
Systems of of Communicating Finite State Machines
and related properties

1. Introduction

The material of this section is taken from Chapter 1 of the PhD Thesis “Im-
proving state exploration techniques for the automatic verification of concurrent
systems”, University of Ottawa, by Hans van der Schoot.

Sophisticated computer and information systems have become of the essence
in todays society,and they are being deployed at an ever increasing rate. Most
contemporary computing systems are typically composed of entities that operate
concurrently and cooperate through communication. Examples of such concur-
rent systemsare computer and communication networks and protocols,operating
systems, asynchronous circuits and many other embedded systems with appli-
cation areas like process control, telephony and air traffic control to just name
a few.

The correct design of concurrent systems is known to be a problem of con-
siderable depth. One major source of difficulties lies in the fact that the func-
tionality of these systems tends to be very large and complex. Traditionally,
a sequential system (or program) is transformational and can bethought of as
a function: given an input, it may produce an output. The specification of
all input-output pairs defines the precise meaning of the system. A concurrent
system is yet hard to describein this way as it operates within an environment
over an indefinite period of time. Its functional behavior is defined by the many
ongoing interactions with its environment, and these interactions often exhibit
complex interdependencies. For this reason, it is difficult to adequately specify,
understand and predict the behavior of concurrent systems and, hence, to assess
whether they meettheir requirements.

Another source of difficulties lies in the distributed nature of concurrent
systems. As the constituent entities of a concurrent system are dispersed over
different locations, they must also interact with each other in order to realize
the functionality of the system as a whole. An important example is found in
communication protocols, where protocol entities interact according to stric-
trules. Indeed, the mere purpose of a communication protocol is to govern the
orderly exchange of messages among communicating entities. Both the design of
communication protocols and the assessment of their correctness are certainly
delicate tasks, and rigorous automated analysis methods are required to support
these tasks.

Preprint submitted to Elsevier May 9, 2019

Verification of concurrent systems, and of communication protocols in par-
ticular corresponds to the act of proving (or disproving) formally that a system
design meets its expected properties, which can range from several types of gen-
eral consistency requirements to more specific functional requirements asserted
in, for instance, a logical language. What is strictly not meant is testing (unless
it is exhaustive), or any other method which may indicate that a system design
is probably correct. In order to prove that a system satisfies some property, all
possible executionsof the system must be checked to determine whether each
and every one of them complies to the property. As such, verification is thus
the means to guarantee the correctness of the design of a concurrent system or
communication protocols.

Throughout the past years or so, various formal models have been proposed
and studied to facilitate the specification and validation of (designs of) concur-
rent systems. These models differ in their expressiveness in terms of specifica-
tion and in their tractability in terms of validation (i.e.verification and testing).
However, most of the models have in common that their individual semantics
renders a translation of the pure syntactic description of a concurrent system
into some kind of a transition system, consisting of a set of states, a designated
initial state, and a (labeled) transition relation among these states. This tran-
sition system represents the behavior of the concurrent system as a whole, i.e.
the joint behavior of all the concurrent entities in the system.

A model particularly suited for specifying communication protocols is the
communicating finite state machine(CFSM) model. In the CFSM model, a
protocol is specified as a collection of processes (i.e. the protocol entities) that
exchange messages over error-free simplex channels. Each process is modeled
as a finite state machine (FSM) and each simplex channel is a FIFO queue. A
(global) state of the protocol consists of a state for each FSM and a content for
each simplex channel. A state transition can occur only when some process is
ready to either send a message to one of its output channels, or receive a message
from one of its input channels. The CFSM model is well-defined, elegant and
rather easy to understand. These features make it attractive for both academia
and industry. Indeed, the CFSM model has become a widely established means
for specifying, verifying and testing communication protocols. Furthermore, it
underlies two standardized specification languages, namely Estelle and SDL.

One of the most prevalent techniques for the verification of protocols, and
concurrent systems in general, is state space exploration. State (space) explo-
ration, which is widely known also as reachability analysis, amounts to exploring
in a systematic manner the complete state space of asystem, i.e. all states and
transitions of the system that can be reached from a given initial state. Many dif-
ferent types of system properties can be verified by reachability analysis. It was
originally proposed for verifying so-called logical correctness properties of proto-
cols specified in the CFSMmodel, namely freedom of deadlocks, non-executable
transitions (cf. dead code in a computerprogram), unspecified receptions, and
buffer overflows or unbounded channel growth. These are general correctness
properties that concern concurrent systems at large, albeit that unspecified re-

2

ceptions and buffer overflows or unbounded channel growth are particular to
models featuring some form of asynchronous message passing.

Reachability analysis can further be employed for the verification of individ-
ual, functional correctness properties of concurrent systems and protocols, like
temporal safety and liveness properties. This has emanated in the past decade
from the development of model-checking methods for various temporal logics.

2. Systems of Communicating Finite State Machines

In this section we recall (partly following [1, 2, 3]) the definitions of com-
municating finite state machine (CFSM) and systems of CFSMs. Throughout
the section we assume given a countably infinite set PU of role (participant)
names (ranged over by p, q, r, s, A, B, H, I, . . .) and a countably infinite alphabet
AU (ranged over by a, b, c, . . .) of messages.

Definition 2.1 (CFSM). Let P and A be finite subsets of PU and AU respec-
tively.

i) The set CP of channels over P is defined by
CP = {pq | p, q ∈ P, p 6= q}

ii) The set ActP,A of actions over P and A is defined by
ActP,A = CP × {!, ?} × A

iii) A p-communicating finite-state machine over P and A, where p ∈ P, is a
finite transition system given by a tuple

M = (Q, q0,A, δ)
where Q is a finite set of states, q0 ∈ Q is the initial state, and δ ⊆
Q×ActP,A ×Q is a set of transitions such that

(q, l , q′) ∈ δ =⇒ sbj(l) = p

where sbj : ActP,A −→ P is defined by sbj(rs!a) = r sbj(rs?a) = s

Notice that the above definition of a CFSM is generic w.r.t. the underly-
ing sets P of roles and A of messages. This is actually necessary only when
we deal with an arbitrary number of open systems that can be composed. We
shall write C and Act instead of CP and ActP,A when no ambiguity can arise.
We assume l , l ′, . . . to range over Act; ϕ,ϕ′, . . . to range over Act∗ (the set of
finite words over Act), and w,w′, . . . to range over A∗ (the set of finite words
over A). ε (/∈ A ∪ Act) denotes the empty word and | v | the lenght of a word
v ∈ Act∗ ∪ A∗. Given a word v with prefix v′, i.e. such that v = v′ · v′′ for
a certain v′′, we define v \ v′ = v′′. Moreover, given a word v with ‘a’ as last
element, i.e. v = v′ · a for a certain v′, we define init(v) = v′ and last(v) = a.

The transitions of a CFSM are labelled by actions; a label sr!a represents
the asynchronous sending of message a from machine s to r through channel sr

3

and, dually, sr?a represents the reception (consumption) of a by r from channel
sr.

We write L(M) ⊆ Act∗ for the language over Act accepted by the automaton
corresponding to machine M , where each state of M is an accepting state. A
state q ∈ Q with no outgoing transition is final; q is a sending (resp. receiving)
state if it is not final and all outgoing transitions are labelled with sending
(resp. receiving) actions; q is a mixed state if there are at least two outgoing
transitions: one labelled with a sending action and the other one labelled with
a receiving action.

A CFSM M = (Q, q0,A, δ) is:

a) deterministic if for all states q ∈ Q and all actions l : (q, l , q′), (q, l , q′′) ∈ δ
imply q′ = q′′;

b) ?-deterministic (resp. !-deterministic) if for all states q ∈ Q and all actions
(q, rs?a, q′), (q, pq?a, q′′) ∈ δ (resp. (q, rs!a, q′), (q, pq!a, q′′) ∈ δ) imply q′ =
q′′;

c) ?!-deterministic if it is both ?-deterministic and !-deterministic.

The notion of ?!-deterministic machine is more demanding than in usual
CFSM settings. Note that a ?!-deterministic CFSM is also deterministic, but
the converse does not hold (since the channel names are abstracted away in the
definition of ?!-determinism).

Definition 2.2 (Communicating system and configuration). Let P and A be
as in Def. 2.1.

i) A communicating system (CS) over P and A is a tuple S = (Mp)p∈P where
for each p ∈ P, Mp = (Qp, q0p,A, δp) is a p-CFSM over P and A.

ii) A configuration of a system S is a pair s = (~q, ~w) where

- ~q = (qp)p∈P with qp ∈ Qp,

- ~w = (wpq)pq∈C with wpq ∈ A∗.

The component ~q is the control state of the system and qp ∈ Qp is the local
state of machine Mp. The component ~w represents the state of the channels
of the system and wpq ∈ A∗ is the state of the channel for messages sent
from p to q. The initial configuration of S is s0 = (~q0, ~ε) with ~q0 = (q0p)p∈P.

Definition 2.3 (Reachable configuration). Let S be a communicating system

over P and A, and let s = (~q, ~w) and s′ = (~q′, ~w′) be two configurations of S.
Configuration s′ is reachable from s by firing a transition with action l , written

s
l−→ s′, if there is a ∈ A such that one of the following conditions holds:

1. l = sr!a and (qs, l , q
′
s) ∈ δs and

4

a) for all p 6= s : q′p = qp and

b) w′sr = wsr · a and for all pq 6= sr : w′pq = wpq;

2. l = sr?a and (qr, l , q
′
r) ∈ δr and

a) for all p 6= r : q′p = qp and

b) wsr = a · w′sr and for all pq 6= sr : w′pq = wpq.

We write s −→ s′ if there exists l such that s
l−→ s′. As usual, we denote the re-

flexive and transitive closure of −→ by −→∗. The set of reachable configurations
of S is RS(S) = {s | s0 −→∗ s}.

According to the last definition, communication happens via buffered channels
following the FIFO principle.

Definition 2.4 (Communication properties). Let S be a communicating system,
and let s = (~q, ~w) be a configuration of S.

i) s is a deadlock configuration if

~w = ~ε ∧ ∀p ∈ P. qp is a receiving state

i.e. all buffers are empty, but all machines are waiting for a message.
We say that S is deadlock-free whenever, for any s ∈ RS(S), s is not a
deadlock configuration.

ii) s is an orphan message configuration if

(∀p ∈ P. qp is final) ∧ ~w 6= ~ε

i.e. each machine is in a final state, but there is still at least one non-empty
buffer. We say that S is orphan message-free whenever, for any s ∈ RS(S),
s is not an orphan message configuration.

iii) s is an unspecified reception configuration if

a) ∃r ∈ P. qr is a receiving state ; and

b) ∀s ∈ P.[(qr, sr?a, q′r) ∈ δr =⇒ (|wsr| > 0 ∧ wsr 6∈ A∗ · a)].

i.e. there is a receiving state qr which is prevented from receiving any mes-
sage from any of its buffers. (In other words, in each channel sr from
which role r could consume there is a message which cannot be received
by r in state qr.) We say that S is reception error-free whenever, for any
s ∈ RS(S), s is not an unspecified reception configuration.

iv) S satisfies the progress property if for all s = (~q, ~w) ∈ RS(S), either there
exists s′ such that s −→ s′ or (∀p ∈ P. qp is final).

5

Note that the progress property iv) implies deadlock-freeness. The other
properties are orthogonal to each other.

The above definitions of communication properties are the same as the prop-
erties considered in [2], though our formulation of progress is slightly simpler
but equivalent to the one in [2]. The notions of orphan message and unspecified
reception are also the same in [3]. The same notions of deadlock and unspeci-
fied reception are given in [1] and inspired by [4]. The deadlock notions in [4]
and [3] coincide with [1] and [2] if the local CFSMs have no final states. Oth-
erwise deadlock in [3] is weaker than deadlock above. A still weaker notion of
deadlock configuration, and hence a stronger notion of deadlock-freeness, has
been suggested in [5]. To distinguish it from the notion above, we call it strong
deadlock-freeness.

Definition 2.5 (Strong deadlock-freeness). Let S be a communicating system,
and let s = (~q, ~w) be a configuration of S.
s is a weak deadlock configuration if s 6−→ and either

a) ∃r ∈ P such that qr
rs?a−→ q′r , or

b) ~w 6= ~ε

i.e. s is stuck and at the same time either a machine is still waiting for a message
or there is a message waiting in a buffer which cannot be consumed (or both).
We say that S is strongly deadlock-free whenever, for any s ∈ RS(S), s is not
a weak deadlock configuration.

As it is natural to expect, a stuck configuration made of final states and
empty buffers is not a weak deadlock configuration. But any orphan message
configuration is a weak deadlock configuration.

It can be shown that the strong deadlock-freeness property is equivalent
to the properties of progress and orphan message-freeness. Moreover, progress
is just the same as strong deadlock-freeness when alternative (b) of Definition
2.4(i) is omitted.

Proposition 2.6. Let S be a communicating system.

i) If S is strongly deadlock-free, then S is deadlock-free.

ii) There is no progress in a reachable configuration s = (~q, ~w) ∈ RS(S) if and
only if s 6−→ and

a) ∃r ∈ P such that qr
rs?a−→ q′r.

iii) S is strongly deadlock-free if and only if S is orphan message-free and sat-
isfies the progress property.

Proof. i) is obvious.
ii)⇒: Assume that there is no progress in s. Then s 6−→ and there exists r ∈ P
such that r is not final. Thus no sending action is possible in r. Therefore there

6

must exist a transition qr
rs?a−→ q′r and thus a) holds.

⇐: The converse direction is clear, since s 6−→ and, by (a), there exists r ∈ P

and qr
rs?a−→ q′r. Thus qr is not final.

iii) ⇒: Assume that there exists an orphan message configuration s ∈ RS(S).
Since for all p ∈ P, qp is final, we have s 6−→. Moreover, ~w 6= ~ε since s is an
orphan message configuration. Thus s is a weak deadlock configuration. Now
assume that there exists a configuration s ∈ RS(S) with no progress. Then,
using (ii), s is a weak deadlock configuration.
⇐: Assume that there is a weak deadlock configuration s ∈ RS(S). Then s 6−→.
If a) holds then, according to (ii), there is no progress in s. If a) does not
hold, then ∀p ∈ P. qp is final and, since s is a weak deadlock configuration,
b) in Def. 2.5 must hold, i.e. ~w 6= ~ε. In this case s is an orphan message
configuration.

In [4], Brand and Zafiropulo showed that most properties of interest,
such as logical correctness properties, are in general undecidable for
protocols specified in the CFSM model. Undecidability stems from
the potential unboundedness of the channels in the model. Even a
protocol consisting of two processes communicating over two chan-
nels with unbounded capacity appears as powerful as a Turing ma-
chine. In essence, the halting problem reduces to the problem of de-
tecting (logical) design errors in a protocol by using the unbounded
channels to simulate the tape of a Turing machine [4].
Despite this negative result, decidability of the verification problem
is known for some classes of protocols. Most eminently, reachabil-
ity analysis decides the verification problem for all those protocols
whose channels are bounded.
(PhD Thesis of Hans van der Schoot)

References

[1] G. Cécé, A. Finkel, Verification of programs with half-duplex communica-
tion, Inf. Comput. 202 (2) (2005) 166–190. doi:10.1016/j.ic.2005.05.

006.

[2] P. Deniélou, N. Yoshida, Multiparty session types meet communi-
cating automata, in: ESOP’12, 2012, pp. 194–213. doi:10.1007/

978-3-642-28869-2_10.

[3] J. Lange, E. Tuosto, N. Yoshida, From communicating machines to graphical
choreographies, in: POPL 2015, 2015, pp. 221–232. doi:10.1145/2676726.
2676964.

[4] D. Brand, P. Zafiropulo, On communicating finite-state machines, J. ACM
30 (2) (1983) 323–342. doi:10.1145/322374.322380.

7

http://dx.doi.org/10.1016/j.ic.2005.05.006
http://dx.doi.org/10.1016/j.ic.2005.05.006
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1145/2676726.2676964
http://dx.doi.org/10.1145/2676726.2676964
http://dx.doi.org/10.1145/322374.322380

[5] E. Tuosto, R. Guanciale, Semantics of global view of choreographies, J. Log.
Algebr. Meth. Program. 95 (2018) 17–40. doi:10.1016/j.jlamp.2017.11.
002.

8

http://dx.doi.org/10.1016/j.jlamp.2017.11.002
http://dx.doi.org/10.1016/j.jlamp.2017.11.002

	Introduction
	Systems of Communicating Finite State Machines

