p—q:A.End
The interpretation of Rule [G-EComm| is immediate. Rule [G-IComm|, instead, specifies that in order to
show that the event pAq is observable before any event rA;s, it should hold that

* the interacting participants {p,q} must be disjoint from the interacting participants {r,s} (i.e.
{p,a}N{r,;s} =0); and
* pAq should be observable as first also in case it could be observed as the first action out of any of
A
the G;, namely G; pra, Gl forallie I
Such conditions are indeed a characterization of the fact that pAq and all the rA;s are interleaved (as we
are assuming in our setting).
Given a sequence ¢ = p1A;qq - ... ppAsQn of communications, we write G 2, whenever there exists
A A o AnCn . ..
n>1and Gy,...,G, such that G Piran Gy Pifod, | Bnld Gp,. This definition naturally extends to the
case of infinite o as a particular case of (2)) as the LTS in Definition [2.4]is finitely branchnig, so obtaining
the definition of Tr(G), i.e. the set of traces of the global type G that we consider as the formal meaning
of G.
The definition [2.4] of the LTS for global types is inductive. Even if reasonable, it does not manage
to express some communications that should be observable out of some infinite global types. Let us
consider the following protocol.

Love and Greeting

Alice (a) and Bob (b) are steadily exchanging the message love until, possibly, deciding to
issue bye In the meantime, Carl (c) is willing to greet Daisy (d) by sending her the message
hello.

This protocol corresponds to the following global type:

love. Gig

Gre = a—b: { bye. c—d:hello

According to the discussion above, we expect that the communications c/ellod and aloveb are indepen-
dent events and that Carl and Daisy should be able to greet each other at any moment, that is chellod



10 Multiparty Sessions made Simple

should be observable after any number of aloveb observations. It is however possible to check that, due to

. . o . . hellod
the inductive nature of the definition of LTS for global types, it is not even possible to have Grg ——— G/,
for any G'.
. . Lo . . o . hellod
Exercise 5 Provide a justification of the previous statement, i.e. it is not possible to have GLg ——— G’

in the LTS of Definition Hint: we could provide otherwise a finite derivation with that conclusion.

FAIRNESS

What’s missing to our LTS? In a sense we would like our LTS to represent a fair way of observing a
system. Namely, if in a system
- we can observe an event a an infinite number of times and
- there is an event b independent from a and that can occur at any time
then it is not possible to have an infinite sequence of observations made of a only, and b must eventually
OCCUIE]. We wish hence to define an LTS for global types allowing for fair observations. A natural way
to get such a definition could simply be

G,-M—q>G§ Viel {p,a}n{r,s} =0

. €D
P—q: {)’i'Gi}[EI — Gj r—s: {A,,‘.G[}[gl p_)lq_) r—s: {A,,‘.G;}[gl

. . . hellod
This however would not work. In fact, besides enabling G %, we would also get some unwanted

and unreasonable effects for some reasonable global types. For instance, let us consider a protocol where
only Alice and Bob are present and in which they keep on exchanging a /ove message for ever. Namely
G = a—b:love. G. By the above coinductive definition, we could also get

G ccucud G

We have the following infinite derivation made of occurrences of the second rule only, which applies
vacuously under the assumption that {c,d} N {a,b} = 0.

etc.

G ccucud G
ccucud
G——G
ccucud
G——G

Such an infinite derivation can be described more formally and compactly by

9
7=
ceucu
G——G
cloved

Exercise 6 Would it also be possible to get G —— G?

SFairness is also a property of schedulers of interleaved implementations of concurrent languages enabling concurrent
programs to be run on sequential machines.
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The above unwanted behaviour occurs because a derivation with coinductive rules may have infinite
branches, that in the present case will infinitely defer the proof that the action ccucud can happen even
if this will never be the case. We can fix that problem by simply requiring that, when applying a rule,
we can deal only with communications explicitly represented in the global type. We formalise this using
the notion of capabilities, i.e. we coinductively define a set containing all the communications explicitly
represented in a global type.

Definition 2.5 (Capabilities) Let G be a type. The set cap(G) of the capabilities of G is defined via the
following rules:

(kel) pArq € cap(Gy)
p7ia € caplpa: 1., e Bl s U Gl

(kel)

Exercise 7 Even if Definition is coinductive, as G may be infinite, the set cap(G) is finite for any G.
Show this.

Definition 2.6 (Coinductive LTS for global types)

[G—EComm] - ( j€ 1)
p—q: {A,,'.Gi}ig M Gj

G246 viel  {pa}n{ns}=0 plqe(iscap(G)

[G-IComrn]

r—s: {A{[.Gi}iel R&q_) r—s: {L‘-G;}iel

Exercise 8 Show that Grg Chellod, 1 for some G' using the coinductive LTS for global types.

Exercise 9 Show that
love. Gig

bye. c—d:hello and

Gie = a—>b:{

ol
love. Gi¢

GLG = c—>d:hello.a£c where a;_c — a—b: { .,
ye

are equivalent for the coinductive LTS, i.e. Tr(Grg) = Tr(Gyg).
Exercise 10 Which is the intended protocol represented by the following global type?

aLc = c—d:hello.a—b: { love. G
bye
Show that, for no Gy and Gy, it is possible to get ELG chellod Gy chellod Go.

Let us consider another classic protocol.

Buyer, Seller and Carrier

A buyer (b) communicates to a seller (s) a list of arbitrarily many goods she is willing to
purchase. This is achieved by repeatedly sending the message ifem until she, possibly, de-
cides to issue the message buy. In case this happens, the seller instructs the carrier (c) for
the shipment of the goods by sending her the message ship.
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This protocol corresponds to the following global type:

item.Gpgc

Gpsc = b—rs: { buy.s—c:ship

Exercise 11 Notice how the structure of Gpsc is different than that of Grg, as in Gpsc the actions bbuys
and sshipc share the participant s and indeed the latter causally depends on the former. Show that

item.Gy, , item.G}!
Gpsc = b—s: < and = s—c:ship. b—s: bsc
bsc buy.s—c:ship bsc P buy
where Gp . = b—s:{item.G__, buy}, are not equivalent.

MEANINGLESS GLOBAL TYPES
Some global types could be meaningless. For instance, let us consider the following global type, which

is a finite version of the previous Grg.

asb: love
“| bye. c—=d:hello

Since the communication c/ellod is independent from the other ones, it is reasonable to expect also the
trace chellod-aloveb to be among those represented by the above global type. This however is not the
case when we use the LTS of Def. More simply, we have to accept the fact that such a global type is
actually meaningless, i.e. non well-formed (the usual terminology in the multiparty sessions literature).
Roughly, well-formedness for a global type does coincide with the existence of at least a system behaving
as described by the global type. Such notion is formalised in terms of typability in SMPS and in terms of
projectability in MPST (see Sections .1 and [4.2] respectively).

3 Local Views as Multiparty Sessions

Before providing the formalism we intend to use for representing local views, we have to make some
assumptions about which sort of concurrent systems we intend to deal with, in particular

a) asystem is made of named independent participantsﬂ;

b) to each participant, we associate an abstract behaviour;

¢) we are interested only in the communication behaviour of participants;

d) participants interact via message passing using send and receive communication actions

Under the above assumptions, we can now define a set of terms intended to represent the behaviour
of participants. Since we aim to focus only on the interactions among participants, we call such terms
abstract processes and define them as follows.

Definition 3.1 (Abstract processes) Abstract processes (A-processes for short) are defined by:
P :::coind 0 | P!{Ai-Pi}ieI | p?{k,‘.P,'},'el

where I # 0 is finite and A, # A for h,k € I and h # k. We restrict the set of processes to the regular
ones, i.e. terms having finitely many distinct subterms.

OThere is no univocal sense for a participant name, which can be looked at as an identifier or a location (in case we used our
formalism in the setting of distributed programming).
7In the style of concurrent programming languages like Erlang.



Barbanera & de’Liguoro 13

We call input action an expression of the form p?A and output action one of the form p!A; in both cases
we call p the subject of the action. We dub &7 the set of possible input and output actions. A-processes,
simply “processes” when no ambiguity arises, describe the communication behaviours of participants.
The output process p!{A;.P;};c; non-deterministically chooses one message A; for some k € I, and sends
it to the participant p, thereafter continuing as P;. Symmetrically, the input process p?{A;.P;}ic; waits
for one of the messages A; from the participant p, then continues as Py after receiving, say, A;. The
symbol 0 is used to denote the terminated process. We shall omit writing trailing 0’s in processes and
denote p!{1.P} and p?{1.P} by p!A1.P and p?A.P, respectively.

As they are presented, the input and output actions are just simple synchronisations on messages. As
a matter of fact, in actual communicating systems, messages would also carry values that are abstracted
away in A-processes for the sake of simplicity. Hence, no selection operation over values is included in
the syntax. Actual value transmissions will be considered when we consider more concrete processes.
Weuse P, Q, R, S, ... to range over A-processes. Participants of a session can now be represented by
(p, P) pairs, where p is the name of the participant and P is the A-process representing its communication
behaviour. We use the intuitive notation p[Pﬂ for (p,P). Since it does not make sense for a participant p
to send or receive messages from itself, we say that p[P] is well formed it P does not include any action
of which p is the subject.

Parallel compositions of a finite number of participants can hence represent concurrent communicat-
ing systems.

Definition 3.2 (Multiparty Sessions) Multiparty sessions (sessions for short) are defined by:

M = pi[Pi1] -+ || palPsl

with py, # pi for any h # k and all the p;[P;] are well formed. The set of participant names of a session
M, prt(M), is defined as

pre(pilPi1] -+ || palPrl) ={pi | Pi#0 & 1 <i<n}

We call .7 the set of sessions.

The notation prt(M) is deliberately overloaded with repsect to prt(G) in Definition as they are
subsets of the same set of names. Because of the condition pj, # p; for any h # k, a session is essentially
a finite set of (not necessarily distinct) processes P; having distinct participant names p;.

To make M an actual representation of a set of independent participants running in parallel, we
introduce a binary relation = over sessions, usually called structural congruence in the literature, such
that

PP - | PulPul = pry [P 1|l -+ || Pz, [Px,]

for any permutation 7 on {1,...,n}. More precisely, = is the least equivalence making || into a com-
mutative and associative binary operator on participants. Further, since 0 represents a terminated pro-
cess, we postulate that, whenever p is not a participant in a session, p[0] is the unit with respect
to ||, namely p[0] || Ml = M for any M. As a consequence, the unit p[0] is unique up to = since
p[0] = p[0] || q[0] = q[0] for all distinct p,q.

Exercise 12 Provide an inductive definition of the = relation. Is it possible/reasonable to give a coin-

ductive definition?
SYNCHRONOUS AND ASYNCHRONOUS INTERACTIONS

8When it is clear from the context, we shall ambiguously call participant both the whole p[P] (with P # 0) and its name p.
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So far, we have not made any assumption about the synchronisation model for our processes, i.e. we
have not specified whether the interactions are synchronous or asynchronous. Synchronous interactions
require blocking output actions, that is, the sender proceeds only when the receiver is ready. In practice,
the actual interaction is carried on using a so called handshaking protocol, whose details we disregard
here. In contrast, asynchronous interactions allow instead for non-blocking output actions, that is the
sender puts the message for the receiver in an appropriate data structure — typically a queue — and the
receiver eventually takes it through an input action.

For the sake of simplicity, we assume that participants interact synchronously. Although the seman-
tics of global types have been defined in the previous sections keeping in mind synchronous communi-
cations, there is no substantial change we ought to do for adapting to the asynchronous model; indeed,
communications in ¢ are abstract representations of the fact that messages can be exchanged respecting
certain dependencies, not how this is implemented.

Sessions do evolve using events that are synchronous communications, and their meaning can be
defined in terms of traces on %. This will make it easier to prove precise relationships (for instance, cor-
rectness and completeness) between sessions and global types. We proceed now toward the formalisation

of synchronous interactions, through which sessions evolve.
FORMALISING SYNCHRONOUS COMMUNICATIONS

We begin by observing that two participants, say p[P] and q[Q], are potentially able to interact whenever
P and Q are of the form, respectively, q!{4;.P;}ic; and p?{1;.Q;} jc;. We also recall that the interaction
we intend to describe abstractly is not a simple agreement between p and q on which branch they should
proceed on. As previously mentioned, we intend in fact q!{A;.P;};c; to represent p’s nondeterministic
choice among the A;’s together with a communication to the participant q of such a choice, also keeping
in mind that in actual interactions a label would carry a value along with it. Notice that, at our level
of abstraction, a nondeterministic choice could represent the result of a computation, as discussed in
Section[5] Being such a choice uniquely determined by the sender, it is usually referred to also as internal
choice. The choice among the possible inputs in the receiver depends instead on the message sent. This
sort of driven choice is usually called external choice. In case p chose a label that q were not willing
to receive —i.e. not contained in {A;}jc; — a runtime error would occur, in particular a communication
mismatch error. This sort of error, arising from the asymmetry between sender and receiver, would
not occur if we adopted the more permissive condition that communication is plain synchronization,
happening whenever a message A; is both among the sender’s and the receiver’s choices. In our setting,
the communication mismatch is modeled by blocking the progress of a session like the above whenever
1ZJ.

By the above discussion, we can hence employ the following LTS as the basis of the operational
semantics of multiparty sessions.

Definition 3.3 (LTS for synchronous sessions) The labelled transition system (LTS) for multiparty ses-
sions, with communications in € as actions, is the closure under structural congruence of the LTS spec-
ified by the following axiom:

[S-Comm] ; (keICJ)
plal{A:.PiYicr] | alp?{4-Q;}jes1 || M 2255 p[P,1 || qlQs] || M

We remark that / C J is not to be intended as a condition to be dynamically checked at run time before
any communication (and hence quite unfeasible in that case), but rather as a condition possibly leading
to a communication mismatch when violated, and also as a condition we can rely on for typable ses-
sions. Such an approach enables formalizing synchronous communications among participants in a very
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abstract way using a single axiom. Other approaches are of course, possible. For instance, by explicitly
and separately representing the nondeterministic (internal) choice of p and the subsequent communica-
tion to q (see Definition [5.5] and related discussion). As well as by representing explicitly an error state
to be reached in case k ¢ J (see Exercise 42)).

Exercise 13 Formally define Tr(M) as the set of traces of a session M according to the LTS of Definition
3.5l

Let us now provide an example of a session intended to behave as prescribed by the Love and Greeting
protocol.

Example 3.4 (A session for the Love and Greeting protocol)
Mi¢ = a[Pre] || bIQrel || cld ! zello] || dlc? hello]

where P g = b {love.Prg, bye}, and Que = a?{love.Qrg, bye}. O

aloveb

Exercise 14 Show that Ml ¢ Mg, namely that there exists an infinite sequence of labelled tran-
sitions in which neither Carl nor Daisy are involved.

Moreover, show that Carl and Daisy are never prevented from greeting each other. That is, formally

loveb)* hellod
Mg u Mg —% a[Prcl || b[Qrel

Lastly, show that a and b can always terminate by a transition labelled by bye.

Example 3.5 (A session for the Buyer, Seller and Carrier protocol)
Mpsc = b[Ppsc] || S[Qbsc] H C[S?SlliP]

where Ppsc = s!{item.Ppsc, buy}, Qpsc = b?{item.Qpsc, buy.clship}.

L. . bitems . . .
Similarly to the previous example, we have M. ( ) “Mpsc, but the carrier will receive the message

ship only after the seller has received buy from the buyer. &

Session properties We now define some relevant properties of sessions; some are related to communi-
cations, and others are specific for choreographic settings.

The property of Lock-freedom ensures there is always a continuation enabling a participant to com-
municate whenever it is willing to do so. Deadlock freedom ensures that a session terminates if and only
if all its participants do. Communication-mismatch freedom ensures that two corresponding senders and
receivers can always safely interact.

Definition 3.6 (Communication properties) Let M —* M’ abbreviate M 2 M/ for some 6 € €*. A
session M is

i) a deadlock if M # p[0] and M 4
ii) alock for p if no o € Tr(M) contains a communication either of the form pAq or qAp

iii) a (potential) communication mismatch if
M = pla!{A4;.Pi}ic] || alp?{4;.Q,} jes1 | M and T L J
iv) deadlock free if, for any M, M —* M’ implies M’ is not a deadlock
v) lock free if, for any M and p € ptp(M), M —*M' implies M is not a lock for p



16 Multiparty Sessions made Simple

vi) communication-mismatch free if, for any M/,
M —* M’ implies M’ is not a communication-mismatch.

Exercise 15 Show that the following one is an equivalent definition of lock freedom.

A session M is lock free if M = M with o finite and p € prt(M') imply M/ cy/—'A>f0r some
o’ and A € € such that p € prt(A), where prt(ris) = {r,s}.

Exercise 16 Show that

i) lock freedom implies deadlock freedom and that the vice versa does not hold;

ii) lock freedom implies communication-mismatch freedom and that the vice versa does not hold;
iii) neither one between deadlock freedom and communication-mismatch freedom implies the other.

Hint: for (i) and (ii), consider a session p[q!{2;.P;}ic/1| alp?{1;.Q;}jes1 || M such that INJ =0, p,q
do not occurr in any r[R] in M and M A for some A € € and session M".

Exercise 17 Discuss about the possibility of looking also at a session like the following one as a communication-
mismatch.

M = p[q!{A:.P:}icr] || alr?{A4.Q;}jes1 | M withr #p
We now formalise a couple of properties previously defined in an informal way.

Definition 3.7 (Choreographic properties) Let G be a global type and M a session.
i) Giscorrect for M if Tr(G)C Tr(M).
ii) Giscomplete for M if Tr(M) C Tr(G).

Exercise 18 Show that the first global type below cannot be complete and that the second one cannot be
neither correct nor complete for any session.

e ml.r—s:hello e ml.p—r:hello
PN 2r—sihi PN 2 —sihi

4 Relating Global and Local views

Types in programming are used in two possible and orthogonal ways (or in a mix of both):
* as constraints helping the programmer to prevent run-time errors;
* as predicates whose proofs do guarantee the (partial) correctness of programs.

The very same approaches (now for concurrent programming) can be followed in our abstract choreo-
graphic setting where sessions and global types formalise, respectively, sets of communicating processes
running in parallel and their overall behaviours.
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4.1 The SMPS approach

We discuss now a type assignment approach to relate global types and sessions via a formal system (a
type system). The idea is to derive statements of the shape G - M whose intended meaning is that M is
a faithful implementation of the protocol G (i.e. G is correct an complete for M). This is different than
what happens in the standard MPST formalisms, where global types are projected to local types, called
session types, which in turn can be deduced for processes. (We refer to [18]] for a simple introduction to
the standard MPST formalisms.) The present approach is dubbed Simple MultiParty Sessions or SMPS
as it relates global types and sessions directly; for a discussion relating SMPS to MPST, see {.2] below.

Definition 4.1 (Type System) Judgements of the form G = M are coinductively derived by the type sys-
tem below, by considering sessions up to structural congruence:

[T—End] —
End F p[0]

1CJ G; FplPil || qlQ:] || M prt(G;) \ {p,q} = prt(M) Viel
p— q:{4:.Gi}tier F pla'{4i.Pi}tier] || alp?{4;.Q;}jes] | M

Rule [T-Comm] just adds communications to global types and to their respective processes inside sessions.
More inputs than corresponding outputs are allowed by this rule, in accordance with the side condition
of rule [S-Comm] (Definition [3.3). It also allows more branches in the input process than the global
type. Such a feature is related to subtyping, which we shall briefly deal with when discussing the MPST
approach. Instead, the number of branches in the output process and the global type must be the same.
This will allow us to get the property of Session Fidelity (i.e. Correctness) without impairing typability.

Unwanted effects of infinite derivations are prevented by requiring that the global type and the session
have the same set of participants, as expressed by the condition prt(G;) \ {p,q} = prt(M) for all i € I.
Otherwise, the following judgement would be derivable for any R # 0:

[T—Comm]

p—q:A.GFplq!A.P1] qlp?1.Q1 || r[R]
where G=p — q: 1.G,P =q!1.P and Q = p?1.Q. In particular,

9
~ p—q:A.GFp[q!A.P1] q[p?A.Q] || f[R]

7

We now illustrate the type system by deriving global types for the sessions of Examples [3.4]and [3.5] In
the derivations, we omit the axiom/rule names as they are clear from the context. Moreover, we do not
write the conditions on the participants, which can be easily checked.

Example 4.2 (A typing for Love and Greeting) Consider the session Mg from Example Then,
by recalling
Grg =a — b: {love.Grg, bye.c — d : hello},

the following is a derivation proving that Grg - M.

etc. End F c[0] || [0]
c—d: hellot-c[d!hello] || dlc?hello] End I- c[0] || A[0]
Gre F Mg c—d: hellot c[d!hello] || dlc?hello]

Gre - Mg
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which is finitely representable by

@LG End F C[O] H d[O]
Do = Greg Mg c —d: hellot c[d!hello] || d[c?hello]
Gre Mg

<

Notice that in the above example, the interaction between a and b, and the interaction between ¢ and
d are independent.

Exercise 19 Let GLG be the global type of Exercise @ Show that GLG F M.

Exercise 20 Let ELG be the global type of Exercise Show informally that there is no session M such
that Gig F ML

Example 4.3 (A typing for Buyer, Seller and Carrier) M. can be typed by Gpsc using the fol-
lowing derivation:

etc. End I b[0] || s[0] || c[0]
: s—c:ship F b[0] || s[c!ship] || c[s?ship] End - b[0] || s[0] || c[0]
Gpsc F Mpsc s—c:ship = b[0] || s[c!ship] || c[s?ship]

Gbsc = Mbsc
Exercise 21 Provide a finite representation of the infinite derivation informally depicted in Example[.3]
Exercise 22 Is it possible to find a global type for Mys different from Gps.? Justify the answer.

Exercise 23 Describe a session for the global type representing the Travel Agency protocol. Then,
provide a derivation showing that the session has that global type.

Typability entails several properties.

Theorem 4.4 (Subject Reduction) I G - M and M 2% M, then G *2% G’ and G' - M for some G'.

Exercise 24 Show that Subject Reduction implies that if G = M, then G is complete for M.

Theorem 4.5 (Session Fidelity) If G - M and G *2% G/, then Ml ®2% M and G' - M for some M.
Exercise 25 Show that Session Fidelity implies that if G+ M, then G is correct for M.

Remark 4.6 What is established by theorems and and the exercises above is apparently more
than the equality Tr(G) = Tr(M) when G - M. Indeed, if G+ M then G and M are bisimilar w.r.t. the
LTS (9 U.7,€,—) where — is the union of the LTS in definitions 2.6|and[3.3| We defer the discussion
on this point to the end of Section &

It is possible to obtain the following as a consequence of Subject Reduction and Session Fidelity [3]].

Theorem 4.7 (Lock freedom) If M is typable, then M is lock free.
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It is worth pointing out that, by allowing more branches in the global type than in the output process
(and fewer branches in the global type than in the input process), the property that we dubbed Session
Fidelity above would be lost. In fact, one could derive

p—aq:{As, A2} pla! A1 || alp?{A;, A2}]
and check that X N
p—aq:{A;, A2} P29 End  but plg! A1 || alp?{ A, A2}] ijqx

One could prove, however, the following version of Session Fidelityﬂ
If G- M and G p/l—q>, then there are A’ and G s.t. M *2% M’ and G’ - M. 3)

Exercise 26 Justify the following statement:
Subject Reduction and Property (3) imply deadlock freedom for typable sessions.

4.2 The MPST approach

The MPST approach consists of getting sessions directly from global types such that the obtained ses-
sions enjoy relevant properties. The A-processes for the various participants are “extracted” (when pos-
sible) in a natural way from the global type.

We start by adapting the MPST projection to the present case where we directly consider processes
instead of local types.

Definition 4.8 (Projections) [1;6] Given a global type G and a participant p, the A-process G[p, called the
projection of G at p, is coinductively defined by:

oo p & prt(G)

Gilp=P;, Viel Gilp=P;, Viel
(p—s:{4:.Gi}ier) [p = s!{A;.Pi }ies (r—=p:{4i.Gi}ier) [p = r!{Ai.Pi}icr
Gilp=P; Viel [l Pi=P
(r—s:{1.Gilier)Ip=P

=

(p € prt(G) and p & {r,s})

where the (full) merge P 1 Q is the partial operation coinductively defined by
P,MQ;=R;, Viel
0no=0 q'{Ai.Pitier M q{4;. Qi}ier = a{4i-Ri}ies

P,MmQy=R, VhelInJ
q?{li-Pi}iEI M q?{li-Qj}iEJ = q?{ﬂ,,'.Pi,kj.Qj,kh.Rh | i€ I\J,] S J\I,h S Iﬂ.]}

9Such a version is actually what was primarily proved by K.Honda in his seminal papers and referred to as Session Fidelity
in a relevant part of the literature on MPST.

10 There is a subtle difference between the present definition of projection and Definition 6.1 in [3]. The latter adapts to
SMPS the definitions in [11} [16], where both projections and merge are defined corecursively (erroneously named coinductive
in [3]) over the structure of types and processes. Here we adopt, instead, a coinductive definition of the relation of being the
projection of a global type, which turns out to be functional and properly extends the corecursive definition.
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Example 4.9 Let Gy be the global type ({I) in Sect. [2| for the finite version of the TravelAgency
protocol, namely

accept.c—s:date

Grp = c—atrequest.a—c:price.c—a .
T 9 P reject.c—s:nodeal

Let us compute Gry[s:

Gmnls = (c—s:date)|s M (c—sinodeal)|s sinces & {c,a}
= (c?date) N (cMnodeal)
= cMdate,nodeal} since {date} N{nodeal} =0

Exercise 27 Compute Gty [c and Gty Ja.

When G|p = P is derivable we say that G[p is defined. On the other hand, it is not difficult to find a
type G and a participant p € prt(G) such that G|p is undefined, e.g.

(r = s:{A;.p = q:4,.End, A5.End}) [p

where (p — q:4,.End)[p = q!4,, (A3.End)[p = 0 but there is no P such that q!4, M 0 = P is derivable.

Example 4.10 Let G, be the following variant of Gy, where the roles of ¢ and s have been exchanged
in the rightmost part of the type:

accept.s—c:date

GL, = c—a:request.a—C:price.c—a )
A 1 P reject.s—c:nodeal

Now, let us compute:

mls = (s—cdate)|s T (s—cnodeal)|s  since s & {c,a}
= (cldate) N (c!nodeal)
= undefined since {date} # {nodeal}

This should be confronted with the fact that Grp[s is defined, as we have seen in Example The
intuitive explanation is that in both types c—s:date and c—s:nodeal the participant s is passive, waiting
for a message from c to decide how to continue. Also, there is no ambiguity in the sets of messages on
the two branches, as they are disjoint.

On the contrary, when computing Gk, [s we have to merge the projection to s of the types s—c:date
and s—c:nodeal, where s is the active participant that is expected to send either date or nodeal, a choice
that is unspecified in Gp,. O

Example 4.11 Consider the type Gy of the Buyer, Seller and Carrier protocol:

_ | item.Gpec
Gpsc = b—s: { buy.s—c:ship

Let us compute Gpg. [C.

Gpsc[c = Gpsclc M (s—ciship)|c  because ¢ & {b,s}
Gpsc [c M s2ship
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We are stuck with a recursive equation that cannot be solved by only looking at the definition of merge.
However, Gpgc[C is not undefined. Instead, let us try to derive Gpsc [c = s?ship using the last rule in the
definition of projection, then we get

2 Endlc=0 010=0

2 = Gpsclc=s?ship (s—ciship)[c = s?ship s?ship M s?ship = s?ship

Gpsc [Cc = s?ship
which is perfectly legit. &

The relation G[p = P defined by the rules in Definition is functional in the sense that if both
Glp=Pand G[p = Q then P = Q. This is proved by coinduction on the definition of both G[pand P 1 Q.
First, we establish the following lemma, whose proof is provided also as an example of coinductive
reasoning:

Lemma 4.12 Ifboth P Q = Rand P M Q = R’ are derivable then R = R’

Proof. Observe that, while the equations P M Q = R and P 1 Q = R’ are formally derivable statements,
by R = R’ we mean syntactical coincidence, as we treat the expressions like {A,;.P;};c; as (finite) sets.

Now, the last rule in the derivation of P M Q = R is determined by the shapes of P and Q in the
sense that either they must be both 0 or they must begin both by either q! or q? for the same q. In the
first case, we have that R = 0 = R’. Suppose instead that P = q!{1;.P;};c; and Q = q!{4,.Q;}ic;. Then
R=q!{A:.Si}icr and R = q!{4;.S}}ic; where for all i € I

P,mQ;=S; and PiﬂQi:S;
are derivable. By coinductive hypothesis S; = S’ for all i € I, hence R =R'.
The case in which both P and Q begin by q? is similar. O

The above proof might appear incorrect at a first sight since, while it looks very similar to induction,
it cannot be such in general as the P, Q and R can be infinite and so the axiom 0 M 0 = 0 is never reached
in at least some branch of the derivation. Indeed, what we have proved is that the relation

#Z={R,R)|IP,QPNQ=R & PNQ=R"}
passes backword any inference in the definition of merge, that is, from the conclusion to the premises,
and that it is included into syntactical equality of possibly infinite expressions.
With Lemma[4.12] at hand, we can establish the proposition:
Proposition 4.13 The relation G[p = P is a partial function.
Exercise 28 Work out the details of the proof of Proposition using Lemma

We say that G is projectable if G[p is defined for all p € prt(G). In that case, we also define G| as
the session with prt(G) as set of participants and with the projections of G on the participants in prt(G)
as processes, that is

Gl = ||, cpre(c)PIGIP]

In the literature, there are various definitions of merge. We use a version of the more permissive one
called full merge.
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Exercise 29 Complete Example and build the session
Gral = Gralc || Grala H Grals.

Then, compare it with the one of Exercise

Exercise 30 Show that the two global types of Exercise|l8|are not projectable.
Exercise 31 Complete the example building the session Gpgc|.

Exercise 32 Show that ELG of Exercise|l0|is not projectable.

The possibility of typing a session where a receiver has more inputs than those present in the global
type, makes the SMPS approach more expressive than the MPST approach as described up to now. In
fact

p—a:A Fpla!Al ] alp?{A,A'}] and (p—q:d)lq=p2A #p2A, L'}

To get the equivalence of expressivity, we won’t restrict the SMPS type system: it would be incon-
sistent in the typing system to rule out the session p[q!A] || qlp?{4, A'}], since p[q!A] || alp?{A, 1/},

and p[q!A] || g[p?1] behave the same (i.e. have the same traces).
SUB-BEHAVIOUR RELATION

Hence, we extend the expressivity of the MPST approach by resorting to the substitution principle that,
in general, allows to replace elements in a structure or computation with other ones when the overall
behaviour is unaffected. This simple principle has been variously implemented in computer science (it
led, for instance, to subtyping). In the present setting, we dub it sub-behaviour. Formally, we define a
pre-order relation < on A-processes making the MPST and SMPS approaches equivalent and such that
the following holds.

Vie{l,..,n} P; <P = Tr(pi[P1l ]| -+ || palPal) = Tr(pi[Pi1] -+~ || palP,1) “)
Definition 4.14 (< on A-processes) The preorder < between A-processes is coinductively defined by
P < Qi vViel
0<0 b0 q!{Ai-Pitier < q'{Ai.Qi}ier
P <Q; viel
q?{Ai-Pitieros < aM{Ai.Qitier

As previously hinted, the intuition underlying the above relation is that if P < Q then the behaviour
of a session is unaffected when a process Q is replaced by P, particularly an input process with another
one that can receive more inputs than the former.

[sub—O]

[sub-In]

Exercise 33 Show that the inverse implication of (@) does not hold.

The relation < can be straightforwardly extended to sessions as follows

Definition 4.15 (< on sessions) We define
MM if ptp(M) = ptp(M') and Vp. [p[P] € M and p[P'1 € M implies P < P’

We also define
GeoM if G isdefined and M < G|
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Theorem 4.16 G>M implies that G is correct and complete for M. Moreover, G is lock-free.

The above theorem is an immediate consequence of the following equivalence between the MPST
and SMPS approaches to multiparty sessions.

Proposition 4.17 (Equivalence between typability and projectability)
GFM & G»rM
Proof. See Proposition 6.7} O
Now (@) is an immediate consequence of the equivalence of the MPST and SMPS approaches.
Exercise 34 Let =~ be the type system where [T-Comm] is replaced by the following rule:
Git™plPid [l gl@d M prt(Gi)\{p,q} = prt(M) Viel
p— q:{4.Gi}ticr F pla!{Ai-Pi}tics] || alp?{ i Qi}ier] || M

[T—Commf]

Besides, let us define
G M if M=GJ

Show that G~ M # G+~ M. Hint: p—q:{A;.p—r:A;, Lo.p—=r:do}. Franco: Mariangiola diceva di
non riuscire a fare questo esercizio, ma credo basti prendere come G quello appena indicato e come M
il seguente

p[q!{l;.r!?t;. lz.rm,z}] H q[p?{lp )Lg}] H r[p‘.’{).]A QLQ}]

Franco: Qui ho eliminato (lasciandolo commentato nel sorgente) un esercizio che in effetti, come
diceva Mariangiola, aveva un enunciato errato. Ho anche eliminato, di conseguenza, un paragrafo che ne
discuteva.

Exercise 35 Modify the definition of T to get G~ M << GH™ M.

The full sub-behaviour relation MPST formalisms usually consider the following sub-behaviour re-
lation.

Definition 4.18 (<" on A-processes) The preorder <' between processes is coinductively defined by
the rules of where Rule [sub-Out] is replaced by the following rule.

P,‘ <+ Qi Viel
q!{Ai-Pitier <7 q{ A Qiticiws
We also define Gt M as G>M in Def. but for the use of <V instead of <.

The intuition underlying the above rule is that an output process can be safely substituted with another
process which can send less outputs than the former.

By using <" instead of <, Session Fidelity would be lost, as it can be shown by considering the same
example discussed at the end of Subsection .1}

p—q:{As, 2} F pla!d] || alp?{As, A2}
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Exercise 36 Formally prove the above statement.

Expressiveness, however, does not change, since the following holds.
Proposition 4.19 Gt M implies 3G's.t.G'>M
By Proposition we immediately get that G M implies M to be lock-free.

Also considering the above proposition, in the rest of this chapter we shall stick to < as sub-behaviour
relation.

S Multi-layer Local Views

In choreographic formalisms one might be interested in different levels of abstraction of local views.
It is natural to expect that the different “layers” of abstractions be related through some refinement re-
lation representing some process to be a finer description of another one. In our simple choreographic
formalism, such a relation can be formalised in terms of traces.

Let us introduce in our local view a further set of processes more concrete than the A-processes
considered so far. They make visible the values transmitted along with the messages, as well as the
computations corresponding to the internal choices of outputs. We assume that the transmitted values
belong to certain given sorts and their transmission makes them substituted to variables. The variables
possibly occur in the expression driving the selection in a case expressions.

Let Int, Bool and String be the (ground) sorts of integers, booleans, and strings. Elements
of these sorts are referred to as values (v). We assume to have some basic elements and functions
(0,succ,true, false,concat,+,—,and,or,...) enabling to form expressions (e) which we can eval-
uate, possibly getting values (v). We write e|v whenever expression e evaluates to value v. We also
assume to have a denumerable set of variables (x,y,...).

Definition 5.1 (Concrete Processes and sessions) Concrete Processes (C-processes for short) are coin-
ductively defined by

P :::coind 0
| plA(e).P
| P Ai(xi).P}ier
| caseeof vi->p!A;{e1).Pi;...,vy=>p!A,(en).P, other p!h,  {eni1).Prsi

where I # 0 is finite, 1 < n and A, # A for h,k < n and h # k. We restrict the set of processes to the
regular ones, i.e. terms having finitely many distinct subterms.

A C-session is a session where C-processes are used instead of A-processes. We use M to range over
C-sessions.

We represent the operational meaning of C-sessions in terms of an LTS, in turn defined using an LTS
on C-processes. It would be possible to directly define an LTS for C-sessions. We preferred however to
propose a slightly different style of presentation (also following some authors in the literature).

Definition 5.2 (LTS for C-processes and C-sessions) The LTS on C-session is defined below where the
elements of Act (events) are either of the form p!A(v) or p?A(v) or 7.

o o) p72,(v)
p!A{e).P ——= P p?{Ai(x).P}icr e

VASY)
Pjlv/x]
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(edvi)

case e of vi—>pli;(e1).Pr;

T
: = ph(ex).Bx
Va=>p! A, (en) . Py;

other p!AnJrl <en+1>-Pn+1

(elv #viVie{l,.,n})

case e of vi->pli;(e1).Pi;

T
‘ - '2’/ e P
Vn=>p!A, (en).Py; P! Anri(ent1)-Puri
other p!A, /{en+1).-Pot1

The LTS on C-sessions is defined below, where Act = ¢ U{t}.
PSP
PP - palPa] = PP |- palPa]

P2l (v)

N
Py p p2Y v) P,

p1lP1 || P2LP] || - - pulPa] 2222 o1 [P || pal P - pulPa]

Notice that the usual conditional expression if b then p!A,;(e;).P; else p!A;(es).P>, where bis a
boolean expression, can be considered as short for
case b of true->p!A;(e1).P| other p!d,(ey).P

Example 5.3 (Buyer, Seller and Carrier C-processes)

P, = slitem(choose-item(self)).if satisfied(self)
then s!buy(address(self))
else B,

P, = c?{item(x).Ps, buy(y).clship(msg(y,goods(self)))} P. = s ship(x)}

In the above C-processes for the Buyer, Seller and Carrier, the procedure choose-item chooses
an item to buy depending on the internal state of the process. Also the predicate satisfied depends
on the internal state of the process. By msg we denote instead a procedure returning a message for the
carrier depending on the received address and the ordered goods. &

As recalled above, the LTS on C-processes is used as a first step for defining the LTS on sessions.
Both the LTSs have 7T as a possible event, which is an unobservable internal action. It is used to make
explicit the choice event between different branches in case statements. The observable events for C-
processes show the exchanged values, while the observable events for C-sessions are those in ¢". We aim
in fact, at abstracting from the actual values exchanged among the participants in our observations on a
session, since we are interested in communication properties like lock freedom. Such properties depend
just on the effects of the exchanged values (i.e. the branch selected by a case expression). This choice
also enables us to define a refinement correspondence between A-sessions and C-sessions.
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SESSION REFINEMENT
We intend to look at C-processes as concrete realizations of what A-processes represent. In particular, we

intend to see a nondeterministic choice among outputs as an abstract representation of a case expression.
The refinement correspondence between C-session and A-session can be formally defined in terms of a
type system, where A-sessions are looked at as types (in “classical” MPST formalisms A-sessions are
dubbed local types). The aim of the refinement relation is guaranteeing the same properties of an A-
sessions M to any C-session M refining M, and possibly more. We notice in fact that in C-sessions a
further cause of error is present: an expression e in a case expression might not have a value, or might
have a value not of the Bool sort.

Definition 5.4 (A-processes as types) We assume given a function TL associating sorts to messages. We
also assume S to range over the available sorts and I to range over finite sets of associations between
variables and sorts. We recall that the relation < below is as in Defd.14)

THP:P P<P

[INACT] ~_ a.n <
r-0:0 THP:P
[oxi:Tu(A) PPy Viel I'te:TL(A) THP:P
[IN—CHOICE [OUT]
' pHAi(xi).P}:pHAi.Pi} I'Fp!ie).P:p!A.P
'te:S Tkvi:s (Vie{l,.,n})
[case] r‘l_ei:TL(/lj) Fl_})lPl (Vle{l,,n—l—l})

case e of vi—>pli;(es).Py;

Vn—>p!ln<en>-Pn; P { }6{17"7 +1}

other p!A,.;(ent1)-Prsi

The above is inspired by the usual type systems for processes and local types in MPST formalisms.
Notice the above type system rules out any infinite immediate nestings of case expressions. Moreover,
the single line in [<] indicates that only a finite number of consecutive applications of such a rule are
allowed.

We can now define a type system for sessions. (The same symbol |- is used for the sake of readability.)
Notice that = P : P is short for 0 - P : P.

FP:P; (Vie{l,..,n})
FpilPd | .. palPu: pilP1] || - .. pulPal
Exercise 37 Provide a derivation for
= b[A] || s[Fe] H c[Pc] : b[Ppsc] H S[Qpsc] || cls?ship]

where By, Ps and P. are as in Example[5.3|and Pysc, Qpsc as in Example[3.5

We also define
FM:M«G if FM:M and GpM

The reading of the term “session refinement” is not univocal, and can vary according to the needs
it is used for. In general, a session M refines M if what M does is a “more detailed” specification of
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what M can more abstractedly do. In our particular setting, any trace of M is also a trace of M if we
abstract away the 7 actions. (We shall briefly discuss later on how the notion itself of refinement can be
“refined”.)

Let us now introduce a slightly different LTS for A-processes enabling to compare their traces to
those of the C-processes. The new LTS essentially consists of decoupling the internal choice of the label
to be sent from the actual sending action; as the internal choice is unobservable, it is labelled by 7.

Definition 5.5 (The — LTS for A-processes)
(kel)

plal{%-Pi}icr] || M <> plq! APyl | M

o7 (A=A, keld)
pla!Z.PT 1 alp?{2%;-Q;} jes1 || M <— pIPT || qlQx] || M
We denote the set of traces for the above LTS by Tr .

With respect to <, an actual communication mismatch is a session like
pla!A-P1 | alp?{%;.Q;} jes1 | M
where A # A; forall j € J.

Exercise 38 Define the set of traces Tr~ (M) out of the session M with the above LTS. Notice that now
traces are sequences on € \J{t}.

One of the communication properties we aim at ensuring is the absence of communication mis-
matches during any possible evolution of a session. It is worth remarking that the LTS of Definition [3.3]
and the LTS above do produce different set of traces.

Exercise 39 Show that the set of traces of the two LTS for sessions are distinct even by disregarding T.

Exercise 40 Let Ml be a session that cannot evolve in a communication mismatch using either of the two
LTSs. Then, if we disregard T, the traces we get are the same.

A
Lemma 5.6 - M : M and M 2 M’ imply b M’ : M and M. — M for some M, where A € € U{t}.

Given a set of traces T C (4’ U{7})*, we define Ty as the set of traces in 7' in which any occurrence
of 7 has been taken out. The following Proposition is easily proved using Lemma[5.6]

Proposition 5.7 Let - M : M.
i) Tr(M) C Té™ (M)
ii) Try (M) = Tr(M)
iii) Try(IM) € Tr(M)
Exercise 41 Find M and M such that = M : M and Try(IM) 2 Tr(M).
Proposition 5.8 Letr = M : M« G (or, equivalently, = M : M and G+ M). Then M is lock-free.

Exercise 42 Assume we intend to investigate also the behaviour of untypable sessions. We hence ex-
plicitely represent an error state, say err, and extend Definition with the following further rule

plq!A.P1 ] alp?{A,.Q;}jes1 || M ‘ﬂ err

Define the set of traces for the resulting LTS and compare them with the traces in the other approaches.
Notice that in a synchronous scenario, the event of a sender selecting a message the receiver cannot
accept (when k & J above) is not in general as harmful as in asynchronous settings because there the
output is not a blocking action.
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Simulation and Bisimulation In our simple coreographic setting, we have modeled the notions of
behaviour and of refinement using traces and trace inclusion. However, trace semantics is too coarse to
model in general the behaviour of processes in concurrency theory. Instead, the notions of Simulation and
Bisimulation have been introduced for the formal investigation of process refinement and equivalence. A
natural question is whether we should have taken the same approach in the case of SMST.

To discuss this point, we briefly recall the definitions of these concepts. Let Procbe a set of processes
whose behaviour is represented using an LTS (Proc, Act,—) where the observable events are elements
of Act. If #Z C Proc x Proc we abbreviate (P,Q) € #Z by PZ Q.

Definition 5.9 (Simulation, Bisimulation) A relation % C Proc x Proc is a simulation if PZ Q implies
that for all a € Act
PSP =30.050 & P#Q
Then we define P C Q if there exists a simulation % such that P % Q.
A relation # C Proc x Proc is a bisimulation if PZ Q implies that for all a € Act

PLP = 30.0%Q & P#ZQ and

050 = 3IP. PSP & P#Q
Then we define P ~ Q if there exists a bisimulation % such that PZ Q.

Exercise 43 Show that C and ~ are themselves, respectively, a simulation and a bisimulation (in par-
ticular, the greatest simulation and bisimulation).

Let Tr(P) be the set of traces in Act™ out of P; if P C Q then Tr(P) C Tr(Q) and similarly if P ~ Q
then Tr(P) = Tr(Q); however, the converse implication does not hold in general.

Exercise 44 Justify the last statement. Hint: consider an LTS whose transitions have the shapes

— <.

If P ~ Q then both P C Q and Q C P, but the opposite implication does not hold.

Exercise 45 Justify the last statement. Hint: consider an LTS whose transitions have the shapes

S

Simulation and trace inclusion coincide in case the LTS is deterministic; the same holds for trace
equivalence and bisimulation.

Definition 5.10 (Deterministic LTS) An LTS (Proc, Act,—) is deterministic if for all a € Act and P,Q,R €
Proc
P%Q and PSR = Q=R
Exercise 46 Prove that if the LTS is deterministic then, for any s € Act”, t € Act™ and a € Act,
)PS0 & PSR = Q=R
i) a-t c Tr(P) & PSP = t € Tr(P)
Hint: (i) can be proved by induction over the length of the (finite) s; then use (i) in the proof of ({i).
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Proposition 5.11 Ler (Proc, Act,—) be a deterministic LTS then for all P,Q € Proc
i) Tr(P) CTr(Q) = PCQ
ii) Tr(P)=Tr(Q) = P~ Q
Proof. We prove (i), as the proof of (i) is similar. Since traces are elements of Act”™, hence possibly
infinite, we reason by coinduction over the definition of Act™.
Let PC Qand P % P'; let t € Tr(P') be arbitrary: then a - € Tr(P) C Tr(Q), which implies that

there is (a unique) Q' such that Q % Q'. By the hypothesis that the LTS is deterministic, |D of Exercise
[46] applies, hence ¢ € Tr(Q'); then by the coinductive hypothesis we conclude P’ C Q' as required. [

Exercise 47 Check that the LTSs for global types and A-sessions are both deterministic.

6 Some Proofs

To avoid interruptions in the main text, in this section we collect proofs of some results, or just references
to them.

Lemma 6.1 ([3]) If G+ M, then prt(G) = prt(M).
Lemma 6.2 ([3]) Let P, V and W be such that P <V and P <W. Then VW is defined and P < VIW.
Lemma 6.3 ([3]) If G+ M and G|p is defined, then M = p[P] || M and P < G|p.

We say that a global type G is inhabited if there exists a multiparty session M such that G - M.
Lemma 6.4 Given a global type G, inhabitation of G implies its projectability.

Proof. Let G be a global type such that G - M for some M. By Lemmal6.1]we have that prt(G) = prt(M).
To show that G is projectable, let consider p € prt(G) in order to get G[p defined. We proceed by
coinduction on the derivation of G - M.
Axiom [T-End]. Immediate.
Rule [T-Comm]. In this case the last applied rule has the shape

G; Fr[Ri1 || s[S:1 || p[PT || M
prt(Gi) \ {r,s} = prt(p[P1 || M)  VieICJ
GH I’[S!{)q'.Ri}ie]] H s[r?{?L.,-.S.,-}jeJ] H p[P] || M/
where G =r — s: {1;.G; };c;. We observe that, for each i € I, G; is inhabited. Moreover, by coinduction,
G;|p is defined for each i € I. If p = r, by definition of projection we have that G[p = s!{A;.G;[p}ics. If
p = s, by definition of projection we have that G[p = r?{A,.G;[p}ic;. So in both cases G[p is defined.
If p & {r,s}, by Lemma P < G;|p for each i € I. We can hence recur to Lemma [6.2] to conclude
that [1;c;G;[p is defined. The thesis now follows by definition of projection, since in the present case
Glp = licsGilp. O
The meaning of the preorder on processes is exploited in the following lemma.
Lemma 6.5 ([3]) If G p[Q]|| M and P < Q, then G F p[P] || M.

Lemma 6.6 ([3]) Let P and Q be such that PMQ is defined. Then PMQ < P.

By Lemmas|[6.2]and [6.6] the merge P M Q, when defined, is the meet of P and Q w.r.t. <.
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Proposition 6.7
i) GEM and p[PleM imply Glp isdefinedand P < Glp

ii) G projectable implies G FG]J

Proof. (i) By[6.4and

If G = End, then G M for all M = p[0]. Otherwise, by recalling that we defined

Gl = ||, cpre(c)PLGIP],
we proceed to show that G - G| by coinduction on G. We observe that

(p—=a:{A.Gilie))l =
pla!{4:.Gilp}ierl | alp?{A:.Gilq}ier] \|r€prt(G>\{p7q}r[Gfrl

where, by the assumption that G is projectable and by definition of projection, for each r € prt(G)\ {p,q},
Glr= [ic/Gilr
By coinduction we have that, for all i € I, G; - G;[, where by definition,
Gil = pIG;Ip] || ALGilal ||,y (p.qy TGHIT]
Now, by Lemma@]we have that, for alli € I,
Glr= [iesGilr < Gifr
We can hence recur to Lemmal6.5]in order to obtain that, for all i € 1,
Gi = pLGi1p] | alGilal || cpre( . TG 1T

By Lemmal6.]]
prt(Gi) = pre(p[G; p1 | alGilal |[,prec ) (py TG IT)

which implies prt(G;) \ {p,q} = prt( Hreprt(Gi)\{M}r[G 'r]) for all i € 1. It is now possible to use Rule
[T-Comm] in order to get G + GJ. O

7 Further Readings

In this section, we report some references to the literature and suggest papers and textbooks to widen the
knowledge of the subject. We provide just a few pointers inside a large body of research activity carried
on in the last decades, which is still active and growing.

As recalled in the Introduction, both Session Types and MultiParty Session Types have been inspired
by the m-calculus and its typing systems, for which the reader might consult the comprehensive textbook
[15]]. Session Types, originally introduced in [9, [17, 8] for a dialect of the w-calculus, are fully treated in
the book [[7]. An introductory treatment can instead be found in [6].

The basic reference for MultiParty Session Types is [[11] (full version of [[10]]), which is fairly tech-
nical; among the introductory presentations of MPST is [18]. Simple MultiParty Sessions have been
introduced in [5]], stemming from ideas of Dagnino; further references on (variants of) the STMS system
can be recovered from [3]].

The paper [16] illustrates some limitations of the MPST approach, showing that some perfectly con-
sistent typings of the participants are not obtainable by projection of any global type. In [3], projectable
global types are characterised as certain bounded or balanced types, which, however, do not include the
case in Example .11 among others.
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