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Chapter 1. Introduction
Scheme is a general-purpose computer programming language. It is a high-level 
language, supporting operations on structured data such as strings, lists, and vectors, as 
well as operations on more traditional data such as numbers and characters. While 
Scheme is often identified with symbolic applications, its rich set of data types and flexible 
control structures make it a truly versatile language. Scheme has been employed to write 
text editors, optimizing compilers, operating systems, graphics packages, expert systems, 
numerical applications, financial analysis packages, and virtually every other type of 
application imaginable. Scheme is a fairly simple language to learn, since it is based on a 
handful of syntactic forms and semantic concepts and since the interactive nature of most 
implementations encourages experimentation. Scheme is a challenging language to 
understand fully, however; developing the ability to use its full potential requires careful 
study and practice. 

Scheme programs are highly portable across implementations of the same Scheme 
system on different machines, because machine dependencies are almost completely 
hidden from the programmer. Also, because of two related Scheme standardization efforts, 
it is possible to use a standard dialect of Scheme to write programs that are portable 
across different Scheme implementations. The standard dialect is defined by an 
ANSI/IEEE Standard described in the "IEEE Standard for the Scheme Programming 
Language" [15]. The ANSI/IEEE standard grew out of an ongoing effort by a group of 
Scheme designers, who have published a series of less formal reports, the "Revised 
Reports" on Scheme. The most recent revised report, the "Revised4 Report" [4], describes 
a dialect very close to the standard dialect, differing primarily in the addition of a few 
primitives. A "Revised5 Report" is expected to appear soon, highlighted by the addition of a 
high- level syntactic extension system, an eval procedure, and multiple return values. 

Although some early Scheme systems were inefficient and slow, many newer compiler-
based implementations are fast, with programs running on par with equivalent programs 
written in lower-level languages. The relative inefficiency that sometimes remains results 
from run-time checks that help the programmer detect and correct various common 
programming errors. These checks may be disabled in most implementations. 

Scheme handles data values quite differently from most languages. Data values, or 
objects, are dynamically allocated in a heap where they are retained until no longer 
needed, then automatically deallocated. Objects are first-class data values; because they 
are heap-allocated and retained indefinitely, they may be passed freely as arguments to 
procedures, returned as values from procedures, and combined to form new objects. This 
is in contrast with most other languages where composite data values such as arrays are 
either statically allocated and never deallocated, allocated on entry to a block of code and 
unconditionally deallocated on exit from the block, or explicitly allocated and deallocated 
by the programmer. 

Scheme supports many types of objects, including numbers, characters, strings, symbols, 
and lists or vectors of objects. A full set of numeric data types, including complex, real, and 
arbitrary-precision rational numbers, allows Scheme to support many numerical 
applications typically coded in lower-level languages. 



At the heart of the Scheme language is a small core of syntactic forms from which all other 
forms are built. These core forms, a set of extended syntactic forms derived from them, 
and a library of primitive procedures make up the full Scheme language. An interpreter or 
compiler for Scheme can be quite small, and potentially fast and highly reliable. The 
extended syntactic forms and many primitive procedures can be defined in Scheme itself, 
simplifying the implementation and increasing reliability. 

Scheme programs share a common printed representation with Scheme data structures. 
As a result, any Scheme program has a natural and obvious internal representation as a 
Scheme object. For example, variables and syntactic keywords correspond to symbols, 
while structured syntactic forms correspond to lists. This representation is the basis for the 
syntactic extension facilities provided by most Scheme systems for the definition of new 
syntactic forms in terms of existing syntactic forms and procedures. It also facilitates the 
implementation of interpreters, compilers, and other program transformation tools for 
Scheme directly in Scheme, as well as program transformation tools for other languages in 
Scheme. 

Scheme variables and keywords are lexically scoped, and Scheme programs are block-
structured. Identifiers may be bound at top level (as are the names of primitive Scheme 
procedures and syntactic forms) or locally, within a given block of code. A local binding is 
visible only lexically, i.e., within the program text that makes up the particular block of 
code. An occurrence of an identifier of the same name outside this block refers to a 
different binding; if no binding for the identifier exists outside of the block, then the 
reference is invalid. Blocks may be nested, and a binding in one block may shadow a 
binding for an identifier of the same name in a surrounding block. The scope of a binding is 
the block in which the bound identifier is visible minus any portions of the block in which 
the identifier is shadowed. Block structure and lexical scoping help create programs that 
are modular, easy to read, easy to maintain, and reliable. Efficient code for lexical scoping 
is possible because a compiler can determine before program evaluation the scope of all 
bindings and the binding to which each identifier reference resolves. This does not mean, 
of course, that a compiler can determine the values of all variables, since the actual values 
are not computed in most cases until the program executes. 

In most languages, a procedure definition is simply the association of a name with a block 
of code. Certain variables local to the block are the parameters of the procedure. In some 
languages, a procedure definition may appear within another block or procedure so long 
as the procedure is invoked only during execution of the enclosing block. In others, 
procedures can be defined only at top level. In Scheme, a procedure definition may appear 
within another block or procedure, and the procedure may be invoked at any time 
thereafter, even if the enclosing block has completed its execution. To support lexical 
scoping, a procedure carries the lexical context (environment) along with its code. 

Furthermore, Scheme procedures are not always named. Instead, procedures are first-
class data objects like strings or numbers, and variables are bound to procedures in the 
same way they are bound to other objects. 

As with procedures in most other languages, Scheme procedures may be recursive. That 
is, any procedure may invoke itself directly or indirectly. Many algorithms are most 
elegantly or efficiently specified recursively. A special case of recursion, called tail 
recursion, is used to express iteration, or looping. A tail call occurs when one procedure 
directly returns the result of invoking another procedure; tail recursion occurs when a 



procedure recursively tail calls itself, directly or indirectly. Scheme implementations are 
required to implement tail calls as jumps (gotos), so the storage overhead normally 
associated with recursion is avoided. As a result, Scheme programmers need master only 
simple procedure calls and recursion and need not be burdened with the usual assortment 
of looping constructs. 

Scheme supports the definition of arbitrary control structures with continuations. A 
continuation is a procedure that embodies the remainder of a program at a given point in 
the program. When a continuation is invoked, the program immediately continues from that 
point. A continuation may be obtained at any time during the execution of a program. As 
with other procedures, a continuation is a first-class object and may be invoked at any time 
after its creation. Continuations allow the implementation of complex control mechanisms 
including explicit backtracking, multithreading, and coroutines. 

Many Scheme implementations support the syntax-rules syntactic extension (macro) system 
adopted for inclusion in the Revised5 Report on Scheme. This system allows programmers 
to define extended syntactic forms in terms of existing syntactic forms using a convenient 
high- level pattern language. Of those implementations that do not support syntax-rules, 
virtually all provide some other mechanism for defining extended syntactic forms. Syntactic 
extensions are useful for defining new language constructs, for emulating language 
constructs found in other languages, for achieving the effects of in-line code expansion, 
and even for emulating entire languages in Scheme. Most large Scheme programs are 
built from a mix of syntactic extensions and procedure definitions. 

Scheme evolved from the Lisp language and is considered to be a dialect of Lisp. Scheme 
inherited from Lisp the treatment of values as first-class objects, several important data 
types, including symbols and lists, and the representation of programs as objects, among 
other things. Lexical scoping and block structure are features taken from Algol 60 [18]. 
Scheme was the first Lisp dialect to adopt lexical scoping and block structure, the notion of 
first-class procedures, treatment of tail calls as jumps, and continuations. 

Common Lisp [22] and Scheme are both contemporary Lisp languages, and the 
development of each has been influenced by the other. Like Scheme but unlike earlier Lisp 
languages, Common Lisp adopted lexical scoping and first-class procedures. Common 
Lisp's evaluation rules for procedures are different from the evaluation rules for other 
objects, however, and it maintains a separate namespace for procedure variables, thereby 
discouraging the use of procedures as first-class objects. Also, Common Lisp does not 
support continuations or require proper treatment of tail calls, but it does support several 
less general control structures not found in Scheme. While the two languages are similar, 
Common Lisp includes more specialized operators, while Scheme includes more general-
purpose building blocks out of which such operators (and others) may be built. 

The remainder of this chapter describes Scheme's syntax and naming conventions and the 
typographical conventions used throughout this book. 

Section 1.1. Scheme Syntax

Scheme programs are made up of keywords, variables, structured forms, constant data 
(numbers, characters, strings, quoted vectors, quoted lists, quoted symbols, etc.), 
whitespace, and comments. 



Keywords, variables, and symbols are collectively called identifiers. Identifiers may be 
formed from the following set of characters: 

• the lowercase letters a through z, 
• the uppercase letters A through Z, 
• the digits 0 through 9, and 
• the characters ? ! . + - * / < = > : $ % ^ & _ ~. 

Identifiers normally cannot start with any character that may start a number, i.e., a digit, 
plus sign ( + ), minus sign ( - ), or decimal point ( . ). Exceptions are +, -, and ..., which are 
valid identifiers. For example, hi, Hello, n, x, x3, and ?$&*!!! are all identifiers. Identifiers must 
be delimited by whitespace, parentheses, a string (double) quote ( " ), or the comment 
character ( ; ). All implementations must recognize as identifiers any sequences of 
characters that adhere to these rules. Other sequences of characters, such as -1234a, that 
do not represent numbers or other syntactic entities may be recognized as identifiers in 
some implementations, although it is best to avoid such identifiers in code that may need 
to run in more than one Scheme system. 

There is no inherent limit on the length of a Scheme identifier; programmers may use as 
many characters as necessary. Long identifiers are no substitute for comments, however, 
and frequent use of long identifiers can make a program difficult to format and 
consequently difficult to read. 

Identifiers may be written in any mix of uppercase and lowercase letters. The case is not 
important, in that two identifiers differing only in case are identical. For example, abcde, 
Abcde, AbCdE, and ABCDE all refer to the same identifier. Scheme systems typically print an 
identifier in either all uppercase or all lowercase letters regardless of the way it is entered. 

Structured forms and list constants are enclosed within parentheses, e.g., (a b c) or (* (- x 2) 
y). The empty list is written (). Some implementations permit the use of brackets ( [ ] ) in 
place of parentheses, and brackets are sometimes used to set off particular 
subexpressions for readability. 

The boolean values representing true and false are written as #t and #f. Scheme 
conditional expressions actually treat #f as false and all other objects as true. 

The ANSI/IEEE standard requires that () and #f be distinct objects, but the Revised4 Report 
allows them to be the same. If they are the same, () counts, naturally, as false; otherwise, it 
counts as true. Scheme implementations in which () and #f are the same object always 
choose one way or the other to write the object when it is printed, which can lead to some 
confusion. This book always uses () for the empty list and #f for false. 

Vectors are written similarly to lists, except that they are preceded by #( and terminated by 
), e.g., #(this is a vector of symbols). Strings are enclosed in double quotation marks, e.g., "I am 
a string". Characters are preceded by #\, e.g., #\a. Case is important within character and 
string constants, unlike within identifiers. Numbers may be written as integers, e.g., -123, 
as ratios, e.g., 1/2, in floating-point or scientific notation, e.g., 1.3 or 1e23, or as complex 
numbers in rectangular or polar notation, e.g., 1.3-2.7i or -1.2@73. Details of the syntax for 
each type of constant data are given in the individual sections of Chapter 6 and in the 
formal syntax of Scheme given in the back of the book. 



Scheme expressions may span several lines, and no explicit terminator is required. Since 
the number of whitespace characters (spaces and newlines) between expressions is not 
significant, Scheme programs are normally indented to show the structure of the code in a 
way that is pleasing to the author of the program. Comments may appear on any line of a 
Scheme program, between a semicolon ( ; ) and the end of the line. Comments explaining 
a particular Scheme expression are normally placed at the same indentation level as the 
expression, on the line before the expression. Comments explaining a procedure or group 
of procedures are normally placed before the procedures, without indentation. Multiple 
comment characters are often used to set off the latter kind of comment, e.g., ;;; The 
following procedures .... 

Section 1.2. Scheme Naming Conventions

Scheme's naming conventions are designed to provide a high degree of regularity. The 
following is a list of these naming conventions: 

• Predicate names end in a question mark ( ? ). Predicates are procedures that return 
with a true or false answer, such as eq?, zero?, and string=?. The common numeric 
comparators =, <, >, <=, and >= are exceptions to this rule. 

• Type predicates, such as pair?, are created from the name of the type, in this case 
pair, and the question mark. 

• The names of most character, string, and vector procedures start with the prefix 
char-, string-, and vector-, e.g., string-append. (The names of some list procedures start 
with list-, but most do not.) 

• The names of procedures that convert an object of one type into an object of 
another type are written as type1->type2, e.g., vector->list. 

• The names of procedures and syntactic forms that cause side effects end with an 
exclamation point ( ! ). These include set! and vector-set!. Procedures that perform 
input or output technically cause side effects, but their names are exceptions to this 
rule. 

Section 1.3. Typographical and Notational Conventions

Often, the value of a procedure or syntactic form is said to be unspecified. This means that 
an implementation is free to return any Scheme object as the value of the procedure or 
syntactic form. Do not count on this value being the same across implementations, the 
same across versions of the same implementation, or even the same across two uses of 
the procedure or syntactic form. Some Scheme systems routinely use a special object to 
represent unspecified values. Printing of this object is often suppressed by interactive 
Scheme systems, so that the values of expressions returning unspecified values are not 
printed. 

Scheme expressions usually evaluate to a single value, although the multiple values 
mechanism described in Section 5.8 allows an expression to evaluate to zero or more than 
one value. To simplify the presentation, this book usually refers to the result of an 
expression as a single value even if the expression may in fact evaluate to zero or more 
than one value. 



This book sometimes says "it is an error" or "an error will be signaled" when describing a 
circumstance in violation of the rules of Scheme. Something that is an error is not valid in 
Scheme, and the behavior of a Scheme implementation in such a case is not specified. A 
signaled error results in the invocation of an implementation-dependent error handler, 
which typically results in an error message being printed and a reset of the interactive 
programming system or entry into a debugging subsystem. 

The typographic conventions used in this book are straightforward. All Scheme objects are 
printed in a typewriter typeface, just as they are to be typed at the keyboard. This includes 
syntactic keywords, variables, constant objects, Scheme expressions, and example 
programs. An italic typeface is used to set off syntax variables in the descriptions of 
syntactic forms and arguments in the descriptions of procedures. Italics are also used to 
set off technical terms the first time they appear. In general, names written in typewriter 
font are never capitalized (even at the beginning of a sentence). The same is true for 
syntax variables written in italics. 

In the description of a syntactic form or procedure, a pattern shows the syntactic form or 
the application of the procedure. The syntax keyword or procedure name is given in 
typewriter font, as are parentheses. The remaining pieces of the syntax or arguments are 
shown in italics, using a name that implies the type of expression or argument expected by 
the syntactic form or procedure. Ellipses are used to specify zero or more occurrences of a 
subexpression or argument. For example, (or exp ...) describes the or syntactic form, which 
has zero or more subexpressions, and (member obj list) describes the member procedure, 
which expects two arguments, an object and a list. 



Chapter 2. Getting Started
This chapter is an introduction to Scheme for programmers who are new to the language. 
You will get more from this chapter if you are sitting in front of an interactive Scheme 
system, trying out the examples as you go. 

After reading this chapter and working the exercises, you should be able to start using 
Scheme. You will have learned the syntax of Scheme programs and how they are 
executed, along with how to use simple data structures and control mechanisms. 

Section 2.1. Interacting with Scheme

Most Scheme systems provide an interactive programming environment that simplifies 
learning and experimentation. The simplest interaction with Scheme follows a "read-
evaluate-print" cycle. A program (often called a read-evaluate-print loop, or REPL) reads 
each expression you type at the keyboard, evaluates it, and prints its value. 

With an interactive Scheme system, you can type an expression at the keyboard and see 
its value immediately. You can define a procedure and apply it to arguments to see how it 
works. You can even type in an entire program consisting of a set of procedure definitions 
and test it without leaving the system. When your program starts getting longer, it will be 
more convenient to type it into a file (using a text editor), load the file (using load), and test 
it interactively. Preparing your program in a file has several advantages: you have a 
chance to compose your program more carefully, you can correct errors without retyping 
the program, and you can retain a copy for later use. Scheme treats expressions loaded 
from a file the same as expressions typed from the keyboard. 

While Scheme provides various input and output procedures, the REPL takes care of 
reading expressions and printing their values. Furthermore, if you need to save the results 
for later use, you can make a transcript (using transcript-on and transcript-off; see Section 7.4) 
of an interactive session. This frees you to concentrate on writing your program without 
worrying about how its results will be displayed or saved. 

The examples of this chapter follow a regular format. An expression you might type from 
your keyboard is given first, possibly spanning several lines. The system's response is 
given after the , to be read as "evaluates to." The is omitted when the value of the 
expression is unspecified or not of interest. 

The example programs are formatted in a style that "looks nice" and conveys the structure 
of the program. The code is easy to read because the relationship between each 
expression and its subexpressions is clearly shown. Scheme ignores indentations and line 
breaks, however, so there is no need to follow a particular style. The important thing is to 
establish one style and keep to it. Scheme sees each program as if it were on a single line, 
with its subexpressions ordered from left to right. 



If you have access to an interactive Scheme system, it might be a good idea to start it up 
now and type in the examples as you read. One of the simplest Scheme expressions is a 
string constant. Try typing "Hi Mom!" (including the double quotes) in response to the 
prompt. The system should respond with "Hi Mom!"; the value of any constant is the 
constant itself. 

"Hi Mom!" "Hi Mom!" 

Here is a set of expressions, each with Scheme's response. They are explained in later 
sections of this chapter, but for now use them to practice interacting with Scheme. 

"hello" "hello"
42 42
22/7 22/7
3.141592653 3.141592653
+ #<procedure>
(+ 76 31) 107
'(a b c d) (a b c d) 

Be careful not to miss any single quotes ( ' ), double quotes, or parentheses. If you left off 
a single quote in the last expression, you probably received an error message. Just try 
again. If you left off a closing parenthesis or double quote, the system may still be waiting 
for it. 

Here are a few more expressions to try. You can try to figure out on your own what they 
mean or wait to find out later in the chapter. 

(car '(a b c)) a
(cdr '(a b c)) (b c)
(cons 'a '(b c)) (a b c)
(cons (car '(a b c))

(cdr '(d e f))) (a e f) 

As you can see, Scheme expressions may span more than one line. The Scheme system 
knows when it has an entire expression by matching double quotes and parentheses. 

Next, let's try defining a procedure. 

(define square
(lambda (n)
(* n n))) 

The procedure square computes the square n2 of any number n. We say more about the 
expressions that make up this definition later in this chapter. For now it suffices to say that 
define establishes variable bindings, lambda creates procedures, and * names the 
multiplication procedure. Note the form of these expressions. All structured forms are 
enclosed in parentheses and written in prefix notation, i.e., the operator precedes the 
arguments. As you can see, this is true even for simple arithmetic operations such as *. 

Try using square. 

(square 5) 25
(square -200) 40000



(square 0.5) 0.25
(square -1/2) 1/4 

Scheme systems that do not support exact ratios internally may print 0.25 for (square -1/2). 

Even though the next definition is short, you might enter it into a file. Let's assume you call 
the file "reciprocal.ss." 

(define reciprocal
(lambda (n)
(if (= n 0)

"oops!"
(/ 1 n)))) 

This procedure, reciprocal, computes the quantity 1/n for any number . For n = 0, 
reciprocal returns the string "oops!". Return to Scheme and try loading your file with the 
procedure load. 

(load "reciprocal.ss") 

Finally, try using the procedure we have just defined. 

(reciprocal 10) 1/10
(reciprocal 1/10) 10
(reciprocal 0) "oops!"
(reciprocal (reciprocal 1/10)) 1/10 

In the next section we will discuss Scheme expressions in more detail. Throughout this 
chapter, keep in mind that your Scheme system is one of the most useful tools for learning 
Scheme. Whenever you try one of the examples in the text, follow it up with your own 
examples. In an interactive Scheme system, the cost of trying something out is relatively 
small---usually just the time to type it in. 

Section 2.2. Simple Expressions

The simplest Scheme expressions are constant data objects, such as strings, numbers, 
symbols, and lists. Scheme supports other object types, but these four are enough for 
many programs. We saw some examples of strings and numbers in the preceding section. 

Let's discuss numbers in a little more detail. Numbers are constants. If you enter a 
number, Scheme echoes it back to you. The following examples show that Scheme 
supports several types of numbers. 

123456789987654321 123456789987654321
3/4 3/4
2.718281828 2.718281828
2.2+1.1i 2.2+1.1i 

Scheme numbers include exact and inexact integer, rational, real, and complex numbers. 
Exact integers and rational numbers have arbitrary precision, i.e., they can be of arbitrary 
size. Inexact numbers are usually represented internally using IEEE standard floating-point 
representations. Scheme implementations, however, need not support all types of 



numbers and have great freedom where internal representations are concerned. 
Experiment to determine what kind of numbers the Scheme system you are using 
supports. 

Scheme provides the names +, -, *, and / for the corresponding arithmetic procedures. 
Each procedure accepts two numeric arguments. The expressions below are called 
procedure applications, because they specify the application of a procedure to a set of 
arguments. 

(+ 1/2 1/2) 1
(- 1.5 1/2) 1.0 

(* 3 1/2) 3/2
(/ 1.5 3/4) 2.0 

Scheme employs prefix notation even for common arithmetic operations. Any procedure 
application, whether the procedure takes zero, one, two, or more arguments, is written as 
(procedure arg ...). This regularity simplifies the syntax of expressions; one notation is 
employed regardless of the operation, and there are no complicated rules regarding the 
precedence or associativity of operators. 

Procedure applications may be nested, in which case the innermost values are computed 
first. We can thus nest applications of the arithmetic procedures given above to evaluate 
more complicated formulas. 

(+ (+ 2 2) (+ 2 2)) 8
(- 2 (* 4 1/3)) 2/3
(* 2 (* 2 (* 2 (* 2 2)))) 32
(/ (* 6/7 7/2) (- 4.5 1.5)) 1.0 

These examples demonstrate everything you need to use Scheme as a four-function desk 
calculator. While we will not discuss them in this chapter, Scheme supports many other 
arithmetic procedures. Now might be a good time to turn to Section 6.3 and experiment 
with some of them. 

Simple numeric objects are sufficient for many tasks, but sometimes aggregate data 
structures containing two or more values are needed. In many languages, the basic 
aggregate data structure is the array. In Scheme, it is the list. Lists are written as 
sequences of objects surrounded by parentheses. For instance, (1 2 3 4 5) is a list of 
numbers, and ("this" "is" "a" "list") is a list of strings. Lists need not contain only one type of 
object, so (4.2 "hi") is a valid list containing a number and a string. Lists may be nested 
(may contain other lists), so ((1 2) (3 4)) is a valid list with two elements, each of which is a 
list of two elements. 

You may notice that lists look just like procedure applications and wonder how Scheme 
tells them apart. That is, how does Scheme distinguish between a list of objects, (obj1 obj2
...), and a procedure application, (procedure arg ...)? 

In some cases, the distinction may seem obvious. The list of numbers (1 2 3 4 5) could 
hardly be confused with a procedure application, since 1 is a number, not a procedure. So, 
the answer might be that Scheme looks at the first element of the list or procedure 
application and makes its decision based on whether that first element is a procedure or 
not. This answer is not good enough, since we may even want to treat a valid procedure 



application such as (+ 3 4) as a list. The answer is that we must tell Scheme explicitly to 
treat a list as data rather than as a procedure application. We do this with quote. 

(quote (1 2 3 4 5)) (1 2 3 4 5)
(quote ("this" "is" "a" "list")) ("this" "is" "a" "list")
(quote (+ 3 4)) (+ 3 4) 

The quote forces the list to be treated as data. Try entering the above expressions without 
the quote; you will likely receive an error message for the first two and an incorrect answer 
(7) for the third. 

Because quote is required fairly frequently in Scheme code, Scheme recognizes a single 
quotation mark ( ' ) preceding an expression as an abbreviation for quote. 

'(1 2 3 4) (1 2 3 4)
'((1 2) (3 4)) ((1 2) (3 4))
'(/ (* 2 -1) 3) (/ (* 2 -1) 3) 

Both forms are referred to as quote expressions. We often say an object is quoted when it 
is enclosed in a quote expression. 

A quote expression is not a procedure application, since it inhibits the evaluation of its 
"argument" expression. It is an entirely different syntactic form. Scheme supports several 
other syntactic forms in addition to procedure applications and quote expressions. Each 
syntactic form is evaluated differently. Fortunately, the number of different syntactic forms 
is small. We will see more of them later in this chapter. 

Not all quote expressions involve lists. Try the following expression with and without the 
quote. 

(quote hello) hello 

The symbol hello must be quoted in order to prevent Scheme from treating hello as a 
variable. Symbols and variables in Scheme are similar to symbols and variables in 
mathematical expressions and equations. When we evaluate the mathematical expression 
1 - x for some value of x, we think of x as a variable. On the other hand, when we consider 
the algebraic equation x2 - 1 = (x - 1)(x + 1), we think of x as a symbol (in fact, we think of 
the whole equation symbolically). Just as quoting a list tells Scheme to treat a 
parenthesized form as a list rather than as a procedure application, quoting an identifier 
tells Scheme to treat the identifier as a symbol rather than as a variable. While symbols 
are commonly used to represent variables in symbolic representations of equations or 
programs, symbols may also be used, for example, as words in the representation of 
natural language sentences. 

You might wonder why applications and variables share notations with lists and symbols. 
The shared notation allows Scheme programs to be represented as Scheme data, 
simplifying the writing of interpreters, compilers, editors, and other tools in Scheme. This is 
demonstrated by the Scheme interpreter given in Section 9.7, which is itself written in 
Scheme. Many people believe this to be one of the most important features of Scheme. 

Numbers and strings may be quoted, too:



'2 2
'2/3 2/3
(quote "Hi Mom!") "Hi Mom!" 

Numbers and strings are treated as constants in any case, however, so quoting them is 
unnecessary. 

Now let's discuss some Scheme procedures for manipulating lists. There are two basic 
procedures for taking lists apart: car and cdr (pronounced could-er). car returns the first 
element of a list, and cdr returns the remainder of the list. (The names "car" and "cdr" are 
derived from operations supported by the first computer on which a Lisp language was 
implemented, the IBM 704.) Each requires a nonempty list as its argument. 

(car '(a b c)) a
(cdr '(a b c)) (b c)
(cdr '(a)) () 

(car (cdr '(a b c))) b
(cdr (cdr '(a b c))) (c) 

(car '((a b) (c d))) (a b)
(cdr '((a b) (c d))) ((c d)) 

The first element of a list is often called the "car" of the list, and the rest of the list is often 
called the "cdr" of the list. The cdr of a list with one element is (), the empty list. 

The procedure cons constructs lists. It takes two arguments. The second argument is 
usually a list, and in that case cons returns a list. 

(cons 'a '()) (a)
(cons 'a '(b c)) (a b c)
(cons 'a (cons 'b (cons 'c '()))) (a b c)
(cons '(a b) '(c d)) ((a b) c d) 

(car (cons 'a '(b c))) a
(cdr (cons 'a '(b c))) (b c)
(cons (car '(a b c))

(cdr '(d e f))) (a e f)
(cons (car '(a b c))

(cdr '(a b c))) (a b c) 

Just as "car" and "cdr" are often used as nouns, "cons" is often used as a verb. Creating a 
new list by adding an element to the beginning of a list is referred to as consing the 
element onto the list. 

Notice the word "usually" in the third sentence of the preceding paragraph. The procedure 
cons actually builds pairs, and there is no reason that the cdr of a pair must be a list. A list 
is a sequence of pairs; each pair's cdr is the next pair in the sequence. The cdr of the last 
pair in a proper list is the empty list. Otherwise, the sequence of pairs forms an improper 
list. More formally, the empty list is a proper list, and any pair whose cdr is a proper list is a 
proper list. 

An improper list is printed in dotted-pair notation, with a period, or dot, preceding the final 
element of the list. 



(cons 'a 'b) (a . b)
(cdr '(a . b)) b
(cons 'a '(b . c)) (a b . c) 

Because of its printed notation, a pair whose cdr is not a list is often called a dotted pair. 
Even pairs whose cdrs are lists can be written in dotted-pair notation, however, although 
the printer always chooses to write proper lists without dots. 

'(a . (b . (c . ()))) (a b c) 

The procedure list is similar to cons, except that it takes an arbitrary number of arguments 
and always builds a proper list. 

(list 'a 'b 'c) (a b c)
(list 'a) (a)
(list) () 

Section 6.2 provides more information on lists and the Scheme procedures for 
manipulating them. This might be a good time to turn to that section and familiarize 
yourself with the other procedures given there. 

Exercise 2.2.1

Convert the following arithmetic expressions into Scheme expressions and evaluate them. 
a. 1.2 × (2 - 1/3) + -8.7 
b. (2/3 + 4/9)/(5/11 - 4/3) 
c. 1 + 1/(2 + 1/(1 + 1/2)) 
d. 1 × -2 × 3 × -4 × 5 × -6 × 7 

Exercise 2.2.2

Experiment with the procedures +, -, *, and / to determine Scheme's rules for the type of 
value returned by each when given different types of numeric arguments. 

Exercise 2.2.3

Determine the values of the following expressions. 
a. (cons 'car 'cdr)

b. (list 'this '(is silly))

c. (cons 'is '(this silly?))

d. (quote (+ 2 3))

e. (cons '+ '(2 3))

f. (car '(+ 2 3))

g. (cdr '(+ 2 3))

h. cons

i. (quote cons)

j. (quote (quote cons))



k. (car (quote (quote cons)))

l. (+ 2 3)

m. (+ '2 '3)

n. (+ (car '(2 3)) (car (cdr '(2 3))))

o. ((car (list + - * /)) 2 3)

Exercise 2.2.4

(car (car '((a b) (c d)))) yields a. Determine which compositions of car and cdr applied to ((a b) (c 
d)) yield b, c, and d. 

Exercise 2.2.5

The behavior of (car (car (car '((a b) (c d))))) is undefined because (car '((a b) (c d))) is (a b), (car '(a 
b)) is a, and (car 'a) is undefined. Determine all legal compositions of car and cdr applied to 
((a b) (c d)). 

Exercise 2.2.6

Try to explain how Scheme expressions are evaluated. Does your explanation cover the 
last example in Exercise 2.2.3? 

Section 2.3. Evaluating Scheme Expressions

Let's turn to a discussion of how Scheme evaluates the expressions you type. We have 
already established the rules for constant objects such as strings and numbers; the object 
itself is the value. You have probably also worked out in your mind a rule for evaluating 
procedure applications of the form (procedure arg1 ... argn). Here, procedure is an expression 
representing a Scheme procedure, and arg1 ... argn are expressions representing its 
arguments. One possibility is the following. 

• Find the value of procedure. 
• Find the value of arg1. 

• Find the value of argn. 
• Apply the value of procedure to the values of arg1 ... argn. 

For example, consider the simple procedure application (+ 3 4). The value of + is the 
addition procedure, the value of 3 is the number 3, and the value of 4 is the number 4. 
Applying the addition procedure to 3 and 4 yields 7, so our value is the object 7. 

By applying this process at each level, we can find the value of the nested expression (* (+ 
3 4) 2). The value of * is the multiplication procedure, the value of (+ 3 4) we can determine 
to be the number 7, and the value of 2 is the number 2. Multiplying 7 by 2 we get 14, so 
our answer is 14. 



This rule works for procedure applications but not for quote expressions because the 
subexpressions of a procedure application are evaluated, whereas the subexpression of a 
quote expression is not. The evaluation of a quote expression is more similar to the 
evaluation of constant objects. The value of a quote expression of the form (quote object) is 
simply object. 

Constant objects, procedure applications, and quote expressions are only three of the 
many syntactic forms provided by Scheme. Fortunately, only a few of the other syntactic 
forms need to be understood directly by a Scheme programmer; these are referred to as 
core syntactic forms. The remaining syntactic forms are syntactic extensions defined, 
ultimately, in terms of the core syntactic forms. We will discuss the remaining core 
syntactic forms and a few syntactic extensions in the remaining sections of this chapter. 
Section 3.1 summarizes the core syntactic forms and introduces the syntactic extension 
mechanism. 

Before we go on to more syntactic forms and procedures, two points related to the 
evaluation of procedure applications are worthy of note. First, the process given above is 
overspecified, in that it requires the subexpressions to be evaluated from left to right. That 
is, procedure is evaluated before arg1, arg1 is evaluated before arg2, and so on. This need 
not be the case. A Scheme evaluator is free to evaluate the expressions in any order---left 
to right, right to left, or any other sequential order. In fact, the subexpressions may be 
evaluated in different orders for different applications even in the same implementation. 

The second point is that procedure is evaluated in the same manner as arg1 ... argn. While 
procedure is often a variable that names a particular procedure, this need not be the case. 
Exercise 2.2.3 had you determine the value of ((car (list + - * /)) 2 3). Here, procedure is (car 
(list + - * /)). The value of (car (list + - * /)) is the addition procedure, just as if procedure were 
simply the variable +. 

Exercise 2.3.1

Write down the steps necessary to evaluate each of the following expressions. 
a. ((car (cdr (list + - * /))) 17 5)

b. (cons (quote -) (cdr (quote (+ b c))))

c. (cdr (cdr '(a b c)))

d. (cons 'd (cdr (cdr '(a b c d e f))))

e. (cons (+ '2 1/2) (list (- '3 1/3) (+ '4 1/4)))

Section 2.4. Variables and Let Expressions

Suppose expr is a Scheme expression that contains a variable var. Suppose, additionally, 
that we would like var to have the value val when we evaluate expr. For example, we 
might like x to have the value 2 when we evaluate (+ x 3). Or, we might want y to have the 
value 3 when we evaluate (+ 2 y). The following examples demonstrate how to do this using 
Scheme's let syntactic form. 

(let ((x 2))
(+ x 3)) 5 



(let ((y 3))
(+ 2 y)) 5 

(let ((x 2) (y 3))
(+ x y)) 5 

The let syntactic form includes a list of variable-value pairs, along with a sequence of 
expressions referred to as the body of the let. The general form of a let expression is 

(let ((var val) ...) exp1 exp2 ...) 

We say the variables are bound to the values by the let. We refer to variables bound by let
as let-bound variables. 

A let expression is often used to simplify an expression that would contain two identical 
subexpressions. Doing so also ensures that the value of the common subexpression is 
computed only once. 

(+ (* 4 4) (* 4 4)) 32 

(let ((a (* 4 4)))
(+ a a)) 32 

(let ((list1 '(a b c)) (list2 '(d e f)))
(cons (cons (car list1)

(car list2))
(cons (car (cdr list1))

(car (cdr list2))))) ((a . d) b . e) 

Since expressions in the first position of a procedure application are evaluated no 
differently from other expressions, a let-bound variable may be used there as well. 

(let ((f +))
(f 2 3)) 5 

(let ((f +) (x 2))
(f x 3)) 5 

(let ((f +) (x 2) (y 3))
(f x y)) 5 

The variables bound by let are visible only within the body of the let. 

(let ((+ *))
(+ 2 3)) 6 

(+ 2 3) 5 

This is fortunate, because we would not want the preceding to change the value of + to the 
multiplication procedure everywhere. 

It is possible to nest let expressions. 

(let ((a 4) (b -3))
(let ((a-squared (* a a))



(b-squared (* b b)))
(+ a-squared b-squared))) 25 

When nested let expressions bind the same variable, only the binding created by the inner 
let is visible within its body. 

(let ((x 1))
(let ((x (+ x 1)))
(+ x x))) 4 

The outer let expression binds x to 1 within its body, which is the second let expression. 
The inner let expression binds x to (+ x 1) within its body, which is the expression (+ x x). 
What is the value of (+ x 1)? Since (+ x 1) appears within the body of the outer let but not 
within the body of the inner let, the value of x must be 1 and hence the value of (+ x 1) is 2. 
What about (+ x x)? It appears within the body of both let expressions. Only the inner 
binding for x is visible, so x is 2 and (+ x x) is 4. 

The inner binding for x is said to shadow the outer binding. A let-bound variable is visible 
everywhere within the body of its let expression except where it is shadowed. The region 
where a variable binding is visible is called its scope. The scope of the first x in the 
example above is the body of the outer let expression minus the body of the inner let
expression, where it is shadowed by the second x. This form of scoping is referred to as 
lexical scoping, since the scope of each binding can be determined by a straightforward 
textual analysis of the program. 

Shadowing may be avoided by choosing different names for variables. The expression 
above could be rewritten so that the variable bound by the inner let is new-x. 

(let ((x 1))
(let ((new-x (+ x 1)))
(+ new-x new-x))) 4 

Although it is sometimes best to avoid confusion by choosing different names, shadowing 
can help prevent the accidental use of an "old" value. For example, with the original 
version of the preceding example, it would be impossible for us to mistakenly refer to the 
outer x within the body of the inner let. 

Exercise 2.4.1

Rewrite the following expressions, using let to remove common subexpressions and to 
improve the structure of the code. Do not perform any algebraic simplifications. 
a. (+ (- (* 3 a) b) (+ (* 3 a) b))

b. (cons (car (list a b c)) (cdr (list a b c)))

Exercise 2.4.2

Determine the value of the following expression. Explain how you derived this value. 

(let ((x 9))
(* x
(let ((x (/ x 3)))
(+ x x)))) 



Exercise 2.4.3

Rewrite the following expressions to give unique names to each different let-bound variable 
so that none of the variables is shadowed. Verify that the value of your expression is the 
same as that of the original expression. 
a. (let ((x 'a) (y 'b))

(list (let ((x 'c)) (cons x y))
(let ((y 'd)) (cons x y)))) 

b. (let ((x '((a b) c)))
(cons (let ((x (cdr x)))

(car x))
(let ((x (car x)))
(cons (let ((x (cdr x)))

(car x))
(cons (let ((x (car x)))

x)
(cdr x)))))) 

Section 2.5. Lambda Expressions

In the expression (let ((x (* 3 4))) (+ x x)), the variable x is bound to the value of (* 3 4). What if 
we would like the value of (+ x x) where x is bound to the value of (/ 99 11)? Where x is 
bound to the value of (- 2 7)? In each case we need a different let expression. When the 
body of the let is complicated, however, having to repeat it can be inconvenient. 

Instead, we can use the syntactic form lambda to create a new procedure that has x as a 
parameter and has the same body as the let expression. 

(lambda (x) (+ x x)) #<procedure> 

The general form of a lambda expression is 

(lambda (var ...) exp1 exp2 ...) 

The variables var ... are the formal parameters of the procedure, and the sequence of 
expressions exp1 exp2 ... is its body. (Actually, the true general form is somewhat more 
general than this, as you will see later.) 

A procedure is just as much an object as a number, string, symbol, or pair. It does not 
have any meaningful printed representation as far as Scheme is concerned, however, so 
this book uses the notation #<procedure> to show that the value of an expression is a 
procedure. 

The most common operation to perform on a procedure is to apply it to one or more 
values. 

((lambda (x) (+ x x)) (* 3 4)) 24 

This is no different from any other procedure application. The procedure is the value of 
(lambda (x) (+ x x)), and the only argument is the value of (* 3 4), or 12. The argument values, 
or actual parameters, are bound to the formal parameters within the body of the lambda
expression in the same way as let-bound variables are bound to their values. In this case, x



is bound to 12, and the value of (+ x x) is 24. Thus, the result of applying the procedure to 
the value 12 is 24. 

Because procedures are objects, we can establish a procedure as the value of a variable 
and use the procedure more than once. 

(let ((double (lambda (x) (+ x x))))
(list (double (* 3 4))

(double (/ 99 11))
(double (- 2 7)))) (24 18 -10) 

Here, we establish a binding for double to a procedure, then use this procedure to double 
three different values. 

The procedure expects its actual parameter to be a number, since it passes the actual 
parameter on to +. In general, the actual parameter may be any sort of object. Consider, 
for example, a similar procedure that uses cons instead of +. 

(let ((double-cons (lambda (x) (cons x x))))
(double-cons 'a)) (a . a) 

Noting the similarity between double and double-cons, you should not be surprised to learn 
that they may be collapsed into a single procedure by adding an additional argument. 

(let ((double-any (lambda (f x) (f x x))))
(list (double-any + 13)

(double-any cons 'a))) (26 (a . a)) 

This demonstrates that procedures may accept more than one argument and that 
arguments passed to a procedure may themselves be procedures. 

As with let expressions, lambda expressions become somewhat more interesting when they 
are nested within other lambda or let expressions. 

(let ((x 'a))
(let ((f (lambda (y) (list x y))))
(f 'b))) (a b) 

The occurrence of x within the lambda expression refers to the x outside the lambda that is 
bound by the outer let expression. The variable x is said to occur free in the lambda
expression or to be a free variable of the lambda expression. The variable y does not occur 
free in the lambda expression since it is bound by the lambda expression. A variable that 
occurs free in a lambda expression should be bound by an enclosing lambda or let
expression, unless the variable is (like the names of primitive procedures) bound at top 
level, as we discuss in the following section. 

What happens when the procedure is applied somewhere outside the scope of the 
bindings for variables that occur free within the procedure, as in the following expression? 

(let ((f (let ((x 'a))
(lambda (y) (cons x y)))))

(f 'b)) (a . b) 



The answer is that the same bindings that were in effect when the procedure was created 
are in effect again when the procedure is applied. This is true even if another binding for x
is visible where the procedure is applied. 

(let ((f (let ((x 'a))
(lambda (y) (cons x y)))))

(let ((x 'i-am-not-a))
(f 'b))) (a . b) 

In both cases, the value of x within the procedure named f is a. 

Incidentally, a let expression is nothing more than the direct application of a lambda
expression to a set of argument expressions. For example, the two expressions below are 
equivalent: 

(let ((x 'a))
(cons x x)) 

((lambda (x) (cons x x))
'a) 

In fact, a let expression is a syntactic extension defined in terms of lambda and procedure 
application, which are both core syntactic forms. In general, any expression of the form 

(let ((var val) ...) exp1 exp2 ...) 

is equivalent to the following. 

((lambda (var ...) exp1 exp2 ...)
val ...) 

See Section 3.1 for more about core forms and syntactic extensions. 

As was mentioned above, the general form for lambda is a bit more complicated than the 
form we saw earlier, in that the formal parameter specification, (var ...), need not be a 
proper list, or indeed even a list at all. The formal parameter specification can be in any of 
the following three forms: 

• a proper list of variables, (var1 ... varn), such as we have already seen, 
• a single variable, varr, or 
• an improper list of variables, (var1 ... varn . varr). 

In the first case, exactly n actual parameters must be supplied, and each variable is bound 
to the corresponding actual parameter. In the second, any number of actual parameters is 
valid; all of the actual parameters are put into a single list and the single variable is bound 
to this list. The third case is a hybrid of the first two cases. At least n actual parameters 
must be supplied. The variables var1 ... varn are bound to the corresponding actual 
parameters, and the variable varr is bound to a list containing the remaining actual 
parameters. In the second and third cases, varr is sometimes referred to as a "rest" 
parameter because it holds the rest of the actual parameters beyond those that are 
individually named. 



Let's consider a few examples to help clarify the more general syntax of lambda
expressions. 

(let ((f (lambda x x)))
(f 1 2 3 4)) (1 2 3 4) 

(let ((f (lambda x x)))
(f)) () 

(let ((g (lambda (x . y) (list x y))))
(g 1 2 3 4)) (1 (2 3 4)) 

(let ((h (lambda (x y . z) (list x y z))))
(h 'a 'b 'c 'd)) (a b (c d)) 

In the first two examples, the procedure named f accepts any number of arguments. These 
arguments are automatically formed into a list to which the variable x is bound; the value of 
f is this list. In the first example, the arguments are 1, 2, 3, and 4, so the answer is (1 2 3 4). 
In the second, there are no arguments, so the answer is the empty list (). The value of the 
procedure named g in the third example is a list whose first element is the first argument 
and whose second element is a list containing the remaining arguments. The procedure 
named h is similar but separates out the second argument. While f accepts any number of 
arguments, g must receive at least one and h must receive at least two. 

Exercise 2.5.1

Determine the values of the expressions below. 
a. (let ((f (lambda (x) x)))

(f 'a)) 

b. (let ((f (lambda x x)))
(f 'a)) 

c. (let ((f (lambda (x . y) x)))
(f 'a)) 

d. (let ((f (lambda (x . y) y)))
(f 'a)) 

Exercise 2.5.2

How might the primitive procedure list be defined? 

Exercise 2.5.3

List the variables that occur free in each of the lambda expressions below. Do not omit 
variables that name primitive procedures such as + or cons. 
a. (lambda (f x) (f x))

b. (lambda (x) (+ x x))

c. (lambda (x y) (f x y))

d. (lambda (x)
(cons x (f x y))) 

e. (lambda (x)
(let ((y (cons x y)))
(list x y z))) 



Section 2.6. Top-Level Definitions

The variables bound by let and lambda expressions are not visible outside the bodies of 
these expressions. Suppose you have created an object, perhaps a procedure, that must 
be accessible anywhere, like + or cons. What you need is a top-level definition, which may 
be established with define. Top-level definitions are visible in every expression you enter, 
except where shadowed by another binding. 

Let's establish a top-level definition for the double-any procedure of the last section. 

(define double-any
(lambda (f x)
(f x x))) 

The variable double-any now has the same status as cons or the name of any other primitive 
procedure. We can now use double-any as if it were a primitive procedure. 

(double-any + 10) 20
(double-any cons 'a) (a . a) 

A top-level definition may be established for any object, not just for procedures. 

(define sandwich "peanut-butter-and-jelly") 

sandwich "peanut-butter-and-jelly" 

Most often, though, top-level definitions are used for procedures. 

As suggested above, top-level definitions may be shadowed by let or lambda bindings. 

(define xyz '(x y z))
(let ((xyz '(z y x)))
xyz) (z y x) 

Variables with top-level definitions act almost as if they were bound by a let expression 
enclosing all of the expressions you type. 

Given only the simple tools you have read about up to this point, it is already possible to 
define some of the primitive procedures provided by Scheme and described later in this 
book. If you completed the exercises from the last section, you should already know how 
to define list. 

(define list (lambda x x)) 

Also, Scheme provides the abbreviations cadr and cddr for the compositions of car with cdr
and cdr with cdr. That is, (cadr list) is equivalent to (car (cdr list)), and similarly, (cddr list) is 
equivalent to (cdr (cdr list)). They are easily defined as follows: 

(define cadr
(lambda (x)
(car (cdr x)))) 



(define cddr
(lambda (x)
(cdr (cdr x)))) 

(cadr '(a b c)) b
(cddr '(a b c)) (c) 

Any definition (define var exp) where exp is a lambda expression can be written in a shorter 
form that suppresses the lambda. The exact syntax depends upon the format of the lambda
expression's formal parameter specifier, i.e., whether it is a proper list of variables, a single 
variable, or an improper list of variables. A definition of the form 

(define var0
(lambda (var1 ... varn)
e1 e2 ...)) 

may be abbreviated 

(define (var0 var1 ... varn)
e1 e2 ...) 

while 

(define var0
(lambda varr
e1 e2 ...)) 

may be abbreviated 

(define (var0 . varr)
e1 e2 ...) 

and 

(define var0
(lambda (var1 ... varn . varr)
e1 e2 ...)) 

may be abbreviated 

(define (var0 var1 ... varn . varr)
e1 e2 ...) 

For example, the definitions for cadr and list may be written as follows. 

(define (cadr x)
(car (cdr x))) 

(define (list . x) x) 

This book does not often employ this alternative syntax. Although it is shorter, it tends to 
mask the reality that procedures are not intimately tied to variables, or names, as they are 
in many other languages. This syntax is often referred to, somewhat pejoratively, as the 
"defun" syntax for define, after the defun form provided by Lisp languages in which 
procedures are more closely tied to their names. 



Top-level definitions make it easier for us to experiment with a procedure interactively 
because we need not retype the procedure each time it is used. Let's try defining a 
somewhat more complicated variation of double-any, one that turns an "ordinary" two-
argument procedure into a "doubling" one-argument procedure. 

(define doubler
(lambda (f)
(lambda (x) (f x x)))) 

doubler accepts one argument, f, which must be a procedure that accepts two arguments. 
The procedure returned by doubler accepts one argument, which it uses for both arguments 
in an application of f. We can define, with doubler, the simple double and double-cons
procedures of the last section: 

(define double (doubler +))
(double 13/2) 13 

(define double-cons (doubler cons))
(double-cons 'a) (a . a) 

We can also define double-any with doubler: 

(define double-any
(lambda (f x)
((doubler f) x))) 

Within double and double-cons, f has the appropriate value, i.e., + or cons, even though the 
procedures are clearly applied outside the scope of f. 

What happens if you attempt to use a variable that is not bound by a let or lambda
expression and that does not have a top-level definition? Try using the variable i-am-not-
defined to see what happens. 

(i-am-not-defined 3) 

Most Scheme systems print an error message to inform you that the variable is unbound 
or undefined. 

The system will not complain about the appearance of an undefined variable within a 
lambda expression, until and unless the resulting procedure is applied. The following should 
not cause an error, even though we have not yet established a top-level definition for proc2. 

(define proc1
(lambda (x y)
(proc2 y x))) 

If you try to apply proc1 before defining proc2, you should get an error message. Let's give 
proc2 a top-level definition and try proc1. 

(define proc2 cons)
(proc1 'a 'b) (b . a) 

When you define proc1, the system accepts your promise to define proc2, and does not 
complain unless you use proc1 before defining proc2. This allows you to define procedures 



in any order you please. This is especially useful when you are trying to organize a file full 
of procedure definitions in a way that makes your program more readable. It is necessary 
when two procedures defined at top level depend upon each other; we will see some 
examples of this later. 

Exercise 2.6.1

What would happen if you were to type 

(double-any double-any double-any) 

given the definition of double-any from the beginning of this section? 

Exercise 2.6.2

A more elegant (though possibly less efficient) way to define cadr and cddr than given in this 
section is to define a procedure that composes two procedures to create a third. Write the 
procedure compose, such that (compose proc1 proc2) is the composition of proc1 and proc2
(assuming both take one argument). Use compose to define cadr and cddr. 

Exercise 2.6.3

Scheme also provides caar, cdar, caaar, caadr, and so on, with any combination of up to four 
a's (representing car) and d's (representing cdr) between the c and the r (see Section 6.2). 
Define each of these with the compose procedure of the preceding exercise. 

Section 2.7. Conditional Expressions

So far we have considered expressions that perform a given task unconditionally. Suppose 
that we wish to write the procedure abs. If its argument x is negative, abs returns -x; 
otherwise, it returns x. The most straightforward way to write abs is to first determine 
whether the argument is negative or not, using the if syntactic form. 

(define abs
(lambda (n)
(if (< n 0)

(- 0 n)
n))) 

(abs 77) 77
(abs -77) 77 

An if expression has the general form (if test consequent alternative). consequent is the 
expression to evaluate if test is true; alternative is the expression to evaluate if test is false. 
In the expression above, test is (< n 0), consequent is (- 0 n), and alternative is n. 

The procedure abs could be written in a variety of other ways. Any of the following are valid 
definitions for abs. 

(define abs
(lambda (n)
(if (>= n 0)



n
(- 0 n)))) 

(define abs
(lambda (n)
(if (not (< n 0))

n
(- 0 n)))) 

(define abs
(lambda (n)
(if (or (> n 0) (= n 0))

n
(- 0 n)))) 

(define abs
(lambda (n)
(if (= n 0)

0
(if (< n 0)

(- 0 n)
n)))) 

(define abs
(lambda (n)
((if (>= n 0) + -) 
0
n))) 

The first of these definitions asks if n is greater than or equal to zero, inverting the test. The 
second asks if n is not less than zero, using the procedure not with <. The third asks if n is 
greater than zero or n is equal to zero, using the syntactic form or. The fourth treats zero 
separately, though there is no benefit in doing so. The fifth is somewhat tricky; n is either 
added to or subtracted from zero, depending upon whether n is greater than or equal to 
zero. 

Why is if a syntactic form and not a procedure? In order to answer this, let's revisit the 
definition of reciprocal from the first section of this chapter. 

(define reciprocal
(lambda (n)
(if (= n 0)

"oops!"
(/ 1 n)))) 

When the second argument to the division procedure is zero, the behavior is unspecified, 
and many implementations signal an error. Our definition of reciprocal avoids this problem 
by testing for zero before dividing. But were if a procedure, its arguments (including (/ 1 n)) 
would be evaluated before it had a chance to choose between the consequent and 
alternative. Like quote, which does not evaluate its only subexpression, if does not evaluate 
all of its subexpressions and so cannot be a procedure. 

The syntactic form or operates in a manner similar to if. The general form of an or
expression is (or exp ...). If there are no subexpressions, i.e., the expression is simply (or), 
the value is false. Otherwise, each exp is evaluated in turn until either (a) one of the 
expressions evaluates to true or (b) no more expressions are left. In case (a), the value is 
true; in case (b), the value is false. 



To be more precise, in case (a), the value of the or expression is the value of the last 
subexpression evaluated. This clarification is necessary because there are many possible 
true values. Usually, the value of a test expression is one of the two objects #t, for true, or 
#f, for false. 

(< -1 0) #t
(> -1 0) #f 

Every Scheme object, however, is considered to be either true or false by the conditional 
expressions if and or and by the procedure not. Only #f is considered false; all other objects 
are considered true. (Although forbidden by the ANSI/IEEE standard, the Revised4 Report 
permits () to be the same object as #f, and in those implementations in which this is the 
case, () is of course considered false as well.) 

(not #t) #f
(not #f) #t 

(not 1) #f
(not '(a b c)) #f 

(or) #f
(or #f) #f
(or #f #t) #t
(or #f 'a #f) a 

The and syntactic form is similar in form to or, but an and expression is true if all its 
subexpressions are true, and false otherwise. In the case where there are no 
subexpressions, i.e., the expression is simply (and), the value is true. Otherwise, the 
subexpressions are evaluated in turn until either there are no more subexpressions or the 
value of a subexpression is false. The value of the and expression is the value of the last 
subexpression evaluated. 

Using and, we can define a slightly different version of reciprocal. 

(define reciprocal
(lambda (n)
(and (not (= n 0))

(/ 1 n)))) 

(reciprocal 3) 1/3
(reciprocal 0.5) 2.0
(reciprocal 0) #f 

In this version, the value is #f if n is zero, 1/n otherwise. 

The procedures =, <, >, <=, and >= are called predicates. A predicate is a procedure that 
answers a specific question about its arguments and returns one of the two values #t or #f. 
The names of most predicates end with a question mark ( ? ); the common numeric 
procedures listed above are exceptions to this rule. Not all predicates require numeric 
arguments, of course. The predicate null? returns true if its argument is the empty list (), 
false otherwise. 

(null? '()) #t
(null? 'abc) #f



(null? '(x y z)) #f
(null? (cdddr '(x y z))) #t 

It is an error to pass the procedure cdr anything other than a pair, and most 
implementations signal an error when this happens. Some Lisp languages, including 
Common Lisp, define (cdr '()) to be (). The following procedure, lisp-cdr, is defined using null?
to return () if its argument is (). 

(define lisp-cdr
(lambda (x)
(if (null? x)

'()
(cdr x)))) 

(lisp-cdr '(a b c)) (b c)
(lisp-cdr '(c)) ()
(lisp-cdr '()) () 

Another useful predicate is eqv?, which requires two arguments. If the two arguments are 
equivalent, eqv? returns true. Otherwise, eqv? returns false. 

(eqv? 'a 'a) #t
(eqv? 'a 'b) #f
(eqv? #f #f) #t
(eqv? #t #t) #t
(eqv? #f #t) #f
(eqv? 3 3) #t
(eqv? 3 2) #f
(let ((x "Hi Mom!"))
(eqv? x x)) #t

(let ((x (cons 'a 'b)))
(eqv? x x)) #t

(eqv? (cons 'a 'b) (cons 'a 'b)) #f 

As you can see, eqv? returns true if the arguments are the same symbol, boolean, number, 
pair, or string. Two pairs are not the same by eqv? if they are created by different calls to 
cons, even if they have the same contents. Detailed equivalence rules for eqv? are given in 
Section 6.1. 

Scheme also provides a set of type predicates that return true or false depending on the 
type of the object, e.g., pair?, symbol?, number?, and string?. The predicate pair?, for example, 
returns true only if its argument is a pair. 

(pair? '(a . c)) #t
(pair? '(a b c)) #t
(pair? '()) #f
(pair? 'abc) #f
(pair? "Hi Mom!") #f
(pair? 1234567890) #f 

Type predicates are useful for deciding if the argument passed to a procedure is of the 
appropriate type. For example, the following version of reciprocal checks first to see that its 
argument is a number before testing against zero or performing the division. 

(define reciprocal
(lambda (n)



(if (and (number? n) (not (= n 0)))
(/ 1 n)
"oops!"))) 

(reciprocal 2/3) 3/2
(reciprocal 'a) "oops!" 

By the way, the code that uses reciprocal must check to see that the returned value is a 
number and not a string. It is usually better to report the error, using whatever error-
reporting facilities your Scheme implementation provides. For example, Chez Scheme
provides the procedure error for reporting errors; we might use error in the definition of 
reciprocal as follows. 

(define reciprocal
(lambda (n)
(if (and (number? n) (not (= n 0)))

(/ 1 n)
(error 'reciprocal "improper argument ~s" n)))) 

(reciprocal .25) 4.0
(reciprocal 0.0) error
(reciprocal 'a) error

The first argument to error is a symbol identifying where the message originates, the 
second is a string describing the error, and the third and subsequent arguments are 
objects to be inserted into the error message. The message string must contain one ~s for 
each object; the position of each ~s within the string determines the placement of the 
corresponding object in the resulting error message. 

Let's consider one more conditional expression, cond, that is often useful in place of if. cond
is similar to if except that it allows multiple test and alternative expressions. A cond
expression usually takes the following form. 

(cond (test exp) ... (else exp)) 

Recall the definition of abs that employed two if expressions: 

(define abs
(lambda (n)
(if (= n 0)

0
(if (< n 0)

(- 0 n)
n)))) 

The two if expressions may be replaced by a single cond expression as follows. 

(define abs
(lambda (n)
(cond
((= n 0) 0)
((< n 0) (- 0 n))
(else n)))) 

Sometimes it is clearer to leave out the else clause. This should be done only when there is 
no possibility that all the tests will fail, as in the new definition of abs below. 



(define abs
(lambda (n)
(cond
((= n 0) 0)
((< n 0) (- 0 n))
((> n 0) n)))) 

These definitions for abs do not depend on the order in which the tests were performed, 
since only one of the tests can be true for any value of n. The following procedure 
computes the tax on a given amount of income in a progressive tax system with 
breakpoints at 10,000, 20,000, and 30,000 dollars. 

(define income-tax
(lambda (income)
(cond
((<= income 10000)
(* income .05))
((<= income 20000)
(+ (* (- income 10000) .08)
500.00))

((<= income 30000)
(+ (* (- income 20000) .13)
1300.00))

(else
(+ (* (- income 30000) .21)
2600.00))))) 

(income-tax 5000) 250.0
(income-tax 15000) 900.0
(income-tax 25000) 1950.0
(income-tax 50000) 6800.0 

In this example, the order in which the tests are performed, left to right (top to bottom), is 
significant. 

Exercise 2.7.1

Define the predicate atom?, which returns true if its argument is not a pair and false 
otherwise. 

Exercise 2.7.2

The procedure length returns the length of its argument, which must be a list. For example, 
(length '(a b c)) is 3. Using length, define the procedure shorter, which returns the shorter of 
two list arguments. 

(shorter (a b) (c d e)) (a b) 

Section 2.8. Simple Recursion

We have seen how we can control whether or not expressions are evaluated with if, and, or, 
and cond. We can also perform an expression more than once by creating a procedure 
containing the expression and invoking the procedure more than once. What if we need to 
perform some expression repeatedly, say for all the elements of a list or all the numbers 



from zero to 10? We can do so via recursion. Recursion is a simple concept: the 
application of a procedure from within that procedure. It can be tricky to master recursion 
at first, but once mastered it provides expressive power far beyond ordinary looping 
constructs. 

A recursive procedure is a procedure that applies itself. Perhaps the simplest recursive 
procedure is the following, which we will call goodbye. 

(define goodbye
(lambda ()
(goodbye))) 

(goodbye)

This procedure takes no arguments and simply applies itself immediately. There is no 
value after the because goodbye never returns. 

Obviously, to make practical use out of a recursive procedure, we must have some way to 
terminate the recursion. Most recursive procedures should have at least two basic 
elements, a base case and a recursion step. The base case terminates the recursion, 
giving the value of the procedure for some base argument. The recursion step gives the 
value in terms of the value of the procedure applied to a different argument. In order for 
the recursion to terminate, the different argument must be closer to the base argument in 
some way. 

Let's consider the problem of finding the length of a list recursively. We need a base case 
and a recursion step. The logical base argument for recursion on lists is nearly always the 
empty list. The length of the empty list is zero, so the base case should give the value zero 
for the empty list. In order to become closer to the empty list, the natural recursion step 
involves the cdr of the argument. A nonempty list is one element longer than its cdr, so the 
recursion step gives the value as one more than the length of the cdr of the list. 

(define length
(lambda (ls)
(if (null? ls)

0
(+ (length (cdr ls)) 1)))) 

(length '()) 0
(length '(a)) 1
(length '(a b)) 2 

The if expression asks if the list is empty. If so, the value is zero. This is the base case. If 
not, the value is one more than the length of the cdr of the list. This is the recursion step. 

Most Scheme implementations allow you to trace the execution of a procedure to see how 
it operates. In Chez Scheme, for example, one way to trace a procedure is to type (trace 
name), where name is the name of a procedure you have defined at top level. If you trace 
length as defined above and pass it the argument '(a b c d), you should see something like 
this: 

|(length (a b c d))
| (length (b c d))
| |(length (c d))



| | (length (d))
| | |(length ())
| | |0
| | 1
| |2
| 3
|4 

The indentation shows the nesting level of the recursion; the vertical lines associate 
applications visually with their values. Notice that on each application of length the list gets 
smaller until it finally reaches (). The value at () is 0, and each outer level adds 1 to arrive 
at the final value. 

Let's write a procedure, list-copy, that returns a copy of its argument, which must be a list. 
That is, list-copy returns a new list consisting of the elements (but not the pairs) of the old 
list. Making a copy may be useful if either the original list or the copy may be altered via 
set-car! or set-cdr!, which we discuss later. 

(list-copy '()) ()
(list-copy '(a b c)) (a b c) 

See if you can define list-copy before studying the definition below. 

(define list-copy
(lambda (ls)
(if (null? ls)

'()
(cons (car ls)

(list-copy (cdr ls)))))) 

The definition of list-copy is similar to the definition of length. The test in the base case is the 
same, (null? ls). The value in the base case is (), however, not 0, because we are building 
up a list, not a number. The recursive call is the same, but instead of adding one, list-copy
conses the car of the list onto the value of the recursive call. 

There is no reason why there cannot be more than one base case. The procedure memv
takes two arguments, an object and a list. It returns the first sublist, or tail, of the list whose 
car is equal to the object, or #f if the object is not found in the list. The value of memv may 
be used as a list or as a truth value in a conditional expression. 

(define memv
(lambda (x ls)
(cond
((null? ls) #f)
((eqv? (car ls) x) ls)
(else (memv x (cdr ls)))))) 

(memv 'a '(a b b d)) (a b b d)
(memv 'b '(a b b d)) (b b d)
(memv 'c '(a b b d)) #f
(memv 'd '(a b b d)) (d)
(if (memv 'b '(a b b d))

"yes"
"no") "yes" 



Here there are two conditions to check, hence the use of cond. The first cond clause 
checks for the base value of (); no object is a member of (), so the answer is #f. The second 
clause asks if the car of the list is the object, in which case the list is returned, being the 
first tail whose car contains the object. The recursion step just continues down the list. 

There may also be more than one recursion case. Like memv, the procedure remv defined 
below takes two arguments, an object and a list. It returns a new list with all occurrences of 
the object removed from the list. 

(define remv
(lambda (x ls)
(cond
((null? ls) '())
((eqv? (car ls) x) (remv x (cdr ls)))
(else (cons (car ls) (remv x (cdr ls))))))) 

(remv 'a '(a b b d)) (b b d)
(remv 'b '(a b b d)) (a d)
(remv 'c '(a b b d)) (a b b d)
(remv 'd '(a b b d)) (a b b) 

This definition is similar to the definition for memv above, except remv does not quit once it 
finds the element in the car of the list. Rather, it continues, simply ignoring the element. If 
the element is not found in the car of the list, remv does the same thing as list-copy above: it 
conses the car of the list onto the recursive value. 

Up to now, the recursion has been only on the cdr of a list. It is sometimes useful, 
however, for a procedure to be recursive on the car as well as the cdr of the list. The 
procedure tree-copy defined below treats the structure of pairs as a tree rather than as a list, 
with the left subtree being the car of the pair and the right subtree being the cdr of the pair. 
It performs a similar operation to list-copy, building new pairs while leaving the elements 
(leaves) alone. 

(define tree-copy
(lambda (tr)
(if (not (pair? tr))

tr
(cons (tree-copy (car tr))

(tree-copy (cdr tr)))))) 

(tree-copy '((a . b) . c)) ((a . b) . c) 

The natural base argument for a tree structure is anything that is not a pair, since the 
recursion traverses pairs rather than lists. The recursive step in this case is doubly 
recursive, finding the value recursively for the car as well as the cdr of the argument. 

At this point, readers who are familiar with other languages that provide special iteration 
constructs, e.g., while or for loops, may wonder whether Scheme supports similar 
constructs. The answer is that such constructs are unnecessary; iteration in Scheme is 
expressed more clearly and succinctly via recursion. Recursion is more general and 
eliminates the need for the variable assignments required by many other languages' 
iteration constructs, resulting in code that is more reliable and easier to follow. Some 
recursion is essentially iteration and executes as such; Section 3.2 has more to say about 



this. Often, there is no need to make a distinction, however. Concentrate instead on writing 
clear, concise, and correct programs. 

Before we leave the topic of recursion, let's consider a special form of repetition called 
mapping. Consider the following procedure, abs-all, that takes a list of numbers as input 
and returns a list of their absolute values. 

(define abs-all
(lambda (ls)
(if (null? ls)

'()
(cons (abs (car ls))

(abs-all (cdr ls)))))) 

(abs-all '(1 -2 3 -4 5 -6)) (1 2 3 4 5 6) 

This procedure forms a new list from the input list by applying the procedure abs to each 
element. We say that abs-all maps abs over the input list to produce the output list. Mapping 
a procedure over a list is a fairly common thing to do, so Scheme provides the procedure 
map, which maps its first argument, a procedure, over its second, a list. We can use map to 
define abs-all: 

(define abs-all
(lambda (ls)
(map abs ls))) 

We really do not need abs-all, however, since the corresponding direct application of map is 
just as short and perhaps clearer. 

(map abs '(1 -2 3 -4 5 -6)) (1 2 3 4 5 6) 

Of course, we can use lambda to create the procedure argument to map, e.g., to square the 
elements of a list of numbers: 

(map (lambda (x) (* x x))
'(1 -3 -5 7)) (1 9 25 49) 

We can map a multiple-argument procedure over multiple lists, as in the following 
example: 

(map cons '(a b c) '(1 2 3)) ((a . 1) (b . 2) (c . 3)) 

The lists must be of the same length, and the procedure must accept as many arguments 
as there are lists. Each element of the output list is the result of applying the procedure to 
corresponding members of the input list. 

Looking at the first definition of abs-all above, you should be able to derive, before studying 
it, the following definition of map1, a restricted version of map that maps a one-argument 
procedure over a single list. 

(define map1
(lambda (p ls)
(if (null? ls)

'()



(cons (p (car ls))
(map1 p (cdr ls)))))) 

(map1 abs '(1 -2 3 -4 5 -6)) (1 2 3 4 5 6) 

All we have done is to replace the call to abs in abs-all with a call to the new parameter p. A 
definition of the more general map is given in Section 5.5. 

Exercise 2.8.1

Describe what would happen if you switched the order of the arguments to cons in the 
definition of tree-copy. 

Exercise 2.8.2

Consult Section 6.2 for the description of append and define a two-argument version of it. 
What would happen if you switched the order of the arguments in the call to append within 
your definition of append? 

Exercise 2.8.3

Define the procedure make-list, which takes a nonnegative integer n and an object and 
returns a new list, n long, each element of which is the object. 

(make-list 7 '()) (() () () () () () ()) 

[Hint: The base test should be (= n 0), and the recursion step should involve (- n 1). Whereas 
() is the natural base case for recursion on lists, 0 is the natural base case for recursion on 
nonnegative integers. Similarly, subtracting 1 is the natural way to bring a nonnegative 
integer closer to 0.] 

Exercise 2.8.4

Consult Section 6.2 for the descriptions of list-ref and list-tail. Define both. 

Exercise 2.8.5

Exercise 2.7.2 had you define the procedure shorter, which returns the shorter of its two list 
arguments, in terms of length. Write shorter without using length. 

Exercise 2.8.6

All of the recursive procedures shown so far have been directly recursive. That is, each 
procedure directly applies itself to a new argument. It is also possible to write two 
procedures that use each other, resulting in indirect recursion. Define the procedures odd?
and even?, each in terms of the other. [Hint: What should each return when its argument is 
0?] 

Exercise 2.8.7

Use map to define a procedure, transpose, that takes a list of pairs and returns a pair of lists 
as follows: 



(transpose '((a . 1) (b . 2) (c . 3))) ((a b c) 1 2 3) 

(Remember, ((a b c) 1 2 3) is the same as ((a b c) . (1 2 3)).) 

Section 2.9. Assignment

Although many programs can be written without them, assignments to top-level variables 
or let-bound and lambda-bound variables are sometimes useful. Assignments do not create 
new bindings, as with let or lambda, but rather change the values of existing bindings. 
Assignments are performed with set!. 

(define abcde '(a b c d e))
abcde (a b c d e)
(set! abcde (cdr abcde))
abcde (b c d e)
(let ((abcde '(a b c d e)))
(set! abcde (reverse abcde))
abcde) (e d c b a) 

Many languages require the use of assignments to initialize local variables, separate from 
the declaration or binding of the variables. In Scheme, all local variables are given a value 
immediately upon binding. Besides making the separate assignment to initialize local 
variables unnecessary, it ensures that the programmer cannot forget to initialize them, a 
common source of errors in most languages. 

In fact, most of the assignments that are either necessary or convenient in other 
languages are both unnecessary and inconvenient in Scheme, since there is typically a 
clearer way to express the same algorithm without assignments. One common practice in 
some languages is to sequence expression evaluation with a series of assignments, as in 
the following procedure that finds the roots of a quadratic equation. 

(define quadratic-formula
(lambda (a b c)
(let ((root1 0) (root2 0) (minusb 0) (radical 0) (divisor 0))
(set! minusb (- 0 b))
(set! radical (sqrt (- (* b b) (* 4 (* a c)))))
(set! divisor (* 2 a))
(set! root1 (/ (+ minusb radical) divisor))
(set! root2 (/ (- minusb radical) divisor))
(cons root1 root2)))) 

The roots are computed according to the well-known quadratic formula, 

which yields the solutions to the equation 0 = ax2 + bx + c. The let expression in this 
definition is employed solely to establish the variable bindings, corresponding to the 
declarations required in other languages. The first three assignment expressions compute 
subpieces of the formula, namely -b, , and 2a. The last two assignment 
expressions compute the two roots in terms of the subpieces. A pair of the two roots is the 
value of quadratic-formula. For example, the two roots of 2x2 - 4x - 6 are x = 3 and x = -1. 

(quadratic-formula 2 -4 -6) (3 . -1) 



The definition above works, but it can be written more clearly without the assignments. 

(define quadratic-formula
(lambda (a b c)
(let ((minusb (- 0 b))

(radical (sqrt (- (* b b) (* 4 (* a c)))))
(divisor (* 2 a)))

(let ((root1 (/ (+ minusb radical) divisor))
(root2 (/ (- minusb radical) divisor)))

(cons root1 root2))))) 

In this version, the set! expressions are gone, and we are left with essentially the same 
algorithm. By employing two let expressions, however, the definition makes clear the 
dependency of root1 and root2 on the values of minusb, radical, and divisor. Equally important, 
the let expressions make clear the lack of dependencies among minusb, radical, and divisor
and between root1 and root2. 

Assignments do have some uses in Scheme, otherwise the language would not support 
them. Consider the following version of cons that counts the number of times it is called, 
storing the count in a variable named cons-count. It uses set! to increment the count; there is 
no way to achieve the same behavior without assignments. 

(define cons-count 0) 

(set! cons
(let ((old-cons cons))
(lambda (x y)
(set! cons-count (+ cons-count 1))
(old-cons x y)))) 

(cons 'a '(b c)) (a b c)
cons-count 1
(cons 'a (cons 'b (cons 'c '()))) (a b c)
cons-count 4 

set! is used both to establish the new top-level value for cons and to update the variable 
cons-count each time cons is invoked. 

Assignments are commonly used to implement procedures that must maintain some 
internal state. For example, suppose we would like to define a procedure that returns 0 the 
first time it is called, 1 the second time, 2 the third time, and so on indefinitely. We could 
write something similar to the definition of cons-count above: 

(define next 0) 

(define count
(lambda ()
(let ((v next))
(set! next (+ next 1))
v))) 

(count) 0
(count) 1 

This solution is somewhat undesirable in that the variable next is visible at top level even 
though it need not be. Since it is visible at top level, any code in the system can change its 



value, perhaps inadvertently affecting the behavior of count in a subtle way. We can solve 
this problem by let-binding next outside of the lambda expression: 

(define count
(let ((next 0))
(lambda ()
(let ((v next))
(set! next (+ next 1))
v)))) 

The latter solution also generalizes easily to provide multiple counters, each with its own 
local counter. The procedure make-counter, defined below, returns a new counting 
procedure each time it is called. 

(define make-counter
(lambda ()
(let ((next 0))
(lambda ()
(let ((v next))
(set! next (+ next 1))
v))))) 

Since next is bound inside of make-counter but outside of the procedure returned by make-
counter, each procedure it returns maintains its own unique counter. 

(define count1 (make-counter))
(define count2 (make-counter)) 

(count1) 0
(count2) 0
(count1) 1
(count1) 2
(count2) 1 

Local state is sometimes useful to allow a computation to be evaluated lazily, i.e., only 
once and only on demand. The procedure lazy below accepts a thunk, or zero-argument 
procedure, as an argument. Thunks are often used to "freeze" computations that must be 
delayed for some reason, which is exactly what we need to do in this situation. When 
passed a thunk t, lazy returns a thunk that, when invoked, returns the value of invoking t. 
Once computed, the value is saved in a local variable so that the computation need not be 
performed again. A boolean flag is used to record whether t has been invoked and its 
value saved. 

(define lazy
(lambda (t)
(let ((val #f) (flag #f))
(lambda ()
(if (not flag)

(begin (set! val (t))
(set! flag #t)))

val)))) 

The syntactic form begin, used here for the first time, evaluates its subexpressions in 
sequence from left to right and returns the value of the last subexpression, like the body of 
a let or lambda expression. We also see that the alternative subexpression of an if



expression can be omitted. This should be done only when the value of the if is discarded, 
as it is in this case. 

Lazy evaluation is especially useful for values that require considerable time to compute. 
By delaying the evaluation, we may avoid computing the value altogether, and by saving 
the value, we avoid computing it more than once. 

The operation of lazy can best be illustrated by printing a message from within a thunk 
passed to lazy. 

(define p
(lazy (lambda ()

(display "Ouch!")
(newline)
"got me"))) 

The first time p is invoked, the message Ouch! is printed and the string "got me" is returned. 
Thereafter, "got me" is returned but the message is not printed. The procedures display and 
newline are the first examples of explicit input/output we have seen; display prints the string 
without quotation marks, and newline prints a newline character. 

As a more complex example using set!, let's consider the implementation of stack objects 
whose internal workings are not visible on the outside. A stack object accepts one of four 
messages: empty?, which returns #t if the stack is empty; push!, which adds an object to the 
top of the stack; top, which returns the object on the top of the stack; and pop!, which 
removes the object on top of the stack. The procedure make-stack given below creates a 
new stack each time it is called in a manner similar to make-counter. 

(define make-stack
(lambda ()
(let ((ls '()))
(lambda (msg . args)
(cond
((eqv? msg 'empty?) (null? ls))
((eqv? msg 'push!)
(set! ls (cons (car args) ls)))
((eqv? msg 'top) (car ls))
((eqv? msg 'pop!)
(set! ls (cdr ls)))
(else "oops")))))) 

Each stack is stored as a list bound to the variable ls; set! is used to change this binding by 
push! and pop!. Notice that the argument list of the inner lambda expression uses the 
improper list syntax to bind args to a list of all arguments but the first. This is useful here 
because in the case of empty?, top, and pop! there is only one argument (the message), but 
in the case of push! there are two (the message and the object to push onto the stack). 

(define stack1 (make-stack))
(define stack2 (make-stack)) 

(stack1 'empty?) #t
(stack2 'empty?) #t 

(stack1 'push! 'a)
(stack1 'empty?) #f



(stack2 'empty?) #t 

(stack1 'push! 'b)
(stack2 'push! 'c)
(stack1 'top) b
(stack2 'top) c 

(stack1 'pop!)
(stack2 'empty?) #f
(stack1 'top) a 

(stack2 'pop!)
(stack2 'empty?) #t 

As with the counters created by make-counter, the state maintained by each stack object is 
directly accessible only within the object. Each reference or change to this state is made 
explicitly by the object itself. One important benefit is that we can change the internal 
structure of the stack, perhaps to use a vector (see Section 6.6) instead of a list to hold the 
elements, without changing its external behavior. Because the behavior of the object is 
known abstractly (not operationally), it is known as an abstract object. See Section 9.8 for 
more about creating abstract objects. 

Exercise 2.9.1

Modify make-counter to take two arguments: an initial value for the counter to use in place of 
0 and an amount to increment the counter by each time. 

Exercise 2.9.2

Look up the description of case in Section 5.4. Replace the cond expression in make-stack
with an equivalent case expression. 

Exercise 2.9.3

Modify the stack object to allow the two messages ref and set!. (stack 'ref i) should return the 
ith element from the top of the stack; (stack 'ref 0) should be equivalent to (stack 'top). 
Similarly, (stack 'set! i v) should change the ith element from the top of the stack to v. [Hint: 
Use list-ref to implement ref and list-tail with set-car! to implement set!.] 

Exercise 2.9.4

Modify the stack object to use vectors interally without changing the external (abstract) 
interface. Either enforce a limit on the overall stack size or make the vector small initially 
and allocate a new, larger vector as necessary. 

Exercise 2.9.5

Using set-cdr!, it is possible to create cyclic lists. For example, the following expression 
evaluates to a list whose car is the symbol a and whose cdr is the list itself: 

(let ((ls (cons 'a '())))
(set-cdr! ls ls)
ls) 



What happens when you enter the above expression during an interactive Scheme 
session? What will the implementation of length given earlier in this chapter do when given 
a cyclic list? What does the built-in length primitive do? 

Exercise 2.9.6

Define the predicate list?, which returns #t if its argument is a proper list and #f otherwise 
(see Section 6.2). It should return #f for cyclic lists as well as for lists terminated by objects 
other than (). 

(list? '()) #t
(list? '(1 2 3)) #t
(list? '(a . b)) #f
(list? (let ((ls (cons 'a '())))

(set-cdr! ls ls)
ls)) #f 

First write a simplified version of list? that does not handle cyclic lists, then extend this to 
handle cyclic lists correctly. Revise your definition until you are satisfied that it is as clear 
and concise as possible. [Hint: Use the following "hare and tortoise" algorithm to detect 
cycles. Define a recursive help procedure of two arguments, the hare and the tortoise. 
Start both the hare and the tortoise at the beginning of the list. Have the hare advance by 
two cdrs each time the tortoise advances by one cdr. If the hare catches the tortoise, there 
must be a cycle.] 



Chapter 3. Going Further
The preceding chapter prepared you to write Scheme programs using a small set of the 
most useful primitive syntactic forms and procedures. This chapter introduces a number of 
additional features and programming techniques that will allow you to write more 
sophisticated and efficient programs. 

Section 3.1. Syntactic Extension

As we saw in Section 2.5, the let syntactic form is merely a syntactic extension defined in 
terms of a lambda expression and a procedure application, both core syntactic forms. At 
this point, you might be wondering which syntactic forms are core forms and which are 
syntactic extensions, and how new syntactic extensions may be defined. This section 
provides some answers to both questions. 

In truth, it is not necessary for us to draw a distinction between core forms and syntactic 
extensions, since once defined, a syntactic extension has exactly the same status as a 
core form. Drawing a distinction, however, makes understanding the language easier, 
since it allows us to focus attention on the core forms and to understand all others in terms 
of them. 

It is necessary for a Scheme implementation to distinguish between core forms and 
syntactic extensions. A Scheme implementation typically expands syntactic extensions 
into core forms prior to compilation or interpretation, allowing the compiler or interpreter to 
focus only on the core forms. The set of core forms remaining after expansion to be 
handled directly by the compiler or interpreter is implementation-dependent, however, and 
may be different from the set of forms described as core here. 

The exact set of syntactic forms making up the core of the language is thus subject to 
debate, although it must be possible to derive all other forms from any set of forms 
declared to be core forms. The set described here is among the simplest for which this 
constraint is satisfied. It also closely matches the set described as "primitive" in the 
ANSI/IEEE Scheme standard and Revised Reports. 

The core syntactic forms include top-level define forms, constants, variables, procedure 
applications, quote expressions, lambda expressions, if expressions, and set! expressions. 
The grammar below describes the core syntax of Scheme in terms of these definitions and 
expressions. In the grammar, vertical bars ( | ) separate alternatives, and a form followed 
by an asterisk ( * ) represents zero or more occurrences of the form, <variable> is any 
Scheme identifier. <datum> is any Scheme object, such as a number, list, symbol, or 
vector. <boolean> is either #t or #f, <number> is any number, <character> is any character, 
and <string> is any string. We have already seen examples of numbers, strings, lists, 
symbols, and booleans. See Chapter 6 or the more detailed grammar at the back of this 
book for more on the object-level syntax of these and other objects. 

<program> <form>*



<form> <definition> | <expression> 
<definition> <variable definition> | (begin <definition>*)
<variable definition> (define <variable> <expression>)
<expression> <constant> 

| <variable> 
| (quote <datum>)
| (lambda <formals> <expression> <expression>*)
| (if <expression> <expression> <expression>)
| (set! <variable> <expression>)
| <application> 

<constant> <boolean> | <number> | <character> | <string> 
<formals> <variable> 

| (<variable>*)
| (<variable> <variable>* . <variable>)

<application> (<expression> <expression>*)

The grammar is ambiguous in that the syntax for procedure applications conflicts with the 
syntaxes for quote, lambda, if, and set! expressions. In order to qualify as a procedure 
application, the first <expression> must not be one of these keywords, unless the keyword 
has been redefined or locally bound. 

The "defun" syntax for define given in Section 2.6 is not included in the core, since 
definitions in that form are straightforwardly translated into the simpler define syntax. 
Similarly, the core syntax for if does not permit the alternative to be omitted, as did one 
example in Section 2.9. An if expression lacking an alternative can be translated into the 
core syntax for if merely by replacing the missing subexpression with an arbitrary constant, 
such as #f. 

A begin that contains only definitions is considered to be a definition in the grammar; this is 
permitted in order to allow syntactic extensions to expand into more than one definition. 
begin expressions, i.e., begin forms containing expressions, are not considered core forms. 
A begin expression of the form 

(begin e1 e2 ...) 

is equivalent to the lambda application 

((lambda () e1 e2 ...)) 

and hence need not be considered core.

Now that we have established a set of core syntactic forms, let's turn to a discussion of 
syntactic extensions. Syntactic extensions are so called because they extend the syntax of 
Scheme beyond the core syntax. All syntactic extensions in a Scheme program must 
ultimately be derived from the core forms. One syntactic extension, however, may be 
defined in terms of another syntactic extension, as long as the latter is in some sense 
"closer" to the core syntax. Syntactic forms may appear anywhere an expression or 



definition is expected, as long as the extended form expands into a definition or expression 
as appropriate. 

Syntactic extensions are defined with define-syntax. define-syntax is similar to define, except 
that define-syntax associates a syntactic transformation procedure, or transformer, with a 
keyword (such as let), rather than associating a value with a variable. Here is how we 
might define let with define-syntax: 

(define-syntax let
(syntax-rules ()
((_ ((x v) ...) e1 e2 ...)
((lambda (x ...) e1 e2 ...) v ...)))) 

The identifier appearing after define-syntax is the name, or keyword, of the syntactic 
extension being defined, in this case let. The syntax-rules form is an expression that 
evaluates to a transformer. The item following syntax-rules is a list of auxiliary keywords and 
is nearly always (). An example of an auxiliary keyword is the else of cond. Definitions 
requiring the use of auxiliary keywords are given in Chapter 8. Following the list of auxiliary 
keywords is a sequence of one or more rules, or pattern/template pairs. Only one rule 
appears in our definition of let. The pattern part of a rule specifies the form that the input 
must take, and the template specifies to what the input should be transformed. 

The pattern should always be a structured expression whose first element is an 
underscore ( _ ). (As we shall see in Chapter 8, the use of _ is only a convention, but it is a 
good one to follow.) If more than one rule is present, the appropriate one is chosen by 
matching the patterns, in order, against the input during expansion. An error is signaled if 
none of the patterns match the input. 

Identifiers appearing within a pattern are pattern variables, unless they are listed as 
auxiliary keywords as described in Chapter 8. Pattern variables match any substructure 
and are bound to that substructure within the corresponding template. The notation pat ... in 
the pattern allows for zero or more expressions matching the ellipsis prototype pat in the 
input. Similarly, the notation exp ... in the template produces zero or more expressions from 
the ellipsis prototype exp in the output. The number of pats in the input determines the 
number of exps in the output; in order for this to work, any ellipsis prototype in the template 
must contain at least one pattern variable from an ellipsis prototype in the pattern. 

The single rule in our definition of let should be fairly self-explanatory, but a few points are 
worth mentioning. First, the syntax of let requires that the body contain at least one 
expression; hence, we have specified e1 e2 ... instead of e ..., which might seem more 
natural. On the other hand, let does not require that there be at least one variable/value 
pair, so we were able to use, simply, (x v) .... Second, the pattern variables x and v, though 
together within the same prototype in the pattern, are separated in the template; any sort 
of rearrangement or recombination is possible. Finally, the three pattern variables x, v, and 
e2 that appear in ellipsis prototypes in the pattern also appear in ellipsis prototypes in the 
template. This is not a coincidence; it is a requirement. In general, if a pattern variable 
appears within an ellipsis prototype in the pattern, it cannot appear outside an ellipsis 
prototype in the template. 

The definition of and below is somewhat more complex than the one for let. 



(define-syntax and
(syntax-rules ()
((_) #t)
((_ e) e)
((_ e1 e2 e3 ...)
(if e1 (and e2 e3 ...) #f)))) 

This definition is recursive and involves more than one rule. Recall that (and) evaluates to 
#t; the first rule takes care of this case. The second and third rules specify the base case 
and recursion steps of the recursion and together translate and expressions with two or 
more subexpressions into nested if expressions. For example, (and a b c) expands first into 

(if a (and b c) #f) 

then 

(if a (if b (and c) #f) #f) 

and finally 

(if a (if b c #f) #f) 

With this expansion, if a and b evaluate to a true value, then the value is the value of c, 
otherwise #f, as desired. 

The definition of or below is similar to the one for and except that a temporary variable must 
be introduced for each intermediate value so that we can both test the value and return it if 
it is a true value. (A similar temporary is not needed for and since there is only one false 
value, #f.) 

(define-syntax or
(syntax-rules ()
((_) #f)
((_ e) e)
((_ e1 e2 e3 ...)
(let ((t e1))
(if t t (or e2 e3 ...)))))) 

Like variables bound by lambda or let, identifiers introduced by a template are lexically 
scoped, i.e., visible only within expressions introduced by the template. Thus, even if one 
of the expressions e2 e3 ... contains a reference to t, the introduced binding for t does not 
"capture" those references. This is typically accomplished via automatic renaming of 
introduced identifiers. 

Exercise 3.1.1

Write out the expansion steps necessary to expand 

(let ((x (memv 'a ls)))
(and x (memv 'b x))) 

into core forms. 

Exercise 3.1.2



Write out the expansion steps necessary to expand 

(or (memv x '(a b c)) (list x)) 

into core forms. 

Exercise 3.1.3

Look up the description of let* in Chapter 4 and define it using define-syntax. 

Exercise 3.1.4

As we saw in Section 2.9, it is legal to omit the third, or alternative, subexpression of an if
expression. Doing so, however, often leads to confusion. Some Scheme systems provide 
two syntactic forms, when and unless, that may be used in place of such "one-armed" if
expressions. 

(when test exp1 exp2 ...)
(unless test exp1 exp2 ...) 

With both forms, test is evaluated first. For when, if test evaluates to true, the remaining 
forms are evaluated in sequence as if enclosed in an implicit begin expression. If test
evaluates to false, the remaining forms are not evaluated, and the result is unspecified. 
unless is similar except that the remaining forms are evaluated only if test evaluates to false. 

(let ((x 3))
(unless (= x 0) (set! x (+ x 1)))
(when (= x 4) (set! x (* x 2)))
x) 8 

Define when as a syntactic extension in terms of if and begin, and define unless in terms of 
when. 

Section 3.2. More Recursion

In Section 2.8, we saw how to define recursive procedures using top-level definitions. 
Before that, we saw how to create local bindings for procedures using let. It is natural to 
wonder whether a let-bound procedure can be recursive. The answer is no, at least not in a 
straightforward way. If you try to evaluate the expression 

(let ((sum (lambda (ls)
(if (null? ls)

0
(+ (car ls) (sum (cdr ls)))))))

(sum '(1 2 3 4 5))) 

you will probably receive an error message to the effect that sum is undefined. This is 
because the variable sum is visible only within the body of the let expression and not within 
the lambda expression whose value is bound to sum. We can get around this problem by 
passing the procedure sum to itself as follows: 



(let ((sum (lambda (sum ls)
(if (null? ls)

0
(+ (car ls) (sum sum (cdr ls)))))))

(sum sum '(1 2 3 4 5))) 15 

This works and is a clever solution, but there is an easier way, using letrec. Like let, the 
letrec syntactic form includes a set of variable-value pairs, along with a sequence of 
expressions referred to as the body of the letrec. 

(letrec ((var val) ...) exp1 exp2 ...) 

Unlike let, the variables var ... are visible not only within the body of the letrec but also within 
val .... Thus, we can rewrite the expression above as follows. 

(letrec ((sum (lambda (ls)
(if (null? ls)

0
(+ (car ls) (sum (cdr ls)))))))

(sum '(1 2 3 4 5))) 15 

Using letrec, we can also define mutually recursive procedures, such as the procedures 
even? and odd? that were the subject of Exercise 2.8.6. 

(letrec ((even?
(lambda (x)
(or (= x 0)

(odd? (- x 1)))))
(odd?
(lambda (x)
(and (not (= x 0))

(even? (- x 1))))))
(list (even? 20) (odd? 20))) (#t #f) 

In a letrec expression, val ... are most commonly lambda expressions, though this need not 
be the case. One restriction on the expressions must be obeyed, however. It must be 
possible to evaluate each val without evaluating any of the variables var .... This restriction 
is always satisfied if the expressions are all lambda expressions, since even though the 
variables may appear within the lambda expressions, they cannot be evaluated until the 
resulting procedures are invoked in the body of the letrec. The following letrec expression 
obeys this restriction: 

(letrec ((f (lambda () (+ x 2)))
(x 1))

(f)) 3 

while the following does not. 

(letrec ((y (+ x 2))
(x 1))

y) 

The behavior in this case depends upon the implementation. The expression may return 3, 
it may return any other value, or it may result in an error being signaled. 



We can use letrec to hide the definitions of "help" procedures so that they do not clutter the 
top-level name space. This is demonstrated by the definition of list? below, which follows 
the "hare and tortoise" algorithm outlined in Exercise 2.9.6. 

(define list?
(lambda (x)
(letrec ((race

(lambda (h t)
(if (pair? h)

(let ((h (cdr h)))
(if (pair? h)

(and (not (eq? h t))
(race (cdr h) (cdr t)))

(null? h)))
(null? h)))))

(race x x)))) 

When a recursive procedure is called in only one place outside the procedure, as in the 
example above, it is often clearer to use a named let expression. Named let expressions 
take the following form. 

(let name ((var val) ...)
exp1 exp2 ...) 

Named let is similar to unnamed let in that it binds the variables var ... to the values of val ...
within the body exp1 exp2 .... As with unnamed let, the variables are visible only within the 
body and not within val .... In addition, the variable name is bound within the body to a 
procedure that may be called to recur; the arguments to the procedure become the new 
values for the variables var .... 

The definition of list? has been rewritten below to use named let. 

(define list?
(lambda (x)
(let race ((h x) (t x))
(if (pair? h)

(let ((h (cdr h)))
(if (pair? h)

(and (not (eq? h t))
(race (cdr h) (cdr t)))

(null? h)))
(null? h))))) 

Just as let can be expressed as a simple direct application of a lambda expression to 
arguments, named let can be expressed as the application of a recursive procedure to 
arguments. A named let of the form 

(let name ((var val) ...)
exp1 exp2 ...) 

can be rewritten in terms of letrec as follows. 

((letrec ((name (lambda (var ...) exp1 exp2 ...)))
name)

val ...) 



Alternatively, it can be rewritten as 

(letrec ((name (lambda (var ...) exp1 exp2 ...)))
(name val ...)) 

provided that the variable name does not appear free within val .... 

As we discussed in Section 2.8, some recursion is essentially iteration and executes as 
such. When a procedure call is in tail position (see below) with respect to a lambda
expression, it is considered to be a tail call, and Scheme systems must treat it properly, as 
a "goto" or jump. When a procedure tail calls itself or calls itself indirectly through a series 
of tail calls, the result is tail recursion. Because tail calls are treated as jumps, tail 
recursion can be used for indefinite iteration in place of the more restrictive iteration 
constructs provided by other programming languages, without fear of overflowing any sort 
of recursion stack. 

A call is in tail position with respect to a lambda expression if its value is returned directly 
from the lambda expression, i.e., if nothing is left to do after the call but to return from the 
lambda expression. For example, a call is in tail position if it is the last expression in the 
body of a lambda expression, the consequent or alternative part of an if expression in tail 
position, the last subexpression of an and or or expression in tail position, the last 
expression of a let or letrec in tail position, etc. Each of the calls to f in the expressions 
below are tail calls, but the calls to g are not. 

(lambda () (f (g)))
(lambda () (if (g) (f) (f)))
(lambda () (let ((x 4)) (f)))
(lambda () (or (g) (f))) 

In each case, the values of the calls to f are returned directly, whereas the calls to g are 
not. 

Recursion in general and named let in particular provide a natural way to implement many 
algorithms, whether iterative, recursive, or partly iterative and partly recursive; the 
programmer is not burdened with two distinct mechanisms. 

The following two definitions of factorial use named let expressions to compute the factorial, 
n!, of a nonnegative integer n. The first employs the recursive definition n! = n × (n - 1)!, 
where 0! is defined to be 1. 

(define factorial
(lambda (n)
(let fact ((i n))
(if (= i 0)

1
(* i (fact (- i 1))))))) 

(factorial 0) 1
(factorial 1) 1
(factorial 2) 2
(factorial 3) 6
(factorial 10) 3628800 



The second is an iterative version that employs the iterative definition n! = n × (n - 1) × (n -
2) × ... × 1, using an accumulator, a, to hold the intermediate products. 

(define factorial
(lambda (n)
(let fact ((i n) (a 1))
(if (= i 0)

a
(fact (- i 1) (* a i)))))) 

A similar problem is to compute the nth Fibonacci number for a given n. The Fibonacci 
numbers are an infinite sequence of integers, 0, 1, 1, 2, 3, 5, 8, etc., in which each number 
is the sum of the two preceding numbers in the sequence. A procedure to compute the nth 
Fibonacci number is most naturally defined recursively as follows: 

(define fibonacci
(lambda (n)
(let fib ((i n))
(cond
((= i 0) 0)
((= i 1) 1)
(else (+ (fib (- i 1)) (fib (- i 2)))))))) 

(fibonacci 0) 0
(fibonacci 1) 1
(fibonacci 2) 1
(fibonacci 3) 2
(fibonacci 4) 3
(fibonacci 5) 5
(fibonacci 6) 8
(fibonacci 20) 6765
(fibonacci 30) 832040 

This solution requires the computation of the two preceding Fibonacci numbers at each 
step and hence is doubly recursive. For example, to compute (fibonacci 4) requires the 
computation of both (fib 3) and (fib 2), to compute (fib 3) requires computing both (fib 2) and 
(fib 1), and to compute (fib 2) requires computing both (fib 1) and (fib 0). This is very inefficient, 
and it becomes more inefficient as n grows. A more efficient solution is to adapt the 
accumulator solution of the factorial example above to use two accumulators, a1 for the 
current Fibonacci number and a2 for the preceding one. 

(define fibonacci
(lambda (n)
(if (= n 0)

0
(let fib ((i n) (a1 1) (a2 0))
(if (= i 1)

a1
(fib (- i 1) (+ a1 a2) a1)))))) 

Here, zero is treated as a special case, since there is no preceding value. This allows us to 
use the single base case (= i 1). The time it takes to compute the nth Fibonacci number 
using this iterative solution grows linearly with n, which makes a significant difference 
when compared to the doubly recursive version. To get a feel for the difference, try 
computing (fibonacci 30) and (fibonacci 35) using both definitions to see how long each takes. 



We can also get a feel for the difference by looking at a trace for each on small inputs. The 
first trace below shows the calls to fib in the non-tail-recursive version of fibonacci, with input 
5. 

|(fib 5)
| (fib 4)
| |(fib 3)
| | (fib 2)
| | |(fib 1)
| | |1
| | |(fib 0)
| | |0
| | 1
| | (fib 1)
| | 1
| |2
| |(fib 2)
| | (fib 1)
| | 1
| | (fib 0)
| | 0
| |1
| 3
| (fib 3)
| |(fib 2)
| | (fib 1)
| | 1
| | (fib 0)
| | 0
| |1
| |(fib 1)
| |1
| 2
|5 

Notice how there are several calls to fib with arguments 2, 1, and 0. The second trace 
shows the calls to fib in the tail-recursive version, again with input 5. 

|(fib 5 1 0)
|(fib 4 1 1)
|(fib 3 2 1)
|(fib 2 3 2)
|(fib 1 5 3)
|5 

Clearly, there is quite a difference. 

The named let examples shown so far are either tail-recursive or not tail-recursive. It often 
happens that one recursive call within the same expression is tail-recursive while another 
is not. The definition of factor below computes the prime factors of its nonnegative integer 
argument; the first call to f is not tail-recursive, but the second one is. 

(define factor
(lambda (n)
(let f ((n n) (i 2))
(cond
((> i n) '())
((integer? (/ n i))



(cons i (f (/ n i) i)))
(else (f n (+ i 1))))))) 

(factor 12) (2 2 3)
(factor 3628800) (2 2 2 2 2 2 2 2 3 3 3 3 5 5 7)
(factor 9239) (9239) 

The trace of the calls to f in the evaluation of (factor 120) below highlights the difference 
between the nontail calls and the tail calls. 

|(f 120 2)
| (f 60 2)
| |(f 30 2)
| | (f 15 2)
| | (f 15 3)
| | |(f 5 3)
| | |(f 5 4)
| | |(f 5 5)
| | | (f 1 5)
| | | ()
| | |(5)
| | (3 5)
| |(2 3 5)
| (2 2 3 5)
|(2 2 2 3 5) 

A nontail call to f is shown indented relative to its caller, since the caller is still active, 
whereas tail calls appear at the same level of indentation. 

Exercise 3.2.1

Which of the procedures defined in Section 3.2 are tail-recursive, and which are not? 

Exercise 3.2.2

Rewrite factor using letrec to bind f in place of named let. 

Exercise 3.2.3

Can the letrec expression defining even? and odd? on page 54 be rewritten using named let? 
If not, why not? If so, do it. 

Exercise 3.2.4

Rewrite both definitions of fibonacci given in this section to count the number of recursive 
calls to fib, using a counter similar to the one used in the cons-count example of Section 2.9. 
Count the number of recursive calls made in each case for several input values. What do 
you notice? 

Exercise 3.2.5

Augment the definition of let given in Section 3.1 to handle named let as well as unnamed 
let, using two rules. 

Exercise 3.2.6



The following definition of or is simpler than the one given in Section 3.1. 

(define-syntax or
(syntax-rules ()
((_) #f)
((_ e1 e2 ...)
(let ((t e1))
(if t t (or e2 ...)))))) 

Say why it is not correct. [Hint: Think about what would happen if this version of or were 
used in the even? and odd? example given in this section, for very large inputs.] 

Exercise 3.2.7

The definition of factor is not the most efficient possible. First, no factors of n besides n
itself can possibly be found beyond . Second, the division (/ n i) is performed twice when 
a factor is found. Third, after 2, no even factors can possibly be found. Recode factor to 
correct all three problems. Which is the most important problem to solve? Are there any 
additional improvements you can make? 

Section 3.3. Continuations

During the evaluation of a Scheme expression, the implementation must keep track of two 
things: (1) what to evaluate and (2) what to do with the value. Consider the evaluation of 
(null? x) within the expression below. 

(if (null? x) (quote ()) (cdr x)) 

The implementation must first evaluate (null? x) and, based on its value, evaluate either 
(quote ()) or (cdr x). "What to evaluate" is (null? x), and "what to do with the value" is to make 
the decision which of (quote ()) and (cdr x) to evaluate and do so. We call "what to do with 
the value" the continuation of a computation. 

Thus, at any point during the evaluation of any expression, there is a continuation ready to 
complete, or at least continue, the computation from that point. Let's assume that x has the 
value (a b c). Then we can isolate six continuations during the evaluation of (if (null? x) (quote 
()) (cdr x)), the continuations waiting for: 

1. the value of (if (null? x) (quote ()) (cdr x)), 
2. the value of (null? x), 
3. the value of null?, 
4. the value of x, 
5. the value of cdr, and 
6. the value of x (again). 

The continuation of (cdr x) is not listed because it is the same as the one waiting for (if (null? 
x) (quote ()) (cdr x)). 

Scheme allows the continuation of any expression to be obtained with the procedure call-
with-current-continuation, which may be abbreviated call/cc in most implementations. (We use 



the shorter name here. If the implementation you are using does not recognize call/cc, 
simply define it to be call-with-current-continuation or use the longer name in your code.) 

call/cc must be passed a procedure p of one argument. call/cc obtains the current 
continuation and passes it to p. The continuation itself is represented by a procedure k. 
Each time k is applied to a value, it returns the value to the continuation of the call/cc
application. This value becomes, in essence, the value of the application of call/cc. 

If p returns without invoking k, the value returned by the procedure becomes the value of 
the application of call/cc. 

Consider the simple examples below. 

(call/cc
(lambda (k)
(* 5 4))) 20 

(call/cc
(lambda (k)
(* 5 (k 4)))) 4 

(+ 2
(call/cc
(lambda (k)
(* 5 (k 4))))) 6 

In the first example, the continuation is obtained and bound to k, but k is never used, so the 
value is simply the product of 5 and 4. In the second, the continuation is invoked before 
the multiplication, so the value is the value passed to the continuation, 4. In the third, the 
continuation includes the addition by 2; thus, the value is the value passed to the 
continuation, 4, plus 2. 

Here is a less trivial example, showing the use of call/cc to provide a nonlocal exit from a 
recursion. 

(define product
(lambda (ls)
(call/cc
(lambda (break)
(let f ((ls ls))
(cond
((null? ls) 1)
((= (car ls) 0) (break 0))
(else (* (car ls) (f (cdr ls)))))))))) 

(product '(1 2 3 4 5)) 120
(product '(7 3 8 0 1 9 5)) 0 

The nonlocal exit allows product to return immediately, without performing the pending 
multiplications, when a zero value is detected. 

Each of the continuation invocations above returns to the continuation while control 
remains within the procedure passed to call/cc. The following example uses the 
continuation after this procedure has already returned. 



(let ((x (call/cc (lambda (k) k))))
(x (lambda (ignore) "hi"))) "hi" 

The continuation obtained by this invocation of call/cc may be described as "Take the value, 
bind it to x, and apply the value of x to the value of (lambda (ignore) "hi")." Since (lambda (k) k)
returns its argument, x is bound to the continuation itself; this continuation is applied to the 
procedure resulting from the evaluation of (lambda (ignore) "hi"). This has the effect of binding 
x (again!) to this procedure and applying the procedure to itself. The procedure ignores its 
argument and returns "hi". 

The following variation of the example above is probably the most confusing Scheme 
program of its size; it may be easy to guess what it returns, but it takes some work to verify 
that guess. 

(((call/cc (lambda (k) k)) (lambda (x) x)) "HEY!") "HEY!" 

The value of the call/cc is its own continuation, as in the preceding example. This is applied 
to the identity procedure (lambda (x) x), so the call/cc returns a second time with this value. 
Then, the identity procedure is applied to itself, yielding the identity procedure. This is 
finally applied to "HEY!", yielding "HEY!". 

Continuations used in this manner are not always so puzzling. Consider the following 
definition of factorial that saves the continuation at the base of the recursion before 
returning 1, by assigning the top-level variable retry. 

(define retry #f) 

(define factorial
(lambda (x)
(if (= x 0)

(call/cc (lambda (k) (set! retry k) 1))
(* x (factorial (- x 1)))))) 

With this definition, factorial works as we expect factorial to work, except it has the side effect 
of assigning retry. 

(factorial 4) 24
(retry 1) 24 

The continuation bound to retry might be described as "Multiply the value by 1, then 
multiply this result by 2, then multiply this result by 3, then multiply this result by 4." If we 
pass the continuation a different value, i.e., not 1, we will cause the base value to be 
something other than 1 and hence change the end result. 

(retry 2) 48
(retry 5) 120 

This mechanism could be the basis for a breakpoint package implemented with call/cc; 
each time a breakpoint is encountered, the continuation of the breakpoint is saved so that 
the computation may be restarted from the breakpoint (more than once, if desired). 

Continuations may be used to implement various forms of multitasking. The simple "light-
weight process" mechanism defined below allows multiple computations to be interleaved. 



Since it is nonpreemptive, it requires that each process voluntarily "pause" from time to 
time in order to allow the others to run. 

(define lwp-list '())
(define lwp
(lambda (thunk)
(set! lwp-list (append lwp-list (list thunk)))))

(define start
(lambda ()
(let ((next (car lwp-list)))
(set! lwp-list (cdr lwp-list))
(next))))

(define pause
(lambda ()
(call/cc
(lambda (k)
(lwp (lambda () (k #f)))
(start))))) 

The following light-weight processes cooperate to print an indefinite sequence of the string 
"hey!". 

(lwp (lambda () (let f () (pause) (display "h") (f))))
(lwp (lambda () (let f () (pause) (display "e") (f))))
(lwp (lambda () (let f () (pause) (display "y") (f))))
(lwp (lambda () (let f () (pause) (display "!") (f))))
(lwp (lambda () (let f () (pause) (newline) (f))))
(start) 

See Section 9.11 for an implementation of engines, which support preemptive 
multitasking, with call/cc. 

Exercise 3.3.1

Use call/cc to write a program that loops indefinitely, printing a sequence of numbers 
beginning at zero. 

Exercise 3.3.2

Rewrite product without call/cc, retaining the feature that no multiplications are performed if 
any of the list elements are zero. 

Exercise 3.3.3

What would happen if a process created by lwp as defined above were to terminate, i.e., 
simply return without calling pause? Define a quit procedure that allows a process to 
terminate properly. Be sure to handle the case in which the only remaining process 
terminates. 

Exercise 3.3.4

Each time lwp is called, the list of processes is copied because lwp uses append to add its 
argument to the end of the process list. Design and implement a queue abstraction that 
does not suffer from this problem and use it in the implementation of light-weight 
processes. 



Exercise 3.3.5

The light-weight process mechanism allows new processes to be created dynamically, 
although the example given in this section does not do so. Design an application that 
requires new processes to be created dynamically and implement it using the light-weight 
process mechanism. 

Section 3.4. Continuation Passing Style

As we discussed in the preceding section, a continuation waits for the value of each 
expression. In particular, a continuation is associated with each procedure call. When one 
procedure invokes another via a nontail call, the called procedure receives an implicit 
continuation that is responsible for completing what is left of the calling procedure's body 
plus returning to the calling procedure's continuation. If the call is a tail call, the called 
procedure simply receives the continuation of the calling procedure. 

We can make the continuations explicit by encapsulating "what to do" in an explicit 
procedural argument passed along on each call. For example, the continuation of the call 
to f in 

(letrec ((f (lambda (x) (cons 'a x)))
(g (lambda (x) (cons 'b (f x))))
(h (lambda (x) (g (cons 'c x)))))

(cons 'd (h '()))) (d b a c) 

conses the symbol b onto the value returned to it, then returns the result of this cons to the 
continuation of the call to g. This continuation is the same as the continuation of the call to 
h, which conses the symbol d onto the value returned to it. We can rewrite this in 
continuation-passing style, or CPS, by replacing these implicit continuations with explicit 
procedures. 

(letrec ((f (lambda (x k) (k (cons 'a x))))
(g (lambda (x k)

(f x (lambda (v) (k (cons 'b v))))))
(h (lambda (x k) (g (cons 'c x) k))))

(h '() (lambda (v) (cons 'd v)))) 

Like the implicit continuation of h and g in the preceding example, the explicit continuation 
passed to h and on to g, 

(lambda (v) (cons 'd v)) 

conses the symbol d onto the value passed to it. Similarly, the continuation passed to f, 

(lambda (v) (k (cons 'b v))) 

conses b onto the value passed to it, then passes this on to the continuation of g. 

Expressions written in CPS are more complicated, of course, but this style of programming 
has some useful applications. CPS allows a procedure to pass more than one result to its 
continuation, because the procedure that implements the continuation can take any 
number of arguments. 



(define car&cdr
(lambda (p k)
(k (car p) (cdr p)))) 

(car&cdr '(a b c)
(lambda (x y)
(list y x))) ((b c) a)

(car&cdr '(a b c) cons) (a b c)
(car&cdr '(a b c a d) memv) (a d) 

(This can be done with multiple values as well; see Section 5.8.) CPS also allows a 
procedure to take separate "success" and "failure" continuations, which may accept 
different numbers of arguments. An example is integer-divide below, which passes the 
quotient and remainder of its first two arguments to its third, unless the second argument 
(the divisor) is zero, in which case it passes an error message to its fourth argument. 

(define integer-divide
(lambda (x y success failure)
(if (= y 0)

(failure "divide by zero")
(let ((q (quotient x y)))
(success q (- x (* q y))))))) 

(integer-divide 10 3 list (lambda (x) x)) (3 1)
(integer-divide 10 0 list (lambda (x) x)) "divide by zero" 

The procedure quotient, employed by integer-divide, returns the quotient of its two arguments, 
truncated towards zero. 

Explicit success and failure continuations can sometimes help to avoid the extra 
communication necessary to separate successful execution of a procedure from 
unsuccessful execution. Furthermore, it is possible to have multiple success or failure 
continuations for different flavors of success or failure, each possibly taking different 
numbers and types of arguments. See Sections 9.10 and 9.11 for extended examples that 
employ continuation-passing style. 

At this point you may be wondering about the relationship between CPS and the 
continuations obtained via call/cc. It turns out that any program that uses call/cc can be 
rewritten in CPS without call/cc, but a total rewrite of the program (sometimes including 
even system-defined primitives) may be necessary. Try to convert the product example on 
page 61 into CPS before looking at the version below. 

(define product
(lambda (ls k)
(let ((break k))
(let f ((ls ls) (k k))
(cond
((null? ls) (k 1))
((= (car ls) 0) (break 0))
(else (f (cdr ls)

(lambda (x)
(k (* (car ls) x)))))))))) 

(product '(1 2 3 4 5) (lambda (x) x)) 120
(product '(7 3 8 0 1 9 5) (lambda (x) x)) 0 



Exercise 3.4.1

Rewrite the reciprocal example first given in Section 2.1 to accept both success and failure 
continuations, like integer-divide above. 

Exercise 3.4.2

Rewrite the retry example from the preceding section in CPS. 

Exercise 3.4.3

Rewrite the following expression in CPS to avoid using call/cc. 

(define reciprocals
(lambda (ls)
(call/cc
(lambda (k)
(map (lambda (x)

(if (= x 0)
(k "zero found")
(/ 1 x)))

ls))))) 

(reciprocals '(2 1/3 5 1/4)) (1/2 3 1/5 4)
(reciprocals '(2 1/3 0 5 1/4)) "zero found" 

[Hint: A single-list version of map is defined on page 39.] 

Section 3.5. Internal Definitions

In Section 2.6, we discussed top-level definitions. Definitions may also appear at the front 
of a lambda, let, or letrec body, in which case the bindings they create are local to the body. 

(define f (lambda (x) (* x x)))
(let ((x 3))
(define f (lambda (y) (+ y x)))
(f 4)) 7

(f 4) 16 

Procedures bound by internal definitions can be mutually recursive, as with letrec. For 
example, we can rewrite the even? and odd? example from Section 3.2 using internal 
definitions as follows. 

(let ()
(define even?
(lambda (x)
(or (= x 0)

(odd? (- x 1)))))
(define odd?
(lambda (x)
(and (not (= x 0))

(even? (- x 1)))))
(even? 20)) #t 



Similarly, we can replace the use of letrec to bind race with an internal definition of race in 
our first definition of list?. 

(define list?
(lambda (x)
(define race
(lambda (h t)
(if (pair? h)

(let ((h (cdr h)))
(if (pair? h)

(and (not (eq? h t))
(race (cdr h) (cdr t)))

(null? h)))
(null? h))))

(race x x))) 

In fact, internal definitions and letrec are practically interchangeable. It should not be 
surprising, therefore, that a lambda, let, or letrec body containing internal definitions can be 
replaced with an equivalent letrec expression. A body of the form 

(define var val)

exp1
exp2

is equivalent to a letrec expression binding the defined variables to the associated values in 
a body comprising the expressions. 

(letrec ((var val) ...) exp1 exp2 ...) 

Conversely, a letrec of the form 

(letrec ((var val) ...) exp1 exp2 ...) 

can be replaced with a let expression containing internal definitions and the expressions 
from the body as follows. 

(let ()
(define var val)

exp1
exp2

) 

The seeming lack of symmetry between these transformations is due to the fact that letrec
expressions can appear anywhere an expression is valid, whereas internal definitions can 
appear only at the front of a body. Thus, in replacing a letrec with internal definitions, we 
must generally introduce a let expression to hold the definitions. 

Syntax definitions may also appear at the front of a lambda, let, or letrec body. 

(let ((x 3))
(define-syntax set-x!
(syntax-rules ()



((_ e) (set! x e))))
(set-x! (+ x x))
x) 6 

The scope of a syntactic extension established by an internal syntax definition, as with an 
internal variable definition, is limited to the body in which the syntax definition appears. 

Internal definitions may be used in conjunction with top-level definitions and assignments 
to help modularize programs. Each module of a program should make visible only those 
bindings that are needed by other modules, while hiding other bindings that would 
otherwise clutter the top-level namespace and possibly result in unintended use or 
redefinition of those bindings. A common way of structuring a module is shown below. 

(define export-var #f)

(let ()
(define var val)

init-exp

(set! export-var export-val)

) 

The first set of definitions establish top-level bindings for the variables we desire to export 
(make visible globally). The second set of definitions establish local bindings visible only 
within the module. The expressions init-exp ... perform any initialization that must occur after 
the local bindings have been established. Finally, the set! expressions assign the exported 
variables to the appropriate values. Some of the extended examples in Chapter 9 use this 
modularization technique. 

One advantage of this form of modularization is that the bracketing let expression may be 
removed or "commented out" during program development, making the internal definitions 
top-level to facilitate interactive testing. 

The following module exports a single variable, calc, which is bound to a procedure that 
implements a simple four-function calculator. 

(define calc #f)
(let ()
(define apply-op
(lambda (ek op args)
(op (do-calc ek (car args)) (do-calc ek (cadr args)))))

(define complain
(lambda (ek msg exp)
(ek (list msg exp))))

(define do-calc
(lambda (ek exp)
(cond
((number? exp) exp)
((and (list? exp) (= (length exp) 3))
(let ((op (car exp)) (args (cdr exp)))
(case op
((add) (apply-op ek + args))
((sub) (apply-op ek - args))
((mul) (apply-op ek * args))



((div) (apply-op ek / args))
(else (complain ek "invalid operator" op)))))

(else (complain ek "invalid expression" exp)))))
(set! calc
(lambda (exp)
; grab an error continuation ek
(call/cc
(lambda (ek)
(do-calc ek exp)))))) 

(calc '(add (mul 3 2) -4)) 2
(calc '(div 1/2 1/6)) 3
(calc '(add (mul 3 2) (div 4))) ("invalid expression" (div 4))
(calc '(mul (add 1 -2) (pow 2 7))) ("invalid operator" pow) 

This example uses a case expression to determine which operator to apply. case is similar 
to cond except that the test is always the same: (memv val (key ...)), where val is the value of 
the first case subform and (key ...) is the list of items at the front of each case clause. The 
case expression in the example above could be rewritten using cond as follows. 

(let ((temp op))
(cond
((memv temp '(add)) (apply-op ek + args))
((memv temp '(sub)) (apply-op ek - args))
((memv temp '(mul)) (apply-op ek * args))
((memv temp '(div)) (apply-op ek / args))
(else (complain ek "invalid operator" op)))) 

Exercise 3.5.1

Replace complain in the calc example with an equivalent syntactic extension. 

Exercise 3.5.2

In the calc example, the error continuation ek is passed along on each call to apply-op, 
complain, and do-calc. Move the definitions of apply-op, complain, and do-calc to within the 
scope of the binding for ek established within calc. Then eliminate the ek argument from the 
definitions and applications of apply-op, complain, and do-calc. 

Exercise 3.5.3

Determine the error-signaling facilities provided by the Scheme implementation you are 
using. Eliminate the call/cc from calc and rewrite complain to signal an error. 

Exercise 3.5.4

Extend calc to handle unary minus expressions, e.g., 

(minus (add 2 3)) -5 

and other operators of your choice. 



Chapter 4. Variable Binding
This chapter describes the small set of syntactic forms whose primary purpose is to bind or 
to assign variables. Other forms that bind or assign variables for which the binding or 
assignment is not the primary purpose (such as do) are found in later chapters, especially 
in Chapter 5. This chapter begins with variable references and the lambda syntactic form. 
All variable binding operations in Scheme are derived from lambda, except top-level 
occurrences of define, which establishes top-level bindings. 

Section 4.1. Variable References

syntax: variable
returns: the value of variable

Any unquoted identifier appearing in an expression is a keyword or variable reference. It is 
a keyword reference if a lexical or top-level keyword binding for the identifier is visible; 
otherwise, it is a variable reference. It is an error to evaluate a top-level variable reference 
before the variable is defined at top-level, but it is not an error for a variable reference to 
appear within an expression that has not yet been evaluated. 

list #<procedure>
(define x 'a)
(list x x) (a a)
(let ((x 'b))
(list x x)) (b b)

(let ((let 'let)) let) let 

(define f
(lambda (x)
(g x)))

(define g
(lambda (x)
(+ x x)))

(f 3) 6 

Section 4.2. Lambda

syntax: (lambda formals exp1 exp2 ...)
returns: a procedure 

The lambda syntactic form is used to create procedures. Any operation that creates a 
procedure or establishes local variable bindings is ultimately defined in terms of lambda. 

The variables in formals are the formal parameters of the procedure, and the sequence of 
expressions exp1 exp2 ... is its body. 



The body may begin with a sequence of definitions, in which case the established bindings 
are local to the procedure. If definitions are present, the body is replaced by a letrec
expression formed from the definitions and the remaining expressions. Consult Section 3.5
or Section 4.4 for more details. The remainder of this discussion on lambda assumes that 
this transformation has taken place, if necessary, so that the body is a sequence of 
expressions without definitions. 

When the procedure is created, the bindings of all variables occurring free within the body, 
excluding the formal parameters, are retained with the procedure. Subsequently, 
whenever the procedure is applied to a sequence of actual parameters, the formal 
parameters are bound to the actual parameters, the retained bindings are restored, and 
the body is evaluated. 

Upon application, the formal parameters defined by formals are bound to the actual 
parameters as follows. 

• If formals is a proper list of variables, e.g., (x y z), each variable is bound to the 
corresponding actual parameter. It is an error if too few or too many actual 
parameters are supplied. 

• If formals is a single variable (not in a list), e.g., z, it is bound to a list of the actual 
parameters. 

• If formals is an improper list of variables terminated by a variable, e.g., (x y . z), each 
variable but the last is bound to the corresponding actual parameter. The last 
variable is bound to a list of the remaining actual parameters. It is an error if too few 
actual parameters are supplied. 

When the body is evaluated, the expressions exp1 exp2 ... are evaluated in sequence. The 
value of the last expression is the value of the procedure. 

Procedures do not have a printed representation in the usual sense. Scheme systems 
print procedures in different ways; this book uses the notation #<procedure>. 

(lambda (x) (+ x 3)) #<procedure>
((lambda (x) (+ x 3)) 7) 10
((lambda (x y) (* x (+ x y))) 7 13) 140
((lambda (f x) (f x x)) + 11) 22
((lambda () (+ 3 4))) 7 

((lambda (x . y) (list x y))
28 37) (28 (37))
((lambda (x . y) (list x y))
28 37 47 28) (28 (37 47 28))
((lambda (x y . z) (list x y z))
1 2 3 4) (1 2 (3 4))
((lambda x x) 7 13) (7 13) 

Section 4.3. Local Binding

syntax: (let ((var val) ...) exp1 exp2 ...)
returns: the value of the final expression 



let establishes local variable bindings. Each variable var is bound to the value of the 
corresponding expression val. The body of the let, in which the variables are bound, is the 
sequence of expressions exp1 exp2 .... 

The forms let, let*, and letrec (let* and letrec are described after let) are similar but serve 
slightly different purposes. With let, in contrast with let* and letrec, the expressions val ... are 
all outside the scope of the variables var .... Also, in contrast with let*, no ordering is implied 
for the evaluation of the expressions val .... They may be evaluated from left to right, from 
right to left, or in any other order at the discretion of the implementation. Use let whenever 
the values are independent of the variables and the order of evaluation is unimportant. 

The body of a let expression may begin with a sequence of definitions, which establish 
bindings local to the body of the let. See Section 3.5 or Section 4.4. 

The following definition of let shows the typical derivation of let from lambda. 

(define-syntax let
(syntax-rules ()
((_ ((x v) ...) e1 e2 ...)
((lambda (x ...) e1 e2 ...) v ...)))) 

(let ((x (* 3.0 3.0)) (y (* 4.0 4.0)))
(sqrt (+ x y))) 5.0 

(let ((x 'a) (y '(b c)))
(cons x y)) (a b c) 

(let ((x 0) (y 1))
(let ((x y) (y x))
(list x y))) (1 0) 

Another form of let, named let, is described in Section 5.5. 

syntax: (let* ((var val) ...) exp1 exp2 ...)
returns: the value of the final expression 

let* is similar to let except that the expressions val ... are evaluated in sequence from left to 
right, and each of these expressions is within the scope of the variables to the left. Use let*
when there is a linear dependency among the values or when the order of evaluation is 
important. 

Any let* expression may be converted to a set of nested let expressions. The following 
definition of let* demonstrates the typical transformation. 

(define-syntax let*
(syntax-rules ()
((_ () e1 e2 ...)
(let () e1 e2 ...))
((_ ((x1 v1) (x2 v2) ...) e1 e2 ...)
(let ((x1 v1))
(let* ((x2 v2) ...) e1 e2 ...))))) 

(let* ((x (* 5.0 5.0))
(y (- x (* 4.0 4.0))))



(sqrt y)) 3.0 

(let ((x 0) (y 1))
(let* ((x y) (y x))
(list x y))) (1 1) 

syntax: (letrec ((var val) ...) exp1 exp2 ...)
returns: the value of the final expression 

letrec is similar to let and let*, except that all of the expressions val ... are within the scope of 
all of the variables var .... letrec allows the definition of mutually recursive procedures. 

The order of evaluation of the expressions val ... is unspecified, so it is an error to reference 
any of the variables bound by the letrec expression before all of the values have been 
computed. (Occurrence of a variable within a lambda expression does not count as a 
reference, unless the resulting procedure is applied before all of the values have been 
computed.) 

Choose letrec over let or let* when there is a circular dependency among the variables and 
their values and when the order of evaluation is unimportant. 

A letrec expression of the form 

(letrec ((var val) ...) body) 

may be expressed in terms of let and set! as 

(let ((var #f) ...)
(let ((temp val) ...)
(set! var temp) ...
(let () body))) 

where temp ... are unique variables, one for each (var val) pair. The outer let expression 
establishes the variable bindings. The initial value given each variable is unimportant, so 
any value suffices in place of #f. The bindings are established first so that the values may 
contain occurrences of the variables, i.e., so that the values are computed within the scope 
of the variables. The middle let evaluates the values and binds them to the temporary 
variables, and the set! expressions assign each variable to the corresponding value. The 
inner let is present in case body contains internal definitions. 

This transformation does not enforce the restriction that the values must not directly 
reference one of the variables. 

A definition of letrec performing this transformation is shown on page 176. 

(letrec ((sum (lambda (x)
(if (zero? x)

0
(+ x (sum (- x 1)))))))

(sum 5)) 15 



Section 4.4. Variable Definitions

syntax: (define var exp)
syntax: (define (var0 var1 ...) exp1 exp2 ...)
syntax: (define (var0 . varr) exp1 exp2 ...)
syntax: (define (var0 var1 var2 ... . varr) exp1 exp2 ...)
returns: unspecified 

In the first form, define creates a new binding of var to the value of exp. The remaining are 
shorthand forms for binding variables to procedures; they are identical to the following 
definition in terms of lambda: 

(define var
(lambda formals
exp1 exp2 ...)) 

where formals is (var1 ...), varr, or (var1 var2 ... . varr) for the second, third, and fourth define
formats. 

Definitions often appear at "top level," i.e., outside the scope of any lambda or any form 
derived from lambda, such as let, let*, or letrec. A variable bound at top level is visible within 
any expression typed at the keyboard or loaded from a file, except where shadowed by a 
local binding. 

Definitions may also appear at the front of a lambda body or body of any form derived from 
lambda. These internal definitions must precede the expressions in the body. Any lambda
expression whose body begins with definitions may be transformed into an equivalent 
lambda expression without such definitions, by rewriting the body as a letrec expression. 
That is, a lambda expression of the form 

(lambda formals
(define var val) ...
exp1 exp2 ...) 

may be expressed in the equivalent form below. 

(lambda formals
(letrec ((var val) ...)
exp1 exp2 ...)) 

Although this shows the transformation for the first and simpler form of definition, either 
form may appear within a lambda body. 

Syntax definitions may appear along with variable definitions wherever variable definitions 
may appear; see Chapter 8. 

(define x 3)
x 3 

(define f
(lambda (x y)



(* (+ x y) 2)))
(f 5 4) 18 

(define (sum-of-squares x y)
(+ (* x x) (* y y)))

(sum-of-squares 3 4) 25 

(define f
(lambda (x)
(+ x 1)))

(let ((x 2))
(define f
(lambda (y)
(+ y x)))

(f 3)) 5
(f 3) 4 

A set of definitions may be grouped by enclosing them in a begin form. Definitions grouped 
in this manner may appear wherever ordinary variable and syntax definitions may appear. 
They are treated as if written separately, i.e., without the enclosing begin form. This feature 
allows syntactic extensions to expand into groups of definitions. 

(define-syntax multi-define-syntax
(syntax-rules ()
((_ (var exp) ...)
(begin
(define-syntax var exp)
...))))

(let ()
(define plus
(lambda (x y)

(if (zero? x)
y
(plus (sub1 x) (add1 y)))))

(multi-define-syntax
(add1 (syntax-rules () ((_ e) (+ e 1))))
(sub1 (syntax-rules () ((_ e) (- e 1)))))

(plus 7 8)) 15 

Section 4.5. Assignment

syntax: (set! var exp)
returns: unspecified 

set! assigns a new value to an existing variable. The value of the variable var is changed to 
the value of exp. Any subsequent reference to var evaluates to the new value. 

This form is different from the forms described earlier in this chapter because it does not 
establish a new binding for var but rather changes the value of an existing binding. It is an 
error to assign a top-level variable that has not yet been defined, although many 
implementations do not enforce this restriction. 



Assignments are not employed as frequently in Scheme as in most traditional languages, 
but they are useful for updating the state of a system and in creating recursive structures 
(as with letrec). 

(let ((x 3) (y 4))
(set! x 5)
(+ x y)) 9 

(define f
(lambda (x y)
(cons x y)))

(f 'a 'b) (a . b)
(set! f
(lambda (x y)
(cons y x)))

(f 'a 'b) (b . a) 



Chapter 5. Control Operations
This chapter introduces the syntactic forms and procedures that serve as control 
structures for Scheme programs. 

Section 5.1. Constants and Quotation

syntax: constant
returns: constant

constant is any self-evaluating constant, i.e., a number, boolean, character, or string. 
Constants are immutable; see the note in the description of quote below. 

3.2 3.2
#f #f
#\c #\c 
"hi" "hi" 

syntax: (quote obj)
syntax: 'obj
returns: obj

'obj is equivalent to (quote obj). The abbreviated form is converted into the longer form by the 
Scheme reader (see read). 

quote inhibits the normal evaluation rule for obj, allowing obj to be employed as data. 
Although any Scheme object may be quoted, quotation is not necessary for self-evaluating 
constants, i.e., numbers, booleans, characters, and strings. 

Quoted and self-evaluating constants are immutable. That is, it is an error to alter a 
constant via set-car!, string-set!, etc. An implementation may choose to share storage among 
different constants to save space. 

(+ 2 3) 5
'(+ 2 3) (+ 2 3)
(quote (+ 2 3)) (+ 2 3)
'a a
'cons cons
'() ()
'7 7 

syntax: (quasiquote obj)
syntax: `obj
syntax: (unquote obj)
syntax: ,obj
syntax: (unquote-splicing obj)



syntax: ,@obj
returns: see explanation 

`obj is equivalent to (quasiquote obj), ,obj is equivalent to (unquote obj), and ,@obj is equivalent 
to (unquote-splicing obj). The abbreviated forms are converted into the longer forms by the 
Scheme reader (see read). 

quasiquote is similar to quote, but it allows parts of the quoted text to be "unquoted." Within a 
quasiquote expression, subforms of unquote and unquote-splicing forms are evaluated, and 
everything else is quoted, i.e., left unevaluated. The value of each unquote subform is 
inserted into the output in place of the unquote form, while the value of each unquote-splicing
subform is spliced into the surrounding list or vector structure. unquote and unquote-splicing
are valid only within quasiquote expressions. 

quasiquote expressions may be nested, with each quasiquote introducing a new level of 
quotation and each unquote or unquote-splicing taking away a level of quotation. An 
expression nested within n quasiquote expressions must be within n unquote or unquote-splicing
expressions to be evaluated. 

`(+ 2 3) (+ 2 3) 

`(+ 2 ,(* 3 4)) (+ 2 12)
`(a b (,(+ 2 3) c) d) (a b (5 c) d)
`(a b ,(reverse '(c d e)) f g) (a b (e d c) f g)
(let ((a 1) (b 2))
`(,a . ,b)) (1 . 2) 

`(+ ,@(cdr '(* 2 3))) (+ 2 3)
`(a b ,@(reverse '(c d e)) f g) (a b e d c f g)
(let ((a 1) (b 2))
`(,a ,@b)) (1 . 2)

`#(,@(list 1 2 3)) #(1 2 3) 

'`,(cons 'a 'b) `,(cons 'a 'b)
`',(cons 'a 'b) '(a . b) 

Section 5.2. Procedure Application

syntax: (procedure exp ...)
returns: result of applying the value of procedure to the values of exp ...

Procedure application is the most basic Scheme control structure. Any structured form 
without a syntax keyword in the first position is a procedure application. The expressions 
procedure and exp ... are evaluated and the value of procedure is applied to the values of 
exp .... 

The order in which the procedure and argument expressions are evaluated is unspecified. 
It may be left to right, right to left, or some arbitrary order. The evaluation is guaranteed to 
be sequential, however; whatever order is chosen, each expression will be fully evaluated 
before evaluation of the next is started. 



(+ 3 4) 7
((if (odd? 3) + -) 6 2) 8
((lambda (x) x) 5) 5
(let ((f (lambda (x) (+ x x))))
(f 8)) 16 

procedure: (apply procedure obj ... list)
returns: the result of applying procedure to obj ... and the elements of list

apply invokes procedure, passing the first obj as the first argument, the second obj as the 
second argument, and so on for each object in obj ..., and passing the elements of list in 
order as the remaining arguments. Thus, procedure is called with as many arguments as 
there are objs plus elements of list. 

apply is useful when some or all of the arguments to be passed to a procedure are in a list, 
since it frees the programmer from explicitly destructuring the list. 

(apply + '(4 5)) 9 

(apply min '(6 8 3 2 5)) 2 

(apply min 5 1 3 '(6 8 3 2 5)) 1 

(apply vector 'a 'b '(c d e)) #5(a b c d e) 

(define first
(lambda (l)
(apply (lambda (x . y) x)

l)))
(define rest
(lambda (l)
(apply (lambda (x . y) y) l)))

(first '(a b c d)) a
(rest '(a b c d)) (b c d) 

Section 5.3. Sequencing

syntax: (begin exp1 exp2 ...)
returns: the result of the last expression 

The expressions exp1 exp2 ... are evaluated in sequence from left to right. begin is used to 
sequence assignments, input/output, or other operations that cause side effects. 

The bodies of many syntactic forms, including lambda, let, let*, and letrec, as well as the 
result clauses of cond, case, and do, are treated as if they were inside an implicit begin; that 
is, the expressions making up the body or result clause are executed in sequence. 

A begin form may contain zero or more definitions in place of the expressions exp1 exp2 ..., in 
which case it is considered to be a definition and may appear only where definitions are 
valid. 



(define x 3)
(begin
(set! x (+ x 1))
(+ x x)) 8 

(define swap-pair!
(lambda (x)
(let ((temp (car x)))
(set-car! x (cdr x))
(set-cdr! x temp)
x)))

(swap-pair! (cons 'a 'b)) (b . a) 

Section 5.4. Conditionals

syntax: (if test consequent alternative)
syntax: (if test consequent)
returns: the value of consequent or alternative depending on the value of test

test, consequent, and alternative are expressions. If no alternative is supplied and test
evaluates to false, the result is unspecified. 

(let ((l '(a b c)))
(if (null? l)

'()
(cdr l))) (b c) 

(let ((l '()))
(if (null? l)

'()
(cdr l))) () 

(let ((abs
(lambda (x)
(if (< x 0)

(- 0 x)
x))))

(abs -4)) 4 

(let ((x -4))
(if (< x 0)

(list 'minus (- 0 x))
(list 'plus 4))) (minus 4) 

procedure: (not obj)
returns: #t if obj is false, #f otherwise 

not is equivalent to (lambda (x) (if x #f #t)). 

The Revised4 Report (but not the ANSI/IEEE Standard) permits the empty list and #f to be 
identical. If they are identical, not returns #t for (); otherwise, it returns #f for (). 

(not #f) #t
(not #t) #f



(not '(a b)) #f
(if (eq? #f '())

(not '())
(not (not '()))) #t 

syntax: (and exp ...)
returns: see explanation 

and evaluates its subexpressions in sequence from left to right and stops immediately 
(without evaluating the remaining expressions) if any expression evaluates to false. The 
value of the last expression evaluated is returned. and may be defined as follows. 

(define-syntax and
(syntax-rules ()
((_) #t)
((_ e) e)
((_ e1 e2 e3 ...)
(if e1 (and e2 e3 ...) #f)))) 

(let ((x 3))
(and (> x 2) (< x 4))) #t 

(let ((x 5))
(and (> x 2) (< x 4))) #f 

(and #f '(a b) '(c d)) #f
(and '(a b) '(c d) '(e f)) (e f) 

syntax: (or exp ...)
returns: see explanation 

or evaluates its subexpressions in sequence from left to right and stops immediately 
(without evaluating the remaining expressions) if any expression evaluates to a true value. 
The value of the last expression evaluated is returned. or may be defined as follows. 

(define-syntax or
(syntax-rules ()
((_) #f)
((_ e) e)
((_ e1 e2 e3 ...)
(let ((t e1)) (if t t (or e2 e3 ...)))))) 

(let ((x 3))
(or (< x 2) (> x 4))) #f 

(let ((x 5))
(or (< x 2) (> x 4))) #t 

(or #f '(a b) '(c d)) (a b) 

syntax: (cond clause1 clause2 ...)
returns: see explanation 

Each clause but the last must take one of the forms below. 



(test)
(test exp1 exp2 ...)
(test => exp) 

The last clause may be in either of the above forms or it may be an "else clause" of the 
form 

(else exp1 exp2 ...) 

Each test is evaluated in order until one evaluates to a true value or until all of the tests 
have been evaluated. If the first clause whose test evaluates to a true value is in the first 
form given above, the value of test is returned. 

If the first clause whose test evaluates to a true value is in the second form given above, 
the expressions exp1 exp2... are evaluated in sequence and the value of the last expression 
is returned. 

If the first clause whose test evaluates to a true value is in the third form given above, the 
expression exp is evaluated. The value should be a procedure of one argument, which is 
applied to the value of test. The result of this application is returned. 

If none of the tests evaluates to a true value and an else clause is present, the expressions 
exp1 exp2 ... of the else clause are evaluated in sequence and the value of the last 
expression is returned. 

If none of the tests evaluates to a true value and no else clause is present, the value is 
unspecified. 

See page 173 for a definition of cond as a syntactic extension. 

(let ((x 0))
(cond
((< x 0) (list 'minus (abs x)))
((> x 0) (list 'plus x))
(else (list 'zero x)))) (zero 0) 

(define select
(lambda (x)
(cond
((not (symbol? x)))
((assq x '((a . 1) (b . 2) (c . 3)))
=> cdr)
(else 0)))) 

(select 3) #t
(select 'b) 2
(select 'e) 0 

syntax: (case exp0 clause1 clause2 ...)
returns: see explanation 

Each clause but the last must take the form 

((key ...) exp1 exp2 ...) 



where each key is a datum distinct from the other keys. The last clause may be in the 
above form or it may be an else clause of the form 

(else exp1 exp2 ...) 

exp0 is evaluated and the result is compared (using eqv?) against the keys of each clause 
in order. If a clause containing a matching key is found, the expressions exp1 exp2 ... are 
evaluated in sequence and the value of the last expression is returned. 

If none of the clauses contains a matching key and an else clause is present, the 
expressions exp1 exp2 ... of the else clause are evaluated in sequence and the value of the 
last expression is returned. 

If none of the clauses contains a matching key and no else clause is present, the value is 
unspecified. 

See page 173 for a definition of case as a syntactic extension. 

(let ((x 4) (y 5))
(case (+ x y)
((1 3 5 7 9) 'odd)
((0 2 4 6 8) 'even)
(else 'out-of-range))) odd 

Section 5.5. Recursion, Iteration, and Mapping

syntax: (let name ((var val) ...) exp1 exp2 ...)
returns: value of the last expression 

This form of let, called named let, is a general-purpose iteration and recursion construct. It 
is similar to the more common form of let (see Section 4.3) in the binding of the variables 
var ... to the values val ... within the body exp1 exp2 .... In addition, the variable name is bound 
within the body to a procedure that may be called to recur or iterate; the arguments to the 
procedure become the new values for the variables var .... 

A named let expression of the form 

(let name ((var val) ...)
exp1 exp2 ...) 

can be rewritten with letrec as follows: 

((letrec ((name (lambda (var ...) exp1 exp2 ...)))
name)

val ...) 

The procedure divisors defined below uses named let to compute the nontrivial divisors of a 
nonnegative integer. 

(define divisors
(lambda (n)



(let f ((i 2))
(cond
((>= i n) '())
((integer? (/ n i))
(cons i (f (+ i 1))))
(else (f (+ i 1))))))) 

(divisors 5) ()
(divisors 32) (2 4 8 16) 

The above version is non-tail-recursive when a divisor is found and tail-recursive when a 
divisor is not found. The version below is fully tail-recursive. It builds up the list in reverse 
order, but this is easy to remedy, either by reversing the list on exit or by starting at n - 1 
and counting down to 1. 

(define divisors
(lambda (n)
(let f ((i 2) (ls '()))
(cond
((>= i n) ls)
((integer? (/ n i))
(f (+ i 1) (cons i ls)))
(else (f (+ i 1) ls)))))) 

syntax: (do ((var val update) ...) (test res ...) exp ...)
returns: the value of the last res

do allows a common restricted form of iteration to be expressed succinctly. The variables 
var ... are bound initially to the values of val ... and are rebound on each subsequent 
iteration to the values of update .... The expressions test, update ..., exp ..., and res ... are all 
within the scope of the bindings established for var .... 

On each step, the test expression test is evaluated. If the value of test is true, iteration 
ceases, the result expressions res ... are evaluated in sequence, and the value of the last 
expression is returned. If no result expressions are present, the value of the do expression 
is unspecified. 

If the value of test is false, the expressions exp ... are evaluated in sequence, the 
expressions update ... are evaluated, new bindings for var ... to the values of update ... are 
created, and iteration continues. 

The expressions exp ... are evaluated only for effect and are often omitted entirely. Any 
update expression may be omitted, in which case the effect is the same as if the update
were simply the corresponding var. 

Although looping constructs in most languages require that the loop iterands be updated 
via assignment, do requires the loop iterands val ... to be updated via rebinding. In fact, no 
side effects are involved in the evaluation of a do expression unless they are performed 
explicitly by its subexpressions. 

See page 177 for a definition of do as a syntactic extension. 



The definitions for factorial and fibonacci below are straightforward translations of the tail-
recursive named-let versions given in Section 3.2. 

(define factorial
(lambda (n)
(do ((i n (- i 1)) (a 1 (* a i)))

((zero? i) a)))) 

(factorial 10) 3628800 

(define fibonacci
(lambda (n)
(if (= n 0)

0
(do ((i n (- i 1)) (a1 1 (+ a1 a2)) (a2 0 a1))

((= i 1) a1))))) 

(fibonacci 6) 8 

The definition of divisors below is similar to the tail-recursive definition of divisors given with 
the description of named let above. 

(define divisors
(lambda (n)
(do ((i 2 (+ i 1))

(ls '()
(if (integer? (/ n i))

(cons i ls)
ls)))

((>= i n) ls)))) 

The variant of divisors below, which prints the divisors one per line, demonstrates a 
nonempty do body.

(define divisors
(lambda (n)
(do ((i 2 (+ i 1)))

((>= i n))
(if (integer? (/ n i))

(begin
(write i)
(newline)))))) 

procedure: (map procedure list1 list2 ...)
returns: list of results 

map applies procedure to corresponding elements of the lists list1 list2 ... and returns a list of 
the resulting values. The lists list1 list2 ... must be of the same length, and procedure must 
accept as many arguments as there are lists. 

While the order in which the applications themselves occur is not specified, the order of 
the values in the output list is the same as that of the corresponding values in the input 
lists. 

(map abs '(1 -2 3 -4 5 -6)) (1 2 3 4 5 6)
(map (lambda (x y) (* x y))



'(1 2 3 4)
'(8 7 6 5)) (8 14 18 20) 

map might be defined as follows. 

(define map
(lambda (f ls . more)
(if (null? more)

(let map1 ((ls ls))
(if (null? ls)

'()
(cons (f (car ls))

(map1 (cdr ls)))))
(let map-more ((ls ls) (more more))
(if (null? ls)

'()
(cons (apply f (car ls) (map car more))

(map-more (cdr ls)
(map cdr more)))))))) 

No error checking is done by this version of map; f is assumed to be a procedure and the 
other arguments are assumed to be proper lists of the same length. An interesting feature 
of this definition is that map uses itself to pull out the cars and cdrs of the list of input lists; 
this works because of the special treatment of the single-list case. 

procedure: (for-each procedure list1 list2 ...)
returns: unspecified 

for-each is similar to map except that for-each does not create and return a list of the resulting 
values, and for-each guarantees to perform the applications in sequence over the lists from 
left to right. for-each may be defined as follows. 

(define for-each
(lambda (f ls . more)
(do ((ls ls (cdr ls)) (more more (map cdr more)))

((null? ls))
(apply f (car ls) (map car more))))) 

(let ((same-count 0))
(for-each
(lambda (x y)
(if (= x y)

(set! same-count (+ same-count 1))))
'(1 2 3 4 5 6)
'(2 3 3 4 7 6))

same-count) 3 

Section 5.6. Continuations

Continuations in Scheme are procedures that represent the remainder of a computation 
from a given point in the continuation. They may be obtained with call-with-current-continuation, 
which can be abbreviated call/cc in most Scheme implementations. 



procedure: (call-with-current-continuation procedure)
procedure: (call/cc procedure)
returns: the result of applying procedure to the current continuation 

call-with-current-continuation and call/cc are two names for the same procedure; the 
abbreviation call/cc is often used for the obvious reason that it requires fewer keystrokes to 
type. 

call/cc obtains its continuation and passes it to procedure, which must accept one 
argument. The continuation itself is represented by a procedure of one argument. (In the 
context of multiple values, a continuation may actually accept zero or more than one 
argument; see Section 5.8.) Each time this procedure is applied to a value, it returns the 
value to the continuation of the call/cc application. That is, when the continuation procedure 
is given a value, it returns the value as the result of the application of call/cc. 

If procedure returns normally when passed the continuation procedure, the value returned 
by call/cc is the value returned by procedure. 

Continuations allow the implementation of nonlocal exits, backtracking [11,24], 
coroutines [13], and multitasking [8,25]. 

The example below illustrates the use of a continuation to perform a nonlocal exit from a 
loop. 

(define member
(lambda (x ls)
(call/cc
(lambda (break)
(do ((ls ls (cdr ls)))

((null? ls) #f)
(if (equal? x (car ls))

(break ls))))))) 

(member 'd '(a b c)) #f
(member 'b '(a b c)) (b c) 

Additional examples are given in Section 3.3. 

The current continuation is typically represented internally as a stack of procedure 
activation records, and obtaining the continuation involves encapsulating the stack within a 
procedural object. Since an encapsulated stack has indefinite extent, some mechanism 
must be used to preserve the stack contents indefinitely. This can be done with surprising 
ease and efficiency and with no impact on programs that do not use continuations [14]. 

procedure: (dynamic-wind in body out)
returns: result of applying body

dynamic-wind offers "protection" from continuation invocation. It is useful for performing tasks 
that must be performed whenever control enters or leaves body, either normally or by 
continuation application. 



The three arguments in, body, and out must be procedures of no arguments, i.e., thunks. 
Before applying body, and each time body is entered subsequently by the application of a 
continuation created within body, the in thunk is applied. Upon normal exit from body and 
each time body is exited by the application of a continuation created outside body, the out
thunk is applied. 

Thus, it is guaranteed that in is invoked at least once. In addition, if body ever returns, out
is invoked at least once. 

dynamic-wind has been approved for inclusion in the Revised5 Report but is not in the 
ANSI/IEEE standard or the Revised4 Report. 

The following example demonstrates the use of dynamic-wind to be sure that an input port is 
closed after processing, regardless of whether the processing completes normally. 

(let ((p (open-input-file "input-file")))
(dynamic-wind
(lambda () #f)
(lambda () (process p))
(lambda () (close-input-port p)))) 

Common Lisp provides a similar facility (unwind-protect) for protection from nonlocal exits. 
This is often sufficient. unwind-protect provides only the equivalent to out, however, since 
Common Lisp does not support fully general continuations. Here is how unwind-protect might 
be specified with dynamic-wind: 

(define-syntax unwind-protect
(syntax-rules ()
((_ body cleanup ...)
(dynamic-wind
(lambda () #f)
(lambda () body)
(lambda () cleanup ...))))) 

((call/cc
(let ((x 'a))
(lambda (k)
(unwind-protect
(k (lambda () x))
(set! x 'b)))))) b 

Some Scheme implementations support a controlled form of assignment known as fluid 
binding, in which a variable takes on a temporary value during a given computation and 
reverts to the old value after the computation has completed. The syntactic form fluid-let
defined below in terms of dynamic-wind permits the fluid binding of a single variable x to a 
value v within a sequence of expressions e1 e2 .... 

(define-syntax fluid-let
(syntax-rules ()
((_ ((x v)) e1 e2 ...)
(let ((y v))
(let ((swap (lambda ()

(let ((t x))
(set! x y)
(set! y t)))))

(dynamic-wind



swap
(lambda () e1 e2 ...)
swap)))))) 

(Implementations that support fluid-let generally extend it to allow an indefinite number of (x 
v) pairs, as with let.) 

If no continuations are invoked within the body of a fluid-let, the behavior is the same as if 
the variable were simply assigned the new value on entry and assigned the old value on 
return. 

(let ((x 3))
(+ (fluid-let ((x 5))

x)
x)) 8 

A fluid-bound variable also reverts to the old value if a continuation created outside of the 
fluid-let is invoked. 

(let ((x 'a))
(let ((f (lambda () x)))
(cons (call/cc

(lambda (k)
(fluid-let ((x 'b))
(f))))

(f)))) (b . a) 

If control has left a fluid-let body, either normally or by the invocation of a continuation, and 
control reenters the body by the invocation of a continuation, the temporary value of the 
fluid-bound variable is reinstated. Furthermore, any changes to the temporary value are 
maintained and reflected upon reentry. 

(define reenter #f)
(define x 0)
(fluid-let ((x 1))
(call/cc (lambda (k) (set! reenter k)))
(set! x (+ x 1))
x) 2

x 0
(reenter '*) 3
(reenter '*) 4
x 0 

An implementation of dynamic-wind is given below. In addition to defining dynamic-wind, the 
code redefines call/cc (call-with-current-continuation). Together, dynamic-wind and call/cc manage 
a list of winders. A winder is a pair of in and out thunks established by a call to dynamic-
wind. Whenever dynamic-wind is invoked, the in thunk is invoked, a new winder containing 
the in and out thunks is placed on the winders list, the body thunk is invoked, the winder is 
removed from the winders list, and the out thunk is invoked. This ordering ensures that the 
winder is on the winders list only when control has passed through in and not yet entered 
out. Whenever a continuation is obtained, the winders list is saved, and whenever the 
continuation is invoked, the saved winders list is reinstated. During reinstatement, the out
thunk of each winder on the current winders list that is not also on the saved winders list is 
invoked, followed by the in thunk of each winder on the saved winders list that is not also 
on the current winders list. The winders list is updated incrementally, again to ensure that 



a winder is on the current winders list only if control has passed through its in thunk and 
not entered its out thunk. 

(define dynamic-wind #f)
(let ((winders '()))
(define common-tail
(lambda (x y)
(let ((lx (length x)) (ly (length y)))
(do ((x (if (> lx ly) (list-tail x (- lx ly)) x) (cdr x))

(y (if (> ly lx) (list-tail y (- ly lx)) y) (cdr y)))
((eq? x y) x)))))

(define do-wind
(lambda (new)
(let ((tail (common-tail new winders)))
(let f ((l winders))
(if (not (eq? l tail))

(begin
(set! winders (cdr l))
((cdar l))
(f (cdr l)))))

(let f ((l new))
(if (not (eq? l tail))

(begin
(f (cdr l))
((caar l))
(set! winders l)))))))

(set! call/cc
(let ((c call/cc))
(lambda (f)
(c (lambda (k)

(f (let ((save winders))
(lambda (x)
(if (not (eq? save winders)) (do-wind save))
(k x)))))))))

(set! call-with-current-continuation call/cc)
(set! dynamic-wind
(lambda (in body out)
(in)
(set! winders (cons (cons in out) winders))
(let ((ans (body)))
(set! winders (cdr winders))
(out)
ans)))) 

The test (not (eq? save winders)) performed in call/cc is not strictly necessary but makes 
invoking a continuation less costly whenever the saved winders list is the same as the 
current winders list. 

Section 5.7. Delayed Evaluation

The syntactic form delay and the procedure force may be used in combination to implement 
lazy evaluation. An expression subject to lazy evaluation is not evaluated until its value is 
required and once evaluated is never reevaluated. delay and force are in the Revised4

Report but not the ANSI/IEEE standard. 



syntax: (delay exp)
returns: a promise 

The first time the promise is forced (with force), it evaluates exp, "remembering" the 
resulting value. Thereafter, each time the promise is forced, it returns the remembered 
value instead of reevaluating exp. See the examples given for force below. 

procedure: (force promise)
returns: result of forcing promise

delay may be defined as 

(define-syntax delay
(syntax-rules ()
((_ exp) (make-promise (lambda () exp))))) 

where make-promise is defined as 

(define make-promise
(lambda (p)
(let ((val #f) (set? #f))
(lambda () 
(if (not set?)

(let ((x (p)))
(if (not set?)

(begin (set! val x)
(set! set? #t)))))

val)))) 

With this definition of delay, force simply invokes the promise to force evaluation or to 
retrieve the saved value. 

(define force
(lambda (promise)
(promise))) 

The second test of the variable set? in make-promise is necessary in the unlikely event that, 
as a result of applying p, the promise is recursively forced. Since a promise must always 
return the same value, the result of the first application of p to complete is returned. 

delay and force are typically used only in the absence of side effects, e.g., assignments, so 
that the order of evaluation is unimportant. 

The benefit of using delay and force is that some amount of computation might be avoided 
altogether if it is delayed until absolutely required. Delayed evaluation may be used to 
construct conceptually infinite lists, or streams. The example below shows how a stream 
abstraction may be built with delay and force. A stream is a promise that, when forced, 
returns a pair whose cdr is a stream. 

(define stream-car
(lambda (s)
(car (force s)))) 



(define stream-cdr
(lambda (s)
(cdr (force s)))) 

(define counters
(let next ((n 1))
(delay (cons n (next (+ n 1)))))) 

(stream-car counters) 1 

(stream-car (stream-cdr counters)) 2 

(define stream-add
(lambda (s1 s2)
(delay (cons

(+ (stream-car s1) (stream-car s2))
(stream-add (stream-cdr s1) (stream-cdr s2)))))) 

(define even-counters
(stream-add counters counters)) 

(stream-car even-counters) 2 

(stream-car (stream-cdr even-counters)) 4 

Section 5.8. Multiple Values

This section describes support for multiple values. Two procedures, values and call-with-
values, comprise the multiple values interface. The multiple values interface has been 
approved for inclusion in the Revised5 Report but is not in the ANSI/IEEE standard or the 
Revised4 Report. 

procedure: (call-with-values producer consumer)
returns: see discussion following 

producer may be any procedure accepting zero arguments, and consumer may be any 
procedure. call-with-values applies consumer to the values returned by invoking producer
without arguments. See the examples under values below. 

procedure: (values obj ...)
returns: see discussion following 

The procedure values accepts any number of arguments and simply passes (returns) the 
arguments to its continuation. 

The following simple examples demonstrate how call-with-values and values interact: 

(call-with-values (lambda () (values 1 2)) +) 3 

(call-with-values values (lambda args args)) () 



In the second example, values itself serves as the producer. It receives no arguments and 
thus returns no values. 

The more realistic example below employs multiple values to divide a list nondestructively 
into two sublists of alternating elements. 

(define split
(lambda (ls)
(if (or (null? ls) (null? (cdr ls)))

(values ls '())
(call-with-values
(lambda () (split (cddr ls)))
(lambda (odds evens)
(values (cons (car ls) odds)

(cons (cadr ls) evens))))))) 

(split '(a b c d e f)) (a c e)
(b d f) 

At each level of recursion, the procedure split returns two values: a list of the odd-
numbered elements from the argument list and a list of the even-numbered elements. 

The continuation of a call to values need not be one established by a call to call-with-values,
nor must only values be used to return to a continuation established by call-with-values. In 
particular, (values v) and v are equivalent in all situations. For example: 

(+ (values 2) 4) 6 

(if (values #t) 1 2) 1 

(call-with-values
(lambda () 4)
(lambda (x) x)) 4 

Similarly, values may be used to pass any number of values to a continuation that ignores 
the values, as in: 

(begin (values 1 2 3) 4) 4 

Because a continuation may accept zero or more than one value, continuation objects 
obtained via call-with-current-continuation (call/cc) may accept zero or more than one argument: 

(call-with-values
(lambda ()
(call/cc (lambda (k) (k 2 3))))

(lambda (x y) (list x y))) (2 3) 

Many Scheme operators pass along multiple values. Most of these are "automatic," in the 
sense that nothing special must be done by the implementation to make this happen. The 
usual expansion of let into a direct lambda call automatically propagates multiple values 
produced by the body of the let. Other operators must be coded specially to pass along 
multiple values. For example, if the computation delayed by delay produces multiple values, 
all of the values must be retained so that force can return them. This is easily accomplished 
via call-with-values, apply, and values, as the following alternative definition of make-promise
(see Section 5.7) demonstrates. 



(define make-promise
(lambda (p)
(let ((vals #f) (set? #f))
(lambda ()
(if (not set?)

(call-with-values p
(lambda x
(if (not set?)

(begin (set! vals x)
(set! set? #t))))))

(apply values vals))))) 

(define p (delay (values 1 2 3)))
(force p) 1

2
3

(call-with-values (lambda () (force p)) +) 6 

Other operators that must be coded similarly to pass along multiple return values include 
call-with-input-file, call-with-output-file, with-input-from-file, with-output-to-file, and dynamic-wind. 

The behavior is unspecified when a continuation expecting exactly one value receives zero 
values or more than one value. For example, the behavior of each of the following 
expressions is unspecified. 

(if (values 1 2) 'x 'y) 

(+ (values) 5) 

Similarly, since there is no requirement to signal an error when the wrong number of 
arguments is passed to a procedure (although most implementations do so), the behavior 
of each of the following expressions is also unspecified. 

(call-with-values
(lambda () (values 2 3 4))
(lambda (x y) x)) 

(call-with-values
(lambda () (call/cc (lambda (k) (k 0))))
(lambda (x y) x)) 

In the interests of catching possible coding errors and for consistency with the signaling of 
errors when procedures receive incorrect numbers of arguments, some implementations, 
including Chez Scheme, signal an error whenever an unexpected number of values is 
received. This includes the case where too few or too many are passed to the consumer of 
a call-with-values call and the case where zero or more than one value is passed to a single-
value continuation, such as in the test part of an if expression. An implementation may, 
however, silently suppress additional values or supply defaults for missing values. 

Programs that wish to force extra values to be ignored in particular contexts can do so 
easily by calling call-with-values explicitly. A syntactic form, which we might call first, can be 
defined to abstract the discarding of more than one value when only one is desired: 

(define-syntax first
(syntax-rules ()
((_ expr)



(call-with-values
(lambda () expr)
(lambda (x . y) x))))) 

(if (first (values #t #f)) 'a 'b) a 

Since producer is most often a lambda expression, it is often convenient to use a syntactic 
extension that suppresses the lambda expression in the interest of readability. 

(define-syntax with-values
(syntax-rules ()
((_ expr consumer)
(call-with-values (lambda () expr) consumer)))) 

(with-values (values 1 2) list) (1 2)
(with-values (split '(1 2 3 4))
(lambda (odds evens)
evens)) (2 4) 

If the consumer is also a lambda expression, the multiple-value variant of let defined below 
might be even more convenient. 

(define-syntax mvlet
(syntax-rules ()
((_ ((x ...) e0) e1 e2 ...)
(with-values e0
(lambda (x ...) e1 e2 ...))))) 

(mvlet ((odds evens) (split '(1 2 3 4)))
evens) (2 4) 

The definitions of values and call-with-values (and concomitant redefinition of call/cc) below 
demonstrate that the multiple return values interface can be implemented entirely in 
Scheme. No error checking can be done, however, for the case in which more than one 
value is returned to a single-value context such as the test part of an if expression. 

(define call/cc call/cc)
(define values #f)
(define call-with-values #f)
(let ((magic (cons 'multiple 'values)))
(define magic?
(lambda (x)
(and (pair? x) (eq? (car x) magic)))) 

(set! call/cc
(let ((primitive-call/cc call/cc))
(lambda (p)
(primitive-call/cc
(lambda (k)
(p (lambda args

(k (apply values args))))))))) 

(set! values
(lambda args
(if (and (not (null? args)) (null? (cdr args)))

(car args)
(cons magic args)))) 

(set! call-with-values



(lambda (producer consumer)
(let ((x (producer)))
(if (magic? x)

(apply consumer (cdr x))
(consumer x)))))) 

Multiple values can be implemented much more efficiently [2], but this code serves to 
illustrate the meanings of the operators and can be used to provide multiple values in 
implementations that do not support them. 

Section 5.9. Eval

procedure: (eval obj)
returns: the result of evaluating obj as a Scheme program 

obj may be any Scheme object that corresponds to a valid Scheme program. The current 
lexical environment is not visible within obj; instead, obj behaves as if it appeared at top 
level or in some other implementation-dependent environment containing the top-level 
bindings for (at least) the standard syntactic forms and procedures. 

At the time of this writing, eval has been accepted for inclusion in the Revised5 Report on 
Scheme, but its interface has not been fully specified. The form described here is 
recognized by most Scheme systems, however. eval is not in the ANSI/IEEE standard or 
the Revised4 Report. 

(eval 3) 3
(eval '(+ 3 4)) 7
(eval "(+ 3 4)) (+ 3 4)
(eval (list '+ 3 4)) 7
(let ((k 4))
((eval `(lambda (x) (+ x ,k))) 3)) 7 



Chapter 6. Operations on Objects
This chapter describes the operations on objects, including lists, numbers, characters, 
strings, vectors, and symbols. The first section describes generic equivalence predicates 
for comparing two objects and predicates for determining the type of an object. Later 
sections describe procedures that deal primarily with one of the object types mentioned 
above. There is no section treating operations on procedures, since the only operation 
defined specifically for procedures is application, and this is described in Chapter 5. 
Operations on ports are covered in the more general discussion of input and output in 
Chapter 7. 

Section 6.1. Generic Equivalence and Type Predicates

This section describes the basic Scheme predicates (procedures returning one of the 
boolean values #t or #f) for determining the type of an object or the equivalence of two 
objects. The equivalence predicates eq?, eqv?, and equal? are discussed first, followed by 
the type predicates. 

procedure: (eq? obj1 obj2)
returns: #t if obj1 and obj2 are identical, #f otherwise 

In most Scheme systems, two objects are considered identical if they are represented 
internally by the same pointer value and distinct (not identical) if they are represented 
internally by different pointer values, although other criteria, such as time-stamping, are 
possible. 

Although the particular rules for object identity vary somewhat from system to system, the 
following rules always hold:

• Two objects of different types (booleans, the empty list, pairs, numbers, characters, 
strings, vectors, symbols, and procedures) are distinct. The Revised4 Report (but 
not the ANSI/IEEE standard) permits one exception to this rule: the empty list and 
the boolean #f may be identical. 

• Two objects of the same type with different contents or values are distinct. 
• The boolean object #t is identical to itself wherever it appears, and #f is identical to 

itself wherever it appears, but #t and #f are distinct. 
• The empty list () is identical to itself wherever it appears. 
• Two symbols (created by read or by string->symbol) are identical if and only if they 

have the same name (by string=?). 
• A quoted pair, vector, or string is identical to itself, as is a pair, vector, or string 

created by an application of cons, vector, string, etc. Two pairs, vectors, or strings 
created by different applications of cons, vector, string, etc., are distinct. One 
consequence is that cons, for example, may be used to create a unique object 
distinct from all other objects. 

• Two procedures that may behave differently are distinct. A procedure created by an 
evaluation of a lambda expression is identical to itself. Two procedures created by 
the same lambda expression at different times, or by similar lambda expressions, may 
or may not be identical. 



eq? cannot be used to compare numbers and characters reliably. Although every inexact 
number is distinct from every exact number, two exact numbers, two inexact numbers, or 
two characters with the same value may or may not be identical. 

Since constant objects are immutable, i.e., it is an error to modify one, all or portions of 
different quoted constants or self-evaluating literals may be represented internally by the 
same object. Thus, eq? may return #t when applied to equal parts of different immutable 
constants. 

(eq? 'a 3) #f
(eq? #t 't) #f
(eq? "abc" 'abc) #f
(eq? "hi" '(hi)) #f
(eq? "()" '()) #f 

(eq? 9/2 7/2) #f
(eq? 3.4 53344) #f
(eq? 3 3.0) #f
(eq? 1/3 #i1/3) #f 

(eq? 9/2 9/2) unspecified
(eq? 3.4 (+ 3.0 .4)) unspecified
(let ((x (* 12345678987654321 2)))
(eq? x x)) unspecified

(eq? #\a #\b) #f
(eq? #\a #\a) unspecified
(let ((x (string-ref "hi" 0)))
(eq? x x)) unspecified

(eq? #t #t) #t
(eq? #f #f) #t
(eq? #t #f) #f
(eq? (null? '()) #t) #t
(eq? (null? '(a)) #f) #t 

(eq? (cdr '(a)) '()) #t 

(eq? 'a 'a) #t
(eq? 'a 'b) #f
(eq? 'a (string->symbol "a")) #t 

(eq? '(a) '(b)) #f
(eq? '(a) '(a)) unspecified
(let ((x '(a . b))) (eq? x x)) #t
(let ((x (cons 'a 'b)))
(eq? x x)) #t

(eq? (cons 'a 'b) (cons 'a 'b)) #f 

(eq? "abc" "cba") #f
(eq? "abc" "abc") unspecified
(let ((x "hi")) (eq? x x)) #t
(let ((x (string #\h #\i))) (eq? x x)) #t
(eq? (string #\h #\i)

(string #\h #\i)) #f 

(eq? '#(a) '#(b)) #f
(eq? '#(a) '#(a)) unspecified
(let ((x '#(a))) (eq? x x)) #t
(let ((x (vector 'a)))



(eq? x x)) #t
(eq? (vector 'a) (vector 'a)) #f 

(eq? car car) #t
(eq? car cdr) #f
(let ((f (lambda (x) x)))
(eq? f f)) #t

(let ((f (lambda () (lambda (x) x))))
(eq? (f) (f))) unspecified

(eq? (lambda (x) x) (lambda (y) y)) unspecified

(let ((f (lambda (x)
(lambda ()
(set! x (+ x 1))
x))))

(eq? (f 0) (f 0))) #f 

procedure: (eqv? obj1 obj2)
returns: #t if obj1 and obj2 are equivalent, #f otherwise 

eqv? is similar to eq? except that eqv? is guaranteed to return #t for two exact numbers, two 
inexact numbers, or two characters with the same value (by = or char=?). eqv? is less 
implementation-dependent but generally more expensive than eq?. eqv? might be defined 
as follows: 

(define eqv?
(lambda (x y)
(cond
((eq? x y))
((number? x)
(and (number? y)

(if (exact? x)
(and (exact? y) (= x y))
(and (inexact? y) (= x y)))))

((char? x) (and (char? y) (char=? x y)))
(else #f)))) 

(eqv? 'a 3) #f
(eqv? #t 't) #f
(eqv? "abc" 'abc) #f
(eqv? "hi" '(hi)) #f
(eqv? "()" '()) #f 

(eqv? 9/2 7/2) #f
(eqv? 3.4 53344) #f
(eqv? 3 3.0) #f
(eqv? 1/3 #i1/3) #f 

(eqv? 9/2 9/2) #t 
(eqv? 3.4 (+ 3.0 .4)) #t
(let ((x (* 12345678987654321 2)))
(eqv? x x)) #t 

(eqv? #\a #\b) #f
(eqv? #\a #\a) #t
(let ((x (string-ref "hi" 0)))
(eqv? x x)) #t 

(eqv? #t #t) #t



(eqv? #f #f) #t
(eqv? #t #f) #f
(eqv? (null? '()) #t) #t
(eqv? (null? '(a)) #f) #t 

(eqv? (cdr '(a)) '()) #t 

(eqv? 'a 'a) #t
(eqv? 'a 'b) #f
(eqv? 'a (string->symbol "a")) #t 

(eqv? '(a) '(b)) #f
(eqv? '(a) '(a)) unspecified
(let ((x '(a . b))) (eqv? x x)) #t
(let ((x (cons 'a 'b)))
(eqv? x x)) #t

(eqv? (cons 'a 'b) (cons 'a 'b)) #f 

(eqv? "abc" "cba") #f
(eqv? "abc" "abc") unspecified
(let ((x "hi")) (eqv? x x)) #t
(let ((x (string #\h #\i))) (eqv? x x)) #t
(eqv? (string #\h #\i)

(string #\h #\i)) #f 

(eqv? '#(a) '#(b)) #f
(eqv? '#(a) '#(a)) unspecified
(let ((x '#(a))) (eqv? x x)) #t
(let ((x (vector 'a)))
(eqv? x x)) #t

(eqv? (vector 'a) (vector 'a)) #f 

(eqv? car car) #t
(eqv? car cdr) #f
(let ((f (lambda (x) x)))
(eqv? f f)) #t

(let ((f (lambda () (lambda (x) x))))
(eqv? (f) (f))) unspecified

(eqv? (lambda (x) x) (lambda (y) y)) unspecified

(let ((f (lambda (x)
(lambda ()
(set! x (+ x 1))
x))))

(eqv? (f 0) (f 0))) #f 

procedure: (equal? obj1 obj2)
returns: #t if obj1 and obj2 have the same structure and contents, #f otherwise 

Two objects are equal if they are equivalent according to eqv? or if they are strings that are 
string=?, pairs whose cars and cdrs are equal, or vectors of the same length whose 
corresponding elements are equal. 

equal? is recursively defined and must compare not only numbers and characters for 
equivalence but also pairs, strings, and vectors. The result is that equal? is less 
discriminating than either eq? or eqv?. It is also likely to be more expensive. 

equal? might be defined as follows: 



(define equal?
(lambda (x y)
(cond
((eqv? x y))
((pair? x)
(and (pair? y)

(equal? (car x) (car y))
(equal? (cdr x) (cdr y))))

((string? x) (and (string? y) (string=? x y)))
((vector? x)
(and (vector? y)

(let ((n (vector-length x)))
(and (= (vector-length y) n)

(let loop ((i 0))
(or (= i n)

(and (equal? (vector-ref x i) (vector-ref y i))
(loop (+ i 1)))))))))

(else #f)))) 

(equal? 'a 3) #f
(equal? #t 't) #f
(equal? "abc" 'abc) #f
(equal? "hi" '(hi)) #f
(equal? "()" '()) #f 

(equal? 9/2 7/2) #f
(equal? 3.4 53344) #f
(equal? 3 3.0) #f
(equal? 1/3 #i1/3) #f 

(equal? 9/2 9/2) #t
(equal? 3.4 (+ 3.0 .4)) #t
(let ((x (* 12345678987654321 2)))
(equal? x x)) #t 

(equal? #\a #\b) #f
(equal? #\a #\a) #t
(let ((x (string-ref "hi" 0)))
(equal? x x)) #t

(equal? #t #t) #t
(equal? #f #f) #t
(equal? #t #f) #f
(equal? (null? '()) #t) #t
(equal? (null? '(a)) #f) #t 

(equal? (cdr '(a)) '()) #t 

(equal? 'a 'a) #t
(equal? 'a 'b) #f
(equal? 'a (string->symbol "a")) #t 

(equal? '(a) '(b)) #f
(equal? '(a) '(a)) #t
(let ((x '(a . b))) (equal? x x)) #t
(let ((x (cons 'a 'b)))
(equal? x x)) #t

(equal? (cons 'a 'b) (cons 'a 'b)) #t 

(equal? "abc" "cba") #f
(equal? "abc" "abc") #t
(let ((x "hi")) (equal? x x)) #t



(let ((x (string #\h #\i))) (equal? x x)) #t
(equal? (string #\h #\i)

(string #\h #\i)) #t 

(equal? '#(a) '#(b)) #f
(equal? '#(a) '#(a)) #t
(let ((x '#(a))) (equal? x x)) #t
(let ((x (vector 'a)))
(equal? x x)) #t

(equal? (vector 'a) (vector 'a)) #t 

(equal? car car) #t
(equal? car cdr) #f
(let ((f (lambda (x) x)))
(equal? f f)) #t

(let ((f (lambda () (lambda (x) x))))
(equal? (f) (f))) unspecified

(equal? (lambda (x) x) (lambda (y) y)) unspecified

(let ((f (lambda (x)
(lambda ()
(set! x (+ x 1))
x))))

(equal? (f 0) (f 0))) #f 

procedure: (boolean? obj)
returns: #t if obj is either #t or #f, #f otherwise 

boolean? is equivalent to (lambda (x) (or (eq? x #t) (eq? x #f))). 

The Revised4 Report (but not the ANSI/IEEE Standard) permits the empty list and #f to be 
identical. If they are identical, boolean? returns #t for (); otherwise, it returns #f for (). 

(boolean? #t) #t
(boolean? #f) #t
(boolean? 't) #f
(if (eq? #f '())

(boolean? '())
(not (boolean? '()))) #t 

procedure: (null? obj)
returns: #t if obj is the empty list, #f otherwise 

null? is equivalent to (lambda (x) (eq? x '())). 

The Revised4 Report (but not the ANSI/IEEE Standard) permits the empty list and #f to be 
identical. If they are identical, null? returns #t for #f; otherwise, it returns #f for #f. 

(null? '()) #t
(null? '(a)) #f
(null? (cdr '(a))) #t
(null? 3) #f
(if (eq? #f '())

(null? #f)
(not (null? #f))) #t 



procedure: (pair? obj)
returns: #t if obj is a pair, #f otherwise 

(pair? '(a b c)) #t
(pair? '(3 . 4)) #t
(pair? '()) #f
(pair? '#(a b)) #f
(pair? 3) #f 

procedure: (number? obj)
returns: #t if obj is a number, #f otherwise 
procedure: (complex? obj)
returns: #t if obj is a complex number, #f otherwise 
procedure: (real? obj)
returns: #t if obj is a real number, #f otherwise 
procedure: (rational? obj)
returns: #t if obj is a rational number, #f otherwise 
procedure: (integer? obj)
returns: #t if obj is an integer, #f otherwise 

These predicates form a hierarchy: any integer is rational, any rational is real, any real is 
complex, and any complex is numeric. Most implementations do not provide internal 
representations for irrational numbers, so all real numbers are typically rational as well. 

(integer? 1901) #t
(rational? 1901) #t
(real? 1901) #t
(complex? 1901) #t
(number? 1901) #t 

(integer? -3.0) #t
(rational? -3.0) #t
(real? -3.0) #t
(complex? -3.0) #t
(number? -3.0) #t 

(integer? 7.0+0.0i) #t
(rational? 7.0+0.0i) #t
(real? 7.0+0.0i) #t
(complex? 7.0+0.0i) #t
(number? 7.0+0.0i) #t 

(integer? -2/3) #f
(rational? -2/3) #t
(real? -2/3) #t
(complex? -2/3) #t
(number? -2/3) #t 

(integer? -2.345) #f
(rational? -2.345) #t
(real? -2.345) #t
(complex? -2.345) #t
(number? -2.345) #t 

(integer? 3.2-2.01i) #f



(rational? 3.2-2.01i) #f
(real? 3.2-2.01i) #f
(complex? 3.2-2.01i) #t
(number? 3.2-2.01i) #t 

(integer? 'a) #f
(rational? '(a b c)) #f
(real? "3") #f
(complex? #(1 2)) #f
(number? #\a) #f 

procedure: (char? obj)
returns: #t if obj is a character, #f otherwise 

(char? 'a) #f
(char? 97) #f
(char? #\a) #t
(char? "a") #f
(char? (string-ref (make-string 1) 0)) #t 

procedure: (string? obj)
returns: #t if obj is a string, #f otherwise 

(string? "hi") #t
(string? 'hi) #f
(string? #\h) #f 

procedure: (vector? obj)
returns: #t if obj is a vector, #f otherwise 

(vector? '#()) #t
(vector? '#(a b c)) #t
(vector? (vector 'a 'b 'c)) #t
(vector? '()) #f
(vector? '(a b c)) #f
(vector? "abc") #f 

procedure: (symbol? obj)
returns: #t if obj is a symbol, #f otherwise 

(symbol? 't) #t
(symbol? "t") #f
(symbol? '(t)) #f
(symbol? #\t) #f
(symbol? 3) #f
(symbol? #t) #f 

procedure: (procedure? obj)
returns: #t if obj is a procedure, #f otherwise 



Continuations obtained via call-with-current-continuation are procedures, so procedure? can be 
used to distinguish them from nonprocedures but not from other procedures. 

(procedure? car) #t
(procedure? 'car) #f
(procedure? (lambda (x) x)) #t
(procedure? '(lambda (x) x)) #f
(call/cc procedure?) #t 

Section 6.2. Lists and Pairs

The pair, or cons cell, is the most fundamental of Scheme's structured object types. The 
most common use for pairs is to build lists, which are ordered sequences of pairs linked 
one to the next by the cdr field. The elements of the list occupy the car field of each pair. 
The cdr of the last pair in a proper list is the empty list, (); the cdr of the last pair in an 
improper list can be anything other than (). 

Pairs may be used to construct binary trees. Each pair in the tree structure is an internal 
node of the binary tree; its car and cdr are the children of the node. 

Proper lists are printed as sequences of objects separated by whitespace (that is, blanks, 
tabs, and newlines) and enclosed in parentheses. Brackets ( [ ] ) may also be used in 
some Scheme systems. For example, (1 2 3) and (a (nested list)) are proper lists. The empty 
list is written as (). 

Improper lists and trees require a slightly more complex syntax. A single pair is written as 
two objects separated by whitespace and a dot, e.g., (a . b). This is referred to as dotted-
pair notation. Improper lists and trees are also written in dotted-pair notation; the dot 
appears wherever necessary, e.g., (1 2 3 . 4) or ((1 . 2) . 3). Proper lists may be written in 
dotted-pair notation as well. For example, (1 2 3) may be written as (1 . (2 . (3 . ()))). 

Unless otherwise stated, it is an error to pass an improper list to a procedure requiring a 
list argument. 

It is possible to create a circular list or a cyclic graph by destructively altering the car or cdr 
field of a pair, using set-car! or set-cdr!. Some of the procedures listed in this section may 
loop indefinitely when handed a cyclic structure. 

procedure: (cons obj1 obj2)
returns: a new pair whose car and cdr are obj1 and obj2

cons is the pair constructor procedure. obj1 becomes the car and obj2 becomes the cdr of 
the new pair. 

(cons 'a '()) (a)
(cons 'a '(b c)) (a b c)
(cons 3 4) (3 . 4) 



procedure: (car pair)
returns: the car of pair

It is an error to ask for the car of the empty list. 

(car '(a)) a
(car '(a b c)) a
(car (cons 3 4)) 3 

procedure: (cdr pair)
returns: the cdr of pair

It is an error to ask for the cdr of the empty list. 

(cdr '(a)) ()
(cdr '(a b c)) (b c)
(cdr (cons 3 4)) 4 

procedure: (set-car! pair obj)
returns: unspecified 

set-car! changes the car of pair to obj. 

(let ((x '(a b c)))
(set-car! x 1)
x) (1 b c) 

procedure: (set-cdr! pair obj)
returns: unspecified 

set-cdr! changes the cdr of pair to obj. 

(let ((x '(a b c)))
(set-cdr! x 1)
x) (a . 1) 

procedure: (caar pair)
procedure: (cadr pair)
procedure: (cddddr pair)
returns: the caar, cadr, ..., or cddddr of pair

These procedures are defined as the composition of up to four cars and cdrs. The a's and 
d's between the c and d represent the application of car or cdr in order from right to left. For 
example, the procedure cadr applied to a pair yields the car of the cdr of the pair and is 
equivalent to (lambda (x) (car (cdr x))). 

(caar '((a))) a
(cadr '(a b c)) b



(cdddr '(a b c d)) (d)
(cadadr '(a (b c))) c 

procedure: (list obj ...)
returns: a list of obj ...

list is equivalent to (lambda x x). 

(list) ()
(list 1 2 3) (1 2 3)
(list 3 2 1) (3 2 1) 

procedure: (list? obj)
returns: #t if obj is a proper list, #f otherwise 

list? must return #f for all improper lists, including cyclic lists. A definition of list? is shown on 
page 55. 

(list? '()) #t
(list? '(a b c)) #t
(list? 'a) #f
(list? '(3 . 4)) #f
(list? 3) #f
(let ((x (list 'a 'b 'c)))
(set-cdr! (cddr x) x)
(list? x)) #f 

procedure: (length list)
returns: the number of elements in list

length may be defined as follows. 

(define length
(lambda (ls)
(let loop ((ls ls) (n 0))
(if (null? ls)

n
(loop (cdr ls) (+ n 1)))))) 

(length '()) 0
(length '(a b c)) 3 

procedure: (list-ref list n)
returns: the nth element (zero-based) of list

n must be an exact nonnegative integer strictly less than the length of list. list-ref may be 
defined as follows. 

(define list-ref
(lambda (ls n)
(if (= n 0)



(car ls)
(list-ref (cdr ls) (- n 1))))) 

(list-ref '(a b c) 0) a
(list-ref '(a b c) 1) b
(list-ref '(a b c) 2) c 

procedure: (list-tail list n)
returns: the nth tail (zero-based) of list

n must be an exact nonnegative integer less than or equal to the length of list. The result is 
not a copy; the tail is eq? to the nth cdr of list (or to list itself, if n is zero). 

list-tail is in the Revised4 Report but not the ANSI/IEEE standard. It may be defined as 
follows. 

(define list-tail
(lambda (ls n)
(if (= n 0)

ls
(list-tail (cdr ls) (- n 1))))) 

(list-tail '(a b c) 0) (a b c)
(list-tail '(a b c) 2) (c)
(list-tail '(a b c) 3) ()
(list-tail '(a b c . d) 2) (c . d)
(list-tail '(a b c . d) 3) d
(let ((x (list 1 2 3)))
(eq? (list-tail x 2)

(cddr x))) #t 

procedure: (append list ...)
returns: the concatenation of the input lists 

append returns a new list consisting of the elements of the first list followed by the elements 
of the second list, the elements of the third list, and so on. The new list is made from new 
pairs for all arguments but the last; the last (which need not actually be a list) is merely 
placed at the end of the new structure. append may be defined as follows. 

(define append
(lambda args
(let f ((ls '()) (args args))
(if (null? args)

ls
(let g ((ls ls))
(if (null? ls)

(f (car args) (cdr args))
(cons (car ls) (g (cdr ls))))))))) 

(append '(a b c) '()) (a b c)
(append '() '(a b c)) (a b c)
(append '(a b) '(c d)) (a b c d)
(append '(a b) 'c) (a b . c)
(let ((x (list 'b)))
(eq? x (cdr (append '(a) x)))) #t 



procedure: (reverse list)
returns: a new list containing the elements of list in reverse order 

reverse may be defined as follows. 

(define reverse
(lambda (ls)
(let rev ((ls ls) (new '()))
(if (null? ls)

new
(rev (cdr ls) (cons (car ls) new)))))) 

(reverse '()) ()
(reverse '(a b c)) (c b a) 

procedure: (memq obj list)
procedure: (memv obj list)
procedure: (member obj list)
returns: the first tail of list whose car is equivalent to obj, or #f

These procedures traverse the argument list in order, comparing the elements of list
against obj. If an object equivalent to obj is found, the tail of the list whose first element is 
that object is returned. If the list contains more than one object equivalent to obj, the first 
tail whose first element is equivalent to obj is returned. If no object equivalent to obj is 
found, #f is returned. The equivalence test for memq is eq?, for memv is eqv?, and for member
is equal?. 

These procedures are most often used as predicates, but their names do not end with a 
question mark because they return a useful true value in place of #t. memq may be defined 
as follows. 

(define memq
(lambda (x ls)
(cond
((null? ls) #f)
((eq? (car ls) x) ls)
(else (memq x (cdr ls)))))) 

memv and member may be defined similarly, with eqv? and equal? in place of eq?. 

(memq 'a '(b c a d e)) (a d e)
(memq 'a '(b c d e g)) #f
(memq 'a '(b a c a d a)) (a c a d a) 

(memv 3.4 '(1.2 2.3 3.4 4.5)) (3.4 4.5)
(memv 3.4 '(1.3 2.5 3.7 4.9)) #f
(let ((ls (list 'a 'b 'c)))
(set-car! (memv 'b ls) 'z)
ls) (a z c) 

(member '(b) '((a) (b) (c))) ((b) (c))
(member '(d) '((a) (b) (c))) #f
(member "b" '("a" "b" "c")) ("b" "c") 



procedure: (assq obj alist)
procedure: (assv obj alist)
procedure: (assoc obj alist)
returns: first element of alist whose car is equivalent to obj, or #f

The argument alist must be an association list. An association list is a proper list whose 
elements are key-value pairs of the form (key . value). Associations are useful for storing 
information (values) associated with certain objects (keys). 

These procedures traverse the association list, testing each key for equivalence with obj. If 
an equivalent key is found, the key-value pair is returned. Otherwise, #f is returned. 

The equivalence test for assq is eq?, for assv is eqv?, and for assoc is equal?. assq may be 
defined as follows. 

(define assq
(lambda (x ls)
(cond
((null? ls) #f)
((eq? (caar ls) x) (car ls))
(else (assq x (cdr ls)))))) 

assv and assoc may be defined similarly, with eqv? and equal? in place of eq?. 

(assq 'b '((a . 1) (b . 2))) (b . 2)
(cdr (assq 'b '((a . 1) (b . 2)))) 2
(assq 'c '((a . 1) (b . 2))) #f 

(assv 2/3 '((1/3 . 1) (2/3 . 2))) (2/3 . 2)
(assv 2/3 '((1/3 . a) (3/4 . b))) #f 

(assoc '(a) '(((a) . a) (-1 . b))) ((a) . a)
(assoc '(a) '(((b) . b) (a . c))) #f 

(let ((alist '((2 . a) (3 . b))))
(set-cdr! (assv 3 alist) 'c)
alist) ((2 . a) (3 . c)) 

Section 6.3. Numbers

Scheme numbers may be classified as integers, rational numbers, real numbers, or 
complex numbers, although an implementation may support only a subset of these 
numeric classes. This classification is hierarchical, in that all integers are rational, all 
rational numbers are real, and all real numbers are complex. The predicates integer?, 
rational?, real?, and complex? described in Section 6.1 are used to determine into which of 
these classes a number falls. 

A Scheme number may also be classified as exact or inexact, depending upon the quality 
of operations used to derive the number and the inputs to these operations. The 
predicates exact? and inexact? may be used to determine the exactness of a number. Most 
operations on numbers in Scheme are exactness preserving: if given exact operands they 



return exact values, and if given inexact operands or a combination of exact and inexact 
operands they return inexact values. 

Exact integer and rational arithmetic is typically supported to arbitrary precision; the size of 
an integer or of the denominator or numerator of a ratio is limited only by system storage 
constraints. Although other representations are possible, inexact numbers are typically 
represented by floating-point numbers supported by the host computer's hardware or by 
system software. Complex numbers are typically represented as ordered pairs (real-part, 
imag-part), where real-part and imag-part are exact integers, exact rationals, or floating-
point numbers. 

Scheme numbers are written in a straightforward manner not much different from ordinary 
conventions for writing numbers. An exact integer is normally written as a sequence of 
numerals preceded by an optional sign. For example, 3, +19, -100000, and 
208423089237489374 all represent exact integers. 

An exact rational number is normally written as two sequences of numerals separated by a 
slash (/) and preceded by an optional sign. For example, 3/4, -6/5, and 1/1208203823 are all 
exact rational numbers. A ratio is reduced immediately when it is read and may in fact 
reduce to an exact integer. 

Inexact integers and rational numbers are normally written in either floating-point or 
scientific notation. Floating-point notation consists of a sequence of numerals followed by 
a decimal point and another sequence of numerals, all preceded by an optional sign. 
Scientific notation consists of an optional sign, a sequence of numerals, an optional 
decimal point followed by a second string of numerals, and an exponent; an exponent is 
written as the letter e followed by an optional sign and a sequence of numerals. For 
example, 1.0 and -200.0 are valid inexact integers, and 1.5, 0.034, -10e-10 and 1.5e-5 are valid 
inexact rational numbers. The exponent is the power of ten by which the number 
preceding the exponent should be scaled, so that 2e3 is equivalent to 2000.0. 

The special digit # (hash) may be used in place of a normal digit in certain contexts to 
signify that the value of the digit is unknown. Numbers that include hash digits are naturally 
inexact, even if they are written in the style of exact integers or rational numbers. Hash 
digits may appear after one or more nonhash digits to signify an inexact integer; after one 
or more nonhash digits in the first or second part of a ratio to specify an inexact rational 
number; or after one or more nonhash digits before or after the decimal point of an inexact 
number written in floating-point or scientific notation. No significant (known) digit may 
follow a hash digit. For example, 1####, -1#/2#, .123### and 1#.### all specify inexact 
quantities. 

Exact and inexact real numbers are written as exact or inexact integers or rational 
numbers; no provision is made in the syntax of Scheme numbers for nonrational real 
numbers, i.e., irrational numbers. 

Complex numbers may be written in either rectangular or polar form. In rectangular form, a 
complex number is written as x+yi or x-yi, where x is an integer, rational, or real number and 
y is an unsigned integer, rational, or real number. The real part, x, may be omitted, in 
which case it is assumed to be zero. For example, 3+4i, 3.2-3/4i, +i, and -3e-5i are complex 
numbers written in rectangular form. In polar form, a complex number is written as x@yi, 



where x and y are integer, rational, or real numbers. For example, 1.1@1.764 and -1@-1/2
are complex numbers written in polar form. 

The exactness of a numeric representation may be overridden by preceding the 
representation by either #e or #i. #e forces the number to be exact, and #i forces it to be 
inexact. For example, 1, #e1, 1/1, #e1/1, #e1.0, #e1e0, and #e1.## all represent the exact 
integer 1, and #i3/10, 3#/100, 0.3, #i0.3, and 3e-1 all represent the inexact rational 0.3. 

Numbers are written by default in base 10, although the special prefixes #b (binary), #o
(octal), #d (decimal), and #x (hexadecimal) can be used to specify base 2, base 8, base 10, 
or base 16. For radix 16, the letters a through f or A through F serve as the additional 
numerals required to express digit values 10 through 15. For example, #b10101 is the 
binary equivalent of , #o72 is the octal equivalent of , and #xC7 is the hexadecimal 
equivalent of . Numbers written in floating-point and scientific notations are always 
written in base 10. 

If both are present, radix and exactness prefixes may appear in either order. 

A Scheme implementation may support more than one size of internal representation for 
inexact quantities. The exponent markers s (short), f (single), d (double), and l (long) may 
appear in place of the default exponent marker e to override the default size for numbers 
written in scientific notation. In implementations that support multiple representations, the 
default size has at least as much precision as double. 

A precise grammar for Scheme numbers is included in the description of the formal syntax 
of Scheme at the back of this book. 

Any number can be written in a variety of different ways, but the system printer (see write
and display) and number->string express numbers in a compact form, using the fewest 
number of digits possible while retaining the property that, when read, the printed number 
is identical to the original number. 

Scheme implementations are permitted to support only a subset of the numeric datatypes, 
in which case certain of the procedures described in this section need not be implemented. 
Implementors should consult the ANSI/IEEE standard or Revised4 Report for a detailed 
description of what constitutes a valid subset. 

The remainder of this section describes procedures that operate on numbers. The type of 
numeric arguments accepted by these procedures is implied by the name given to the 
arguments: num for complex numbers (that is, all numbers), real for real numbers, rat for 
rational numbers, and int for integers. 

procedure: (exact? num)
returns: #t if num is exact, #f otherwise 

(exact? 1) #t
(exact? -15/16) #t
(exact? 2.01) #f
(exact? #i77) #f
(exact? #i2/3) #f



(exact? 1.0-2i) #f
(exact? -1#i) #f 

procedure: (inexact? num)
returns: #t if num is inexact, #f otherwise 

(inexact? -123) #f
(inexact? #i123) #t
(inexact? 1e23) #t
(inexact? 1###) #t
(inexact? 1#/2#) #t
(inexact? #e1#/2#) #f
(inexact? +i) #f 

procedure: (= num1 num2 num3 ...)
procedure: (< real1 real2 real3 ...)
procedure: (> real1 real2 real3 ...)
procedure: (<= real1 real2 real3 ...)
procedure: (>= real1 real2 real3 ...)
returns: #t if the relation holds, #f otherwise 

The predicate = returns #t if its arguments are equal. The predicate < returns #t if its 
arguments are monotonically increasing, i.e., each argument is greater than the preceding 
ones, while > returns #t if its arguments are monotonically decreasing. The predicate <=
returns #t if its arguments are monotonically nondecreasing, i.e., each argument is not less 
than the preceding ones, while >= returns #t if its arguments are monotonically 
nonincreasing. 

As implied by the names of the arguments, = is defined for complex arguments while the 
other relational predicates are defined only for real arguments. Two complex numbers are 
considered equal if their real and imaginary parts are equal. 

(= 7 7) #t
(= 7 9) #f 

(< 2e3 3e2) #f
(<= 1 2 3 3 4 5) #t
(<= 1 2 3 4 5) #t 

(> 1 2 2 3 3 4) #f
(>= 1 2 2 3 3 4) #f 

(= -1/2 -0.5) #t
(= 2/3 .667) #f
(= 7.2+0i 7.2) #t
(= 7.2-3i 7) #f 

(< 1/2 2/3 3/4) #t
(> 8 4.102 2/3 -5) #t 

(let ((x 0.218723452))
(< 0.210 x 0.220)) #t 

(let ((i 1) (v (vector 'a 'b 'c)))
(< -1 i (vector-length v))) #t 



(apply < '(1 2 3 4)) #t
(apply > '(4 3 3 2)) #f 

procedure: (+ num ...)
returns: the sum of the arguments num ...

When called with no arguments, + returns 0. 

(+) 0
(+ 1 2) 3
(+ 1/2 2/3) 7/6
(+ 3 4 5) 12
(+ 3.0 4) 7.0
(+ 3+4i 4+3i) 7+7i
(apply + '(1 2 3 4 5)) 15 

procedure: (- num1)
procedure: (- num1 num2 num3 ...)
returns: see explanation 

When called with one argument, - returns the negative of num1. Thus, (- num1) is an idiom 
for (- 0 num1). 

When called with two or more arguments, - returns the result of subtracting the sum of the 
numbers num2 ... from num1. 

The ANSI/IEEE standard includes only one- and two-argument variants. The more general 
form is included in the Revised4 Report. 

(- 3) -3 
(- -2/3) 2/3
(- 4 3.0) 1.0
(- 3.25+4.25i 1/4+1/4i) 3.0+4.0i
(- 4 3 2 1) -2 

procedure: (* num ...)
returns: the product of the arguments num ...

When called with no arguments, * returns 1. 

(*) 1
(* 3.4) 3.4
(* 1 1/2) 1/2
(* 3 4 5.5) 66.0
(* 1+2i 3+4i) -5+10i
(apply * '(1 2 3 4 5)) 120 

procedure: (/ num1)
procedure: (/ num1 num2 num3 ...)
returns: see explanation 



When called with one argument, / returns the reciprocal of num1. That is, (/ num1) is an 
idiom for (/ 1 num1). 

When called with two or more arguments, / returns the result of dividing num1 by the 
product of the remaining arguments num2 .... 

The ANSI/IEEE standard includes only one- and two-argument variants. The more general 
form is included in the Revised4 Report. 

(/ -17) -1/17
(/ 1/2) 2
(/ .5) 2.0
(/ 3 4) 3/4
(/ 3.0 4) .75
(/ -5+10i 3+4i) 1+2i
(/ 60 5 4 3 2) 1/2 

procedure: (zero? num)
returns: #t if num is zero, #f otherwise 

zero? is equivalent to (lambda (x) (= x 0)). 

(zero? 0) #t
(zero? 1) #f
(zero? (- 3.0 3.0)) #t
(zero? (+ 1/2 1/2)) #f
(zero? 0+0i) #t
(zero? 0.0-0.0i) #t 

procedure: (positive? real)
returns: #t if real is greater than zero, #f otherwise 

positive? is equivalent to (lambda (x) (> x 0)). 

(positive? 128) #t
(positive? 0.0) #f
(positive? 1.8e-15) #t
(positive? -2/3) #f
(positive? .001-0.0i) #t 

procedure: (negative? real)
returns: #t if real is less than zero, #f otherwise 

negative? is equivalent to (lambda (x) (< x 0)). 

(negative? -65) #t
(negative? 0) #f
(negative? -0.0121) #t
(negative? 15/16) #f
(negative? -7.0+0.0i) #t 



procedure: (even? int)
returns: #t if int is even, #f otherwise 

(even? 0) #t
(even? 1) #f
(even? 2.0) #t
(even? -120762398465) #f
(even? 2.0+0.0i) #t 

procedure: (odd? int)
returns: #t if int is odd, #f otherwise 

(odd? 0) #f
(odd? 1) #t
(odd? 2.0) #f
(odd? -120762398465) #t
(odd? 2.0+0.0i) #f 

procedure: (quotient int1 int2)
returns: the integer quotient of int1 and int2

(quotient 45 6) 7
(quotient 6.0 2.0) 3.0
(quotient 3.0 -2) -1.0 

procedure: (remainder int1 int2)
returns: the integer remainder of int1 and int2

The result of remainder has the same sign as int1. 

(remainder 16 4) 0
(remainder 5 2) 1
(remainder -45.0 7) -3.0
(remainder 10.0 -3.0) 1.0
(remainder -17 -9) -8 

procedure: (modulo int1 int2)
returns: the integer modulus of int1 and int2

The result of modulo has the same sign as int2. 

(modulo 16 4) 0
(modulo 5 2) 1
(modulo -45.0 7) 4.0
(modulo 10.0 -3.0) -2.0
(modulo -17 -9) -8 

procedure: (truncate real)
returns: the integer closest to real toward zero 



(truncate 19) 19 
(truncate 2/3) 0
(truncate -2/3) 0
(truncate 17.3) 17.0
(truncate -17/2) -8 

procedure: (floor real)
returns: the integer closest to real toward 

(floor 19) 19
(floor 2/3) 0
(floor -2/3) -1 
(floor 17.3) 17.0
(floor -17/2) -9 

procedure: (ceiling real)
returns: the integer closest to real toward 

(ceiling 19) 19
(ceiling 2/3) 1
(ceiling -2/3) 0
(ceiling 17.3) 18.0
(ceiling -17/2) -8 

procedure: (round real)
returns: the integer closest to real

If real is exactly between two integers, the closest even integer is returned. 

(round 19) 19
(round 2/3) 1
(round -2/3) -1 
(round 17.3) 17.0
(round -17/2) -8 
(round 2.5) 2.0
(round 3.5) 4.0 

procedure: (abs real)
returns: the absolute value of real

abs is equivalent to (lambda (x) (if (< x 0) (- x) x)). abs and magnitude (see page 132) are identical 
for real inputs. 

(abs 1) 1
(abs -3/4) 3/4
(abs 1.83) 1.83
(abs -0.093) 0.093 

procedure: (max real1 real2 ...)
returns: the maximum of real1 real2 ...



(max 4 -7 2 0 -6) 4
(max 1/2 3/4 4/5 5/6 6/7) 6/7
(max 1.5 1.3 -0.3 0.4 2.0 1.8) 2.0
(max 5 2.0) 5.0
(max -5 -2.0) -2.0
(let ((ls '(7 3 5 2 9 8)))
(apply max ls)) 9 

procedure: (min real1 real2 ...)
returns: the minimum of real1 real2 ...

(min 4 -7 2 0 -6) -7 
(min 1/2 3/4 4/5 5/6 6/7) 1/2
(min 1.5 1.3 -0.3 0.4 2.0 1.8) -0.3
(min 5 2.0) 2.0
(min -5 -2.0) -5.0
(let ((ls '(7 3 5 2 9 8)))
(apply min ls)) 2 

procedure: (gcd int ...)
returns: the greatest common divisor of its arguments int ...

The result is always nonnegative, i.e., factors of -1 are ignored. When called with no 
arguments, gcd returns 0. 

(gcd) 0
(gcd 34) 34
(gcd 33.0 15.0) 3.0
(gcd 70 -42 28) 14 

procedure: (lcm int ...)
returns: the least common multiple of its arguments int ...

The result is always nonnegative, i.e., common multiples of -1 are ignored. Although lcm
should probably return when called with no arguments, it is defined to return 1. If one or 
more of the arguments is 0, lcm returns 0. 

(lcm) 1
(lcm 34) 34
(lcm 33.0 15.0) 165.0
(lcm 70 -42 28) 420
(lcm 17.0 0) 0 

procedure: (expt num1 num2)
returns: num1 raised to the num2 power

If both arguments are 0, expt returns 1. 

(expt 2 10) 1024
(expt 2 -10) 1/1024
(expt 2 -10.0) 9.765625e-4 
(expt -1/2 5) -1/32



(expt 3.0 3) 27.0
(expt +i 2) -1 

procedure: (exact->inexact num)
returns: an inexact representation for num

If num is already inexact, it is returned unchanged. 

If no inexact representation for num is supported by the implementation, an error may be 
signaled. 

(exact->inexact 3) 3.0
(exact->inexact 3.0) 3.0
(exact->inexact -1/4) -.25
(exact->inexact 3+4i) 3.0+4.0i
(exact->inexact (expt 10 20)) 1e20 

procedure: (inexact->exact num)
returns: an exact representation for num

If num is already exact, it is returned unchanged. 

If no exact representation for num is supported by the implementation, an error may be 
signaled. 

(inexact->exact 3.0) 3
(inexact->exact 3) 3
(inexact->exact -.25) -1/4
(inexact->exact 3.0+4.0i) 3+4i
(inexact->exact 1e20) 100000000000000000000 

procedure: (rationalize real1 real2)
returns: see below 

rationalize returns the simplest rational number that differs from real1 by no more than real2. 
A rational number q1 = n 1/m1 is simpler than another rational number q2 = n 2/m2 if 
and and either |n1| < |n 2| or |m1| < |m 2|. 

(rationalize 3/10 1/10) 1/3
(rationalize .3 1/10) 0.3333333333333333
(eqv? (rationalize .3 1/10) #i1/3) #t 

procedure: (numerator rat)
returns: the numerator of rat

If rat is an integer, the numerator is rat. 

(numerator 9) 9
(numerator 9.0) 9.0
(numerator 2/3) 2



(numerator -9/4) -9 
(numerator -2.25) -9.0 

procedure: (denominator rat)
returns: the denominator of rat

If rat is an integer, the denominator is 1. 

(denominator 9) 1
(denominator 9.0) 1.0
(denominator 2/3) 3
(denominator -9/4) 4
(denominator -2.25) 4.0 

procedure: (real-part num)
returns: the real component of num

If num is real, real-part returns num. 

(real-part 3+4i) 3
(real-part -2.3+0.7i) -2.3
(real-part -i) 0
(real-part 17.2) 17.2
(real-part -17/100) -17/100 

procedure: (imag-part num)
returns: the imaginary component of num

If num is real, imag-part returns zero. 

(imag-part 3+4i) 4
(imag-part -2.3+0.7i) 0.7
(imag-part -i) -1 
(imag-part 17.2) 0.0
(imag-part -17/100) 0 

procedure: (make-rectangular real1 real2)
returns: a complex number with real component real1 and imaginary component real2

(make-rectangular -2 7) -2+7i
(make-rectangular 2/3 -1/2) 2/3-1/2i
(make-rectangular 3.2 5.3) 3.2+5.3i 

procedure: (make-polar real1 real2)
returns: a complex number with magnitude real1 and angle real2

(make-polar 2 0) 2
(make-polar 2.0 0.0) 2.0+0.0i
(make-polar 1.0 (asin -1.0)) 0.0-1.0i
(eqv? (make-polar 7.2 -0.588) 7.2@-0.588) #t 



procedure: (angle num)
returns: the angle part of the polar representation of num

The range of the result is (exclusive) to (inclusive). 

(angle 7.3@1.5708) 1.5708
(angle 5.2) 0.0 

procedure: (magnitude num)
returns: the magnitude of num

magnitude and abs (see page 129) are identical for real arguments. The magnitude of a 
complex number x + yi  is . 

(magnitude 1) 1
(magnitude -3/4) 3/4
(magnitude 1.83) 1.83
(magnitude -0.093) 0.093
(magnitude 3+4i) 5
(magnitude 7.25@1.5708) 7.25 

procedure: (sqrt num)
returns: the principal square root of num

Implementations are encouraged, but not required, to return exact results for exact inputs 
to sqrt whenever feasible. 

(sqrt 16) 4
(sqrt 1/4) 1/2
(sqrt 4.84) 2.2
(sqrt -4.84) 0.0+2.2i
(sqrt 3+4i) 2+1i
(sqrt -3.0-4.0i) 1.0-2.0i 

procedure: (exp num)
returns: e to the num power 

(exp 0.0) 1.0
(exp 1.0) 2.7182818284590455
(exp -.5) 0.6065306597126334 

procedure: (log num)
returns: the natural log of num

The log of a complex number z is defined as follows: 



(log 1.0) 0.0
(log (exp 1.0)) 1.0
(/ (log 100) (log 10)) 2.0
(log (make-polar (exp 2.0) 1.0)) 2.0+1.0i 

procedure: (sin num)
procedure: (cos num)
procedure: (tan num)
returns: the sine, cosine, or tangent of num

The argument is specified in radians. 

procedure: (asin num)
procedure: (acos num)
returns: the arc sine or the arc cosine of num

The result is in radians. The arc sine and arc cosine of a complex number z are defined as 
follows: 

procedure: (atan num)
procedure: (atan real1 real2)
returns: see explanation

When passed a single complex argument num (the first form), atan returns the arc tangent 
of num. The arc tangent of a complex number z is defined as follows: 

When passed two real arguments (the second form), atan is equivalent to (lambda (x y) (angle 
(make-rectangular x y))). 

procedure: (string->number string)
procedure: (string->number string radix)
returns: the number represented by string, or #f

If string is a valid representation of a number, that number is returned, otherwise #f is 
returned. The number is interpreted in radix radix, which must be an exact integer in the 
set {2,8,10,16}. If not specified, radix defaults to 10. Any radix specifier within string, e.g., 
#x, overrides the radix argument. 

(string->number "0") 0
(string->number "3.4e3") 3400.0
(string->number "#x#e-2e2") -738
(string->number "#e-2e2" 16) -738



(string->number "#i15/16") 0.9375
(string->number "10" 16) 16 

procedure: (number->string num)
procedure: (number->string num radix)
returns: an external representation of num as a string 

The num is expressed in radix radix, which must be an exact integer in the set {2,8,10,16}. 
If not specified, radix defaults to 10. In any case, no radix specifier appears in the resulting 
string. 

The external representation is such that, when converted back into a number using string-
>number, the resulting numeric value is equivalent to num. That is, for all inputs: 

(eqv? (number->string
(string->number num radix)
radix)

num) 

returns #t. Inexact results are expressed using the fewest number of significant digits 
possible without violating the above restriction. 

(number->string 3.4) "3.4"
(number->string 1e2) "100.0"
(number->string 1e23) "1e23"
(number->string -7/2) "-7/2"
(number->string 220/9 16) "DC/9" 

Section 6.4. Characters

Characters are atomic objects representing letters, digits, special symbols such as $ or -, 
and certain nongraphic control characters such as space and newline. Characters are 
written with a #\ prefix. For most characters, the prefix is followed by the character itself. 
The written character representation of the letter A, for example, is #\A. The characters 
newline and space may be written in this manner as well, but they can also be written as 
#\newline or #\space. 

This section describes the operations that deal primarily with characters. See also the 
following section on strings and Chapter 7 on input and output for other operations relating 
to character objects. 

procedure: (char=? char1 char2 char3 ...)
procedure: (char<? char1 char2 char3 ...)
procedure: (char>? char1 char2 char3 ...)
procedure: (char<=? char1 char2 char3 ...)
procedure: (char>=? char1 char2 char3 ...)
returns: #t if the relation holds, #f otherwise 



These predicates behave in a similar manner to the numeric predicates =, <, >, <=, and >=. 
For example, char=? returns #t when its arguments are equivalent characters, and char<?
returns #t when its arguments are monotonically increasing character values. 

Independent of the particular representation employed, the following relationships are 
guaranteed to hold: 

• The lowercase letters #\a through #\z are in order from low to high; e.g., #\d is less 
than #\e. 

• The uppercase letters #\A through #\Z are in order from low to high; e.g., #\Q is less 
than #\R. 

• The digits #\0 through #\9 are in order from low to high; e.g., #\3 is less than #\4. 
• All digits precede all lowercase letters, or all lowercase letters precede all digits. 
• All digits precede all uppercase letters, or all uppercase letters precede all digits. 

The tests performed by char=?, char<?, char>?, char<=?, and char>=? are case-sensitive. That 
is, the character #\A is not equivalent to the character #\a according to these predicates. 

The ANSI/IEEE standard includes only two-argument versions of these procedures. The 
more general versions are included in the Revised4 Report. 

(char>? #\a #\b) #f
(char<? #\a #\b) #t
(char<? #\a #\b #\c) #t
(let ((c #\r))
(char<=? #\a c #\z)) #t

(char<=? #\Z #\W) #f 
(char=? #\+ #\+) #t
(or (char<? #\a #\0)

(char<? #\0 #\a)) #t 

procedure: (char-ci=? char1 char2 char3 ...)
procedure: (char-ci<? char1 char2 char3 ...)
procedure: (char-ci>? char1 char2 char3 ...)
procedure: (char-ci<=? char1 char2 char3 ...)
procedure: (char-ci>=? char1 char2 char3 ...)
returns: #t if the relation holds, #f otherwise 

These predicates are identical to the predicates char=?, char<?, char>?, char<=?, and char>=?
except that they are case-insensitive. This means that when two letters are compared, 
case is unimportant. For example, char=? considers #\a and #\A to be distinct values; char-
ci=? does not. 

The ANSI/IEEE standard includes only two-argument versions of these procedures. The 
more general versions are included in the Revised4 Report. 

(char-ci<? #\a #\B) #t
(char-ci=? #\W #\w) #t
(char-ci=? #\= #\+) #f
(let ((c #\R))
(list (char<=? #\a c #\z)

(char-ci<=? #\a c #\z))) (#f #t) 



procedure: (char-alphabetic? char)
returns: #t if char is a letter, #f otherwise 

(char-alphabetic? #\a) #t
(char-alphabetic? #\T) #t
(char-alphabetic? #\8) #f
(char-alphabetic? #\$) #f 

procedure: (char-numeric? char)
returns: #t if char is a digit, #f otherwise 

(char-numeric? #\7) #t
(char-numeric? #\2) #t
(char-numeric? #\X) #f
(char-numeric? #\space) #f 

procedure: (char-lower-case? letter)
returns: #t if letter is lowercase, #f otherwise 

If letter is not alphabetic, the result is unspecified. 

(char-lower-case? #\r) #t
(char-lower-case? #\R) #f
(char-lower-case? #\8) unspecified

procedure: (char-upper-case? letter)
returns: #t if letter is uppercase, #f otherwise 

If letter is not alphabetic, the result is unspecified. 

(char-upper-case? #\r) #f
(char-upper-case? #\R) #t
(char-upper-case? #\8) unspecified

procedure: (char-whitespace? char)
returns: #t if char is whitespace, #f otherwise 

Whitespace consists of spaces and newlines and possibly other nongraphic characters, 
depending upon the Scheme implementation and the underlying operating system. 

(char-whitespace? #\space) #t
(char-whitespace? #\newline) #t
(char-whitespace? #\Z) #f 

procedure: (char-upcase char)
returns: the uppercase character equivalent to char



If char is a lowercase character, char-upcase returns the uppercase equivalent. If char is not 
a lowercase character, char-upcase returns char. 

(char-upcase #\g) #\G 
(char-upcase #\Y) #\Y 
(char-upcase #\7) #\7 

procedure: (char-downcase char)
returns: the lowercase character equivalent to char

If char is an uppercase character, char-downcase returns the lowercase equivalent. If char is 
not an uppercase character, char-downcase returns char. 

(char-downcase #\g) #\g 
(char-downcase #\Y) #\y 
(char-downcase #\7) #\7 

procedure: (char->integer char)
returns: an integer representation for char

char->integer is useful for performing table lookups, with the integer representation of char
employed as an index into a table. The integer representation of a character is typically the 
integer code supported by the operating system for character input and output. 

Although the particular representation employed depends on the Scheme implementation 
and the underlying operating system, the same rules regarding the relationship between 
character objects stated above under the description of char=? and its relatives is 
guaranteed to hold for the integer representations of characters as well. 

The following examples assume that the integer representation is the ASCII code for the 
character. 

(char->integer #\h) 104
(char->integer #\newline) 10 

The definition of make-dispatch-table below shows how the integer codes returned by char-
>integer may be used portably to associate values with characters in vector-based dispatch 
tables, even though the exact correspondence between characters and their integer codes 
is unspecified. 

make-dispatch-table accepts two arguments: an association list (see assv in Section 6.2) 
associating characters with values and a default value for characters without associations. 
It returns a lookup procedure that accepts a character and returns the associated (or 
default) value. make-dispatch-table builds a vector that is used by the lookup procedure. This 
vector is indexed by the integer codes for the characters and contains the associated 
values. Slots in the vector between indices for characters with defined values are filled with 
the default value. The code works even if char->integer returns negative values or both 
negative and nonnegative values, although the table can get large if the character codes 
are not tightly packed. 



(define make-dispatch-table
(lambda (alist default)
(let ((codes (map char->integer (map car alist))))
(let ((first-index (apply min codes))

(last-index (apply max codes)))
(let ((n (+ (- last-index first-index) 1)))
(let ((v (make-vector n default)))
(for-each
(lambda (i x) (vector-set! v (- i first-index) x))
codes
(map cdr alist))

;; table is built; return the table lookup procedure
(lambda (c)
(let ((i (char->integer c)))
(if (<= first-index i last-index)

(vector-ref v (- i first-index))
default))))))))) 

(define-syntax define-dispatch-table
;; define-dispatch-table is a handy syntactic extension for
;; associating sets of characters in strings with values in a
;; call to make-dispatch-table. It is used below.
(syntax-rules ()
((_ default (str val) ...)
(make-dispatch-table
(append (map (lambda (c) (cons c 'val))

(string->list str))
...)

'default)))) 

(define t
(define-dispatch-table
unknown
("abcdefghijklmnopqrstuvwxyz" letter)
("ABCDEFGHIJKLMNOPQRSTUVWXYZ" letter)
("0123456789" digit))) 

(t #\m) letter
(t #\0) digit
(t #\*) unknown 

procedure: (integer->char int)
returns: the character object corresponding to the integer int

This procedure is the functional inverse of char->integer. It is an error for int to be outside the 
range of valid integer character codes. 

The following examples assume that the integer representation is the ASCII code for the 
character. 

(integer->char 48) #\0 
(integer->char 101) #\e 

Section 6.5. Strings



Strings are sequences of characters and are typically used as messages or character 
buffers. Scheme provides operations for creating strings, extracting characters from 
strings, obtaining substrings, concatenating strings, and altering the contents of strings. 

A string is written as a sequence of characters enclosed in double quotes, e.g., "hi there". A 
double quote may be introduced into a string by preceding it by a backward slash, e.g., 
"two \"quotes\" within". A backward slash may also be included by preceding it with a 
backward slash, e.g., "a \\slash". 

Strings are indexed by exact nonnegative integers, and the index of the first element of 
any string is 0. The highest valid index for a given string is one less than its length. 

procedure: (string=? string1 string2 string3 ...)
procedure: (string<? string1 string2 string3 ...)
procedure: (string>? string1 string2 string3 ...)
procedure: (string<=? string1 string2 string3 ...)
procedure: (string>=? string1 string2 string3 ...)
returns: #t if the relation holds, #f otherwise 

As with =, <, >, <=, and >=, these predicates express relationships among all of the 
arguments. For example, string>? determines if the lexicographic ordering of its arguments 
is monotonically decreasing. 

The comparisons are based on the character predicates char=?, char<?, char>?, char<=?, and 
char>=?. Two strings are lexicographically equivalent if they are the same length and 
consist of the same sequence of characters according to char=?. If two strings differ only in 
length, the shorter string is considered to be lexicographically less than the longer string. 
Otherwise, the first character position at which the strings differ determines which string is 
lexicographically less than the other, according to char<?. 

The ANSI/IEEE standard includes only two-argument versions of these procedures. The 
more general versions are included in the Revised4 Report. 

Two-argument string=? may be defined as follows. 

(define string=?
(lambda (s1 s2)
(let ((n (string-length s1)))
(and (= (string-length s2) n)

(let loop ((i 0))
(or (= i n)

(and (char=? (string-ref s1 i) (string-ref s2 i))
(loop (+ i 1))))))))) 

Two-argument string<? may be defined as follows. 

(define string<?
(lambda (s1 s2)
(let ((n1 (string-length s1)) (n2 (string-length s2)))
(let loop ((i 0))
(and (not (= i n2))

(or (= i n1)
(let ((c1 (string-ref s1 i)) (c2 (string-ref s2 i)))



(or (char<? c1 c2)
(and (char=? c1 c2)

(loop (+ i 1))))))))))) 

These definitions may be extended straightforwardly to support three or more arguments. 
string<=?, string>?, and string>=? may be defined similarly. 

(string=? "mom" "mom") #t
(string<? "mom" "mommy") #t
(string>? "Dad" "Dad") #f
(string=? "Mom and Dad" "mom and dad") #f
(string<? "a" "b" "c") #t 

procedure: (string-ci=? string1 string2 string3 ...)
procedure: (string-ci<? string1 string2 string3 ...)
procedure: (string-ci>? string1 string2 string3 ...)
procedure: (string-ci<=? string1 string2 string3 ...)
procedure: (string-ci>=? string1 string2 string3 ...)
returns: #t if the relation holds, #f otherwise 

These predicates are case-insensitive versions of string=?, string<?, string>?, string<=?, and 
string>=?. That is, the comparisons are based on the character predicates char-ci=?, char-ci<?, 
char-ci>?, char-ci<=?, and char-ci>=?. 

The ANSI/IEEE standard includes only two-argument versions of these procedures. The 
more general versions are included in the Revised4 Report. 

Two-argument versions of these procedures may be defined in a manner similar to string=?
and string<? above. 

(string-ci=? "Mom and Dad" "mom and dad") #t
(string-ci<=? "say what" "Say What!?") #t
(string-ci>? "N" "m" "L" "k") #t 

procedure: (string char ...)
returns: a string containing the characters char ...

(string) ""
(string #\a #\b #\c) "abc"
(string #\H #\E #\Y #\!) "HEY!" 

procedure: (make-string n)
procedure: (make-string n char)
returns: a string of length n

n must be an exact nonnegative integer. If char is supplied, the string is filled with char, 
otherwise the characters contained in the string are unspecified. 

(make-string 0) ""
(make-string 0 #\x) ""
(make-string 5 #\x) "xxxxx" 



procedure: (string-length string)
returns: the number of characters in string

The length of a string is always an exact nonnegative integer. 

(string-length "abc") 3
(string-length "") 0
(string-length "hi there") 8
(string-length (make-string 1000000)) 1000000 

procedure: (string-ref string n)
returns: the nth character (zero-based) of string

n must be an exact nonnegative integer strictly less than the length of string. 

(string-ref "hi there" 0) #\h 
(string-ref "hi there" 5) #\e 

procedure: (string-set! string n char)
returns: unspecified 

n must be an exact nonnegative integer strictly less than the length of string. string-set!
changes the nth element of string to char. 

(let ((str "hi three"))
(string-set! str 5 #\e)
(string-set! str 6 #\r)
str) "hi there" 

procedure: (string-copy string)
returns: a new copy of string

string-copy is equivalent to (lambda (s) (string-append s)). string-copy is in the Revised4 Report but 
not the ANSI/IEEE standard. 

(string-copy "abc") "abc"
(let ((str "abc"))
(eq? str (string-copy str))) #f 

procedure: (string-append string ...)
returns: a new string formed by concatenating the strings string ...

The following implementation of string-append recurs down the list of strings to compute the 
total length, then allocates the new string and fills it up as it unwinds the recursion. 

(define string-append
(lambda args
(let f ((ls args) (n 0))
(if (null? ls)



(make-string n)
(let* ((s1 (car ls))

(m (string-length s1))
(s2 (f (cdr ls) (+ n m))))

(do ((i 0 (+ i 1)) (j n (+ j 1)))
((= i m) s2)
(string-set! s2 j (string-ref s1 i)))))))) 

(string-append) ""
(string-append "abc" "def") "abcdef"
(string-append "Hey " "you " "there!") "Hey you there!" 

procedure: (substring string start end)
returns: a copy of string from start (inclusive) to end (exclusive) 

start and end must be exact nonnegative integers; start must be strictly less than the 
length of string, while end may be less than or equal to the length of string. If end start, a 
string of length zero is returned. substring may be defined as follows. 

(define substring
(lambda (s1 m n)
(let ((s2 (make-string (- n m))))
(do ((j 0 (+ j 1)) (i m (+ i 1)))

((= i n) s2)
(string-set! s2 j (string-ref s1 i)))))) 

(substring "hi there" 0 1) "h"
(substring "hi there" 3 6) "the"
(substring "hi there" 5 5) "" 

(let ((str "hi there"))
(let ((end (string-length str)))
(substring str 0 end))) "hi there" 

procedure: (string-fill! string char)
returns: unspecified 

string-fill! sets every character in string to char. string-fill! is in the Revised4 Report but not the 
ANSI/IEEE standard. It may be defined as follows: 

(define string-fill!
(lambda (s c)
(let ((n (string-length s)))
(do ((i 0 (+ i 1)))

((= i n))
(string-set! s i c))))) 

(let ((str (string-copy "sleepy")))
(string-fill! str #\Z)
str) "ZZZZZZ" 

procedure: (string->list string)
returns: a list of the characters in string



string->list allows a string to be converted into a list, so that Scheme's list-processing 
operations may be applied to the processing of strings. string->list is in the Revised4 Report 
but not the ANSI/IEEE standard. It may be defined as follows. 

(define string->list
(lambda (s)
(do ((i (- (string-length s) 1) (- i 1))

(ls '() (cons (string-ref s i) ls)))
((< i 0) ls)))) 

(string->list "") ()
(string->list "abc") (#\a #\b #\c)
(apply char<? (string->list "abc")) #t
(map char-upcase (string->list "abc")) (#\A #\B #\C) 

procedure: (list->string list)
returns: a string of the characters in list

list must consist entirely of characters. 

list->string is the functional inverse of string->list. A program might use both procedures 
together, first converting a string into a list, then operating on this list to produce a new list, 
and finally converting the new list back into a string. 

list->string is in the Revised4 Report but not the ANSI/IEEE standard. It may be defined as 
follows. 

(define list->string
(lambda (ls)
(let ((s (make-string (length ls))))
(do ((ls ls (cdr ls)) (i 0 (+ i 1)))

((null? ls) s)
(string-set! s i (car ls)))))) 

(list->string '()) ""
(list->string '(#\a #\b #\c)) "abc"
(list->string
(map char-upcase

(string->list "abc"))) "ABC" 

Section 6.6. Vectors

Vectors are more convenient and efficient than lists for some applications. Whereas 
accessing an arbitrary element in a list requires a linear traversal of the list up to the 
selected element, arbitrary vector elements are accessed in constant time. The length of a
vector in Scheme is the number of elements it contains. Vectors are indexed by exact 
nonnegative integers, and the index of the first element of any vector is 0. The highest 
valid index for a given vector is one less than its length. 

As with lists, the elements of a vector may be of any type; a single vector may even hold 
more than one type of object. 



A vector is written as a sequence of objects separated by whitespace, preceded by the 
prefix #( and followed by ). For example, a vector consisting of the elements a, b, and c
would be written #(a b c). 

procedure: (vector obj ...)
returns: a vector of the objects obj ...

(vector) #()
(vector 'a 'b 'c) #(a b c) 

procedure: (make-vector n)
procedure: (make-vector n obj)
returns: a vector of length n

n must be an exact nonnegative integer. If obj is supplied, each element of the vector is 
filled with obj; otherwise, the elements are unspecified. 

(make-vector 0) #()
(make-vector 0 'a) #()
(make-vector 5 'a) #(a a a a a) 

procedure: (vector-length vector)
returns: the number of elements in vector

The length of a vector is always an exact nonnegative integer. 

(vector-length '#()) 0
(vector-length '#(a b c)) 3
(vector-length (vector 1 2 3 4)) 4
(vector-length (make-vector 300)) 300 

procedure: (vector-ref vector n)
returns: the nth element (zero-based) of vector

n must be an exact nonnegative integer strictly less than the length of vector. 

(vector-ref '#(a b c) 0) a
(vector-ref '#(a b c) 1) b
(vector-ref '#(x y z w) 3) w 

procedure: (vector-set! vector n obj)
returns: unspecified 

n must be an exact nonnegative integer strictly less than the length of vector. vector-set!
changes the nth element of vector to obj. 

(let ((v (vector 'a 'b 'c 'd 'e)))
(vector-set! v 2 'x)
v) #(a b x d e) 



procedure: (vector-fill! vector obj)
returns: unspecified 

vector-fill! replaces each element of vector with obj. vector-fill! is in the Revised4 Report but 
not the ANSI/IEEE standard. It may be defined as follows: 

(define vector-fill!
(lambda (v x)
(let ((n (vector-length v)))
(do ((i 0 (+ i 1)))

((= i n))
(vector-set! v i x))))) 

(let ((v (vector 1 2 3)))
(vector-fill! v 0)
v) #(0 0 0) 

procedure: (vector->list vector)
returns: a list of the elements of vector

vector->list provides a convenient method for applying list-processing operations to vectors. 
vector->list is in the Revised4 Report but not the ANSI/IEEE standard. It may be defined as 
follows. 

(define vector->list
(lambda (s)
(do ((i (- (vector-length s) 1) (- i 1))

(ls '() (cons (vector-ref s i) ls)))
((< i 0) ls)))) 

(vector->list (vector)) ()
(vector->list '#(a b c)) (a b c) 

(let ((v '#(1 2 3 4 5)))
(apply * (vector->list v))) 120 

procedure: (list->vector list)
returns: a vector of the elements of list

list->vector is the functional inverse of vector->list. The two procedures are often used in 
combination to take advantage of a list-processing operation. A vector may be converted 
to a list with vector->list, this list processed in some manner to produce a new list, and the 
new list converted back into a vector with list->vector. 

list->vector is in the Revised4 Report but not the ANSI/IEEE standard. It may be defined as 
follows. 

(define list->vector
(lambda (ls)
(let ((s (make-vector (length ls))))
(do ((ls ls (cdr ls)) (i 0 (+ i 1)))

((null? ls) s)
(vector-set! s i (car ls)))))) 



(list->vector '()) #()
(list->vector '(a b c)) #(a b c) 

(let ((v '#(1 2 3 4 5)))
(let ((ls (vector->list v)))
(list->vector (map * ls ls)))) #(1 4 9 16 25) 

Section 6.7. Symbols

Symbols are used for a variety of purposes as symbolic names in Scheme programs. 
Strings could be used for most of the same purposes, but an important characteristic of 
symbols makes comparisons between symbols much more efficient. This characteristic is 
that two symbols with the same name are identical in the sense of eq?. The reason is that 
the Scheme reader (see read in Section 7.1) and the procedure string->symbol catalog 
symbols in an internal symbol table and always return the same symbol whenever the 
same name is encountered. Thus, no character-by-character comparison is needed, as 
would be needed to compare two strings. 

The property that two symbols may be compared quickly for equivalence makes them 
ideally suited for use as identifiers in the representation of programs, allowing fast 
comparison of identifiers. This property also makes symbols useful for a variety of other 
purposes. For example, symbols might be used as messages passed between 
procedures, labels for list-structured records, or names for objects stored in an association 
list (see assq in Section 6.2). 

Symbols are written without double quotes or other bracketing characters. Parentheses, 
double quotes, spaces, and most other characters with a special meaning to the Scheme 
reader are not allowed within the printed representation of a symbol. Some 
implementations, however, support the use of backward slashes to escape special 
characters occurring in symbols, in a manner similar to the use of backward slashes in 
strings. 

Refer to Section 1.1 or the formal syntax of Scheme at the back of this book for a precise 
description of the syntax of symbols. 

procedure: (string->symbol string)
returns: a symbol whose name is string

string->symbol records all symbols it creates in an internal table that it shares with the 
system reader, read. If a symbol whose name is equivalent to string (according to the 
predicate string=?) already exists in the table, this symbol is returned. Otherwise, a new 
symbol is created with string as its name; this symbol is entered into the table and 
returned. 

The system reader arranges to convert all symbols to a single case (lowercase is assumed 
in this book), before entering them into the internal table. string->symbol does not. Thus, it is 
possible to produce symbols in lowercase, uppercase, or even mixed-case, using string-
>symbol. It is also possible to create symbols with names that contain special characters, 
such as spaces or parentheses. 



(string->symbol "x") x 

(eq? (string->symbol "x") 'x) #t
(eq? (string->symbol "X") 'x) #f 

(eq? (string->symbol "x")
(string->symbol "x")) #t 

procedure: (symbol->string symbol)
returns: a string, the name of symbol

The string returned by symbol->string for a symbol created by an earlier call to string->symbol
may or may not be the same string (by eq?) as the string passed to string->symbol. That is, 
an implementation is free to copy or not to copy a string it uses as the name of a symbol. 
Unpredictable behavior can result if a string passed to string->symbol is altered with string-set!
or by any other means. 

(symbol->string 'xyz) "xyz"
(symbol->string (string->symbol "Hi")) "Hi"
(symbol->string (string->symbol "()")) "()" 



Chapter 7. Input and Output
This chapter describes input and output operations. All input and output operations are 
performed through ports. A port is a pointer into a (possibly infinite) stream of characters 
(typically a file), an opening through which programs may draw characters or objects from 
the stream or place characters or objects into the stream. 

Ports are first-class objects, like any other object in Scheme. Like procedures, ports do not 
have a printed representation the way strings and numbers do, so they are shown here 
with the notation #<port>. There are initially two ports in the system, the current input port 
and the current output port. In an interactive session, these ports usually point to the 
terminal input and output streams. Several ways to open new ports are provided. 

An input port often points to a finite stream, e.g., an input file stored on disk. If one of the 
input operations (read, read-char, or peek-char) is asked to read from a port that has reached 
the end of a finite stream, it returns a special eof (end of file) object. The predicate eof-
object? may be used to determine if an object returned from read, read-char, or peek-char is an 
eof object. 

Section 7.1. Input Operations

This section describes operations for manipulating input ports. 

procedure: (input-port? obj)
returns: #t if obj is an input port, #f otherwise 

Ports need not be distinct from other object types. 

(input-port? '(a b c))) unspecified
(input-port? (current-input-port)) #t
(input-port? (open-input-file "infile.ss")) #t 

The last example assumes that "infile.ss" may be opened for input. 

procedure: (current-input-port)
returns: the current input port 

Most procedures involving input ports may be called with or without an explicit port 
argument. If called without an explicit port argument, the current input port is used. For 
example, (read-char) and (read-char (current-input-port)) both return the next character from the 
current input port. 

procedure: (open-input-file filename)
returns: a new input port 



filename must be a string. open-input-file creates a new input port for the file named by 
filename. An error is signaled if the file does not exist or cannot be opened for input. See 
the example given for close-input-port. 

procedure: (close-input-port input-port)
returns: unspecified 

close-input-port closes an input port. Once an input port has been closed, no more input 
operations may be performed on that port. Because the operating system may place limits 
on the number of ports open at one time or restrict access to an open port, it is a good 
practice to close any port that will no longer be used for input or output. Some Scheme 
implementations close ports automatically after they become inaccessible to the program 
or when the Scheme program exits, but it is best to close ports explicitly whenever 
possible. 

It is not an error to close a port that has already been closed; doing so has no effect. 

The following shows the use of open-input-file and close-input-port in an expression that 
gathers a list of objects from the file "myfile.ss". It is functionally equivalent to the example 
given for call-with-input-file below. 

(let ((p (open-input-file "myfile.ss")))
(let f ((x (read p)))
(if (eof-object? x)

(begin
(close-input-port p)
'())

(cons x (f (read p)))))) 

procedure: (call-with-input-file filename proc)
returns: the result of invoking proc

filename must be a string. proc must be a procedure of one argument. 

call-with-input-file creates a new input port for the file named by filename and passes this port 
to proc. An error is signaled if the file does not exist or cannot be opened for input. If proc
returns, call-with-input-file closes the input port and returns the value returned by proc. 

call-with-input-file does not automatically close the input port if a continuation created outside 
of proc is invoked, since it is possible that another continuation created inside of proc will 
be invoked at a later time, returning control to proc. If proc does not return, an 
implementation is free to close the input port only if it can prove that the input port is no 
longer accessible. As shown in Section 5.6, dynamic-wind may be used to ensure that the 
port is closed if a continuation created outside of proc is invoked. 

call-with-input-file might be defined as follows. 

(define call-with-input-file
(lambda (filename proc)
(let ((p (open-input-file filename)))
(let ((v (proc p)))



(close-input-port p)
v)))) 

The following example shows the use of call-with-input-file in an expression that gathers a list 
of objects from the file "myfile.ss". It is functionally equivalent to the example given for close-
input-port above. 

(call-with-input-file "myfile.ss"
(lambda (p)
(let f ((x (read p)))
(if (eof-object? x)

'()
(cons x (f (read p))))))) 

procedure: (with-input-from-file filename thunk)
returns: the value returned by thunk

filename must be a string. 

with-input-from-file temporarily changes the current input port to be the result of opening the 
file named by filename for input during the application of thunk. If thunk returns, the port is 
closed and the current input port is restored to its old value. 

The behavior of with-input-from-file is unspecified if a continuation created outside of thunk is 
invoked before thunk returns. An implementation may close the port and restore the 
current input port to its old value---but it may not. 

with-input-from-file is in the Revised4 Report but not the ANSI/IEEE standard. 

procedure: (read)
procedure: (read input-port)
returns: the next object from input-port

If input-port is not supplied, it defaults to the current input port. If input-port is at end of file, 
an eof object is returned. See the examples given for close-input-port and call-with-input-file. 

procedure: (read-char)
procedure: (read-char input-port)
returns: the next character from input-port

If input-port is not supplied, it defaults to the current input port. If input-port is at end of file, 
an eof object is returned. See the examples given for peek-char and write-char. 

procedure: (peek-char)
procedure: (peek-char input-port)
returns: the next character from input-port



If input-port is not supplied, it defaults to the current input port. If input-port is at end of file, 
an eof object is returned. 

In contrast to read-char, peek-char does not consume the character it reads from input-port; a 
subsequent call to peek-char or read-char returns the same character. 

peek-char is provided for applications requiring one character of lookahead. The procedure
read-word defined below returns the next word from an input port as a string, where a word 
is defined to be a sequence of alphabetic characters. Since read-word does not know until it 
sees one character beyond the word that it has read the entire word, it uses peek-char to 
determine the next character and read-char to consume the character. 

(define read-word
(lambda (p)
(list->string
(let f ()
(let ((c (peek-char p)))
(cond
((eof-object? c) '())
((char-alphabetic? c)
(read-char p)
(cons c (f)))
(else '()))))))) 

procedure: (eof-object? obj)
returns: #t if obj is an eof object, #f otherwise 

An end-of-file object is returned by read, read-char, or peek-char when an input port has 
reached the end of input. Although end-of-file objects need not be distinct from other 
object types, they are unique in the sense that they cannot be confused with objects that 
may be returned by read, read-char, or peek-char when the input port has not reached the end 
of input. For example, if (eof-object? x) is #t, (eq? x #\a) must be false but (char? x) may be true 
or false. 

procedure: (char-ready?)
procedure: (char-ready? input-port)
returns: #t if a character is available on input-port, #f otherwise 

If input-port is not supplied, it defaults to the current input port. 

char-ready? allows a program to look for character input on an interactive port without 
hanging. If char-ready? returns #t, the next peek-char or read-char operation on input-port will 
not be delayed. If input-port is at end of file, char-ready? returns #t. char-ready? is in the 
Revised4 Report but not the ANSI/IEEE standard. 

Section 7.2. Output Operations

This section describes operations for manipulating output ports. 



procedure: (output-port? obj)
returns: #t if obj is an output port, #f otherwise 

Ports need not be distinct from other object types. 

(output-port? '(a b c))) unspecified
(output-port? (current-output-port)) #t
(output-port? (open-output-file "outfile.ss")) #t 

The last example assumes that "outfile.ss" may be opened for output. 

procedure: (current-output-port)
returns: the current output port 

Most procedures involving output ports may be called with or without an explicit port 
argument. If called without an explicit port argument, the current output port is used. For 
example, (write obj) and (write obj (current-output-port)) both write to the current output port. 

procedure: (open-output-file filename)
returns: a new output port 

filename must be a string. open-output-file creates a new output port for the file named by 
filename. An error is signaled if the file cannot be opened for output. See the example 
given for close-output-port.

procedure: (close-output-port output-port)
returns: unspecified 

close-output-port closes an output port. Once an output port has been closed, no more output 
operations may be performed on that port. Because the operating system may place limits 
on the number of ports open at one time or restrict access to an open port, it is a good 
practice to close any port that will no longer be used for input or output. Also, because the 
system may buffer output for efficiency, some of the output may not appear on the file until 
the file has been closed. Some Scheme implementations close ports automatically after 
they become inaccessible to the program or when the Scheme program exits, but it is best 
to close ports explicitly whenever possible. 

It is not an error to close a port that has already been closed; doing so has no effect. 

The following shows the use of open-output-file and close-output-port to write a list of objects 
(the value of list-to-be-printed), separated by newlines, to the file "myfile.ss". It is functionally 
equivalent to the example given for call-with-output-file below. 

(let ((p (open-output-file "myfile.ss")))
(let f ((ls list-to-be-printed))
(if (not (null? ls))

(begin
(write (car ls) p)
(newline p)



(f (cdr ls)))))
(close-output-port p)) 

procedure: (call-with-output-file filename proc)
returns: the result of invoking proc

filename must be a string. proc must be a procedure of one argument. 

call-with-output-file creates a new output port for the file named by filename and passes this 
port to proc. An error is signaled if the file cannot be opened for output. If proc returns, call-
with-output-file closes the output port and returns the value returned by proc. 

call-with-output-file does not automatically close the output port if a continuation created 
outside of proc is invoked, since it is possible that another continuation created inside of 
proc will be invoked at a later time, returning control to proc. If proc does not return, an 
implementation is free to close the output port only if it can prove that the output port is no 
longer accessible. As shown in Section 5.6, dynamic-wind may be used to ensure that the 
port is closed if a continuation created outside of proc is invoked. 

call-with-output-file might be defined as follows. 

(define call-with-output-file
(lambda (filename proc)
(let ((p (open-output-file filename)))
(let ((v (proc p)))
(close-output-port p)
v)))) 

The following shows the use of call-with-output-file to write a list of objects (the value of list-to-
be-printed), separated by newlines, to the file "myfile.ss". It is functionally equivalent to the 
example given for close-output-port above. 

(call-with-output-file "myfile.ss"
(lambda (p)
(let f ((ls list-to-be-printed))
(if (not (null? ls))

(begin
(write (car ls) p)
(newline p)
(f (cdr ls))))))) 

procedure: (with-output-to-file filename thunk)
returns: the value returned by thunk

filename must be a string. 

with-output-to-file temporarily rebinds the current output port to be the result of opening the 
file named by filename for output during the application of thunk. If thunk returns, the port 
is closed and the current output port is restored to its old value. 



The behavior of with-output-to-file is unspecified if a continuation created outside of thunk is 
invoked before thunk returns. An implementation may close the port and restore the 
current output port to its old value---but it may not. 

with-output-to-file is in the Revised4 Report but not the ANSI/IEEE standard. 

procedure: (write obj)
procedure: (write obj output-port)
returns: unspecified 

If output-port is not supplied, it defaults to the current output port. 

write prints obj to output-port in such a way that it can later be read by the procedure read, 
unless it contains unprintable objects such as procedures, ports, or symbols containing 
nonstandard characters. Strings are printed within quote marks, using slashes where 
necessary, and characters are printed with the #\ notation. See Section 9.5 for an 
implementation of write and display. 

procedure: (display obj)
procedure: (display obj output-port)
returns: unspecified 

If output-port is not supplied, it defaults to the current output port. 

display is similar to write but prints strings and characters found within obj directly. Strings 
are printed without quotation marks or slashes, and characters are printed without the #\ 
notation. For example, both (display "(a b c)") and (display '("a b" c)) would print (a b c). Because 
of this, display should not be used to print objects that are intended to be read with read. 
display is useful primarily for printing messages, with obj most often being a string. See 
Section 9.5 for an implementation of write and display. 

procedure: (write-char char)
procedure: (write-char char output-port)
returns: unspecified 

If output-port is not supplied, it defaults to the current output port. write-char writes the single 
character char to output-port, without the #\ notation. The following example copies the 
contents of one file to another, one character at a time. 

(call-with-input-file "infile"
(lambda (ip)
(call-with-output-file "outfile"
(lambda (op)
(do ((c (read-char ip) (read-char ip)))

((eof-object? c))
(write-char c op)))))) 

procedure: (newline)



procedure: (newline output-port)
returns: unspecified 

If output-port is not supplied, it defaults to the current output port. newline sends a newline 
character to output-port. It may be defined as follows: 

(define newline
(lambda args
(apply write-char #\newline args))) 

Section 7.3. Loading Programs

procedure: (load filename)
returns: unspecified 

filename must be a string. load reads and evaluates in sequence each expression in the file 
specified by filename. load is in the Revised4 Report but not the ANSI/IEEE standard. 

Section 7.4. Transcript Files

A transcript file is a record of an interactive session. It is also useful as a "quick-and-dirty" 
alternative to opening an output file and using explicit output operations. 

transcript-on and transcript-off are in the Revised4 Report but not the ANSI/IEEE standard. 

procedure: (transcript-on filename)
returns: unspecified 

filename must be a string. 

transcript-on opens the file named by filename for output, and it copies to this file all input 
from the current input port and all output to the current output port. An error is signaled if 
the file cannot be opened for output. 

procedure: (transcript-off)
returns: unspecified 

transcript-off ends transcription and closes the transcript file. 



Chapter 8. Syntactic Extension
Syntactic extensions are used to simplify and regularize repeated patterns in a program, to 
introduce syntactic forms with new evaluation rules, and to perform transformations that 
help make programs more efficient. Nearly all Scheme implementations provide some sort 
of syntactic extension, or macro, system. The most up-to-date implement the high-level 
pattern-based mechanism described in Section 8.2. This mechanism has been adopted for 
inclusion in the Revised5 Report on Scheme but is not in the ANSI/IEEE standard. 
Preliminary versions were described in an appendix to the Revised4 Report. Some 
implementations also support the compatible and more general mechanism described in 
Section 8.3. Examples demonstrating both mechanisms appear throughout this chapter, 
with several more detailed examples appearing in Section 8.4. 

A portable implementation of the complete syntactic extension system is available via ftp 
from ftp.cs.indiana.edu in pub/scheme/syntax-case. A description of the motivations behind and 
implementation of the system can be found in the article "Syntactic Abstraction in 
Scheme" [9]. 

A syntactic extension typically takes the form (keyword subform ...), where keyword is the 
identifier that names the syntactic extension. The syntax of each subform varies from one 
syntactic extension to another. Syntactic extensions can also take the form of improper 
lists (or even singleton identifiers; see Section 8.3), although this is less common. 

New syntactic extensions are defined by associating keywords with transformation 
procedures, or transformers. Syntactic extensions are defined globally using top-level 
define-syntax forms or within the scope of particular expressions using let-syntax, letrec-syntax, 
internal define-syntax, or fluid-let-syntax. Transformers are created with syntax-rules, syntax-case, 
or some implementation-dependent mechanism. 

Syntactic extensions are expanded into core forms at the start of evaluation (before 
compilation or interpretation) by a syntax expander. The expander is invoked once for 
each top-level form in a program. If the expander encounters a syntactic extension, it 
invokes the associated transformer to expand the syntactic extension, then repeats the 
expansion process for the form returned by the transformer. If the expander encounters a 
core syntactic form, it recursively processes the subforms, if any, and reconstructs the 
form from the expanded subforms. Information about identifier bindings is maintained 
during expansion to enforce lexical scoping for variables and keywords. 

Section 8.1. Keyword Bindings

This section describes forms that establish bindings between keywords and transformers. 
Keyword bindings may be established at top level, using define-syntax, or locally, using let-
syntax, letrec-syntax, or internal define-syntax. Existing bindings may be rebound temporarily 
with fluid-let-syntax. define-syntax, let-syntax, and letrec-syntax have been adopted for inclusion in 
the Revised5 Report on Scheme. fluid-let-syntax is an extension supported by the portable 
syntax-case system. 



syntax: (define-syntax keyword exp)
returns: unspecified 

exp must evaluate to a transformer. 

The following example defines let* as a syntactic extension, specifying the transformer with 
syntax-rules (see Section 8.2). 

(define-syntax let*
(syntax-rules () 
((_ () e1 e2 ...) (let () e1 e2 ...))
((_ ((i1 v1) (i2 v2) ...) e1 e2 ...)
(let ((i1 v1))
(let* ((i2 v2) ...) e1 e2 ...))))) 

define-syntax forms appearing at top level behave similarly to top-level variable definitions, 
and define-syntax forms appearing at the front of a lambda or other body behave similarly to 
internal variable definitions. That is, a binding established by a top-level define-syntax form is 
visible globally, whereas one established by an internal define-syntax form is visible only 
within the body in which the define-syntax form appears. 

All bindings established by a set of internal definitions, whether keyword or variable 
definitions, are visible within the definitions themselves. For example, the expression 

(let ()
(define even?
(lambda (x)
(or (= x 0) (odd? (- x 1)))))

(define-syntax odd?
(syntax-rules ()
((_ x) (not (even? x)))))

(even? 10)) 

is valid and should return #t. It must be possible for the expander to determine the set of 
syntax and variable definitions that appears at the front of a body without referring to any 
of the locally defined identifiers. It is not legal, therefore, for an internal definition to affect 
the status of a (potential) internal definition in the same sequence of forms. For example, 

(let ()
(define-syntax bind-to-zero
(syntax-rules ()
((_ id) (define id 0))))

(bind-to-zero x)
x) 

is not valid, since it would require the expander to expand (bind-to-zero x) in order to 
recognize it as a syntax definition. Rewritten as follows it returns 0: 

(let ()
(define-syntax bind-to-zero
(syntax-rules ()
((_ id) (define id 0))))

(let ()
(bind-to-zero x)
x)) 



A top-level syntactic definition must be established before its first use in order for that use 
to be recognized. 

syntax: (let-syntax ((keyword exp) ...) form1 form2 ...)
syntax: (letrec-syntax ((keyword exp) ...) form1 form2 ...)
returns: see explanation 

Each exp must evaluate to a transformer. For both let-syntax and letrec-syntax, each keyword
is bound within the forms form1 form2 .... For letrec-syntax the binding scope also includes each 
exp. 

A let-syntax or letrec-syntax form may expand into one or more expressions anywhere 
expressions are permitted, in which case the resulting expressions are treated as if 
enclosed in a begin expression. 

A let-syntax or letrec-syntax form may expand into a definition or sequence of definitions 
anywhere are permitted, in which case the definitions are treated as if they appeared in 
place of the let-syntax or letrec-syntax form. 

The following example highlights how let-syntax and letrec-syntax differ. 

(let ((f (lambda (x) (+ x 1))))
(let-syntax ((f (syntax-rules ()

((_ x) x)))
(g (syntax-rules ()

((_ x) (f x)))))
(list (f 1) (g 1)))) (1 2) 

(let ((f (lambda (x) (+ x 1))))
(letrec-syntax ((f (syntax-rules ()

((_ x) x)))
(g (syntax-rules ()

((_ x) (f x)))))
(list (f 1) (g 1)))) (1 1) 

The two expressions are identical except that the let-syntax form in the first expression is a 
letrec-syntax form in the second. In the first expression, the f occurring in g refers to the let-
bound variable f, whereas in the second it refers to the keyword f whose binding is 
established by the letrec-syntax form. 

syntax: (fluid-let-syntax ((keyword exp) ...) form1 form2 ...)
returns: see explanation 

Each exp must evaluate to a transformer. fluid-let-syntax is similar to let-syntax, except that 
instead of introducing new bindings for the keywords keyword ..., fluid-let-syntax temporarily 
alters the existing bindings for the keywords during the expansion of its body. That is, 
during the expansion of form1 form2 ..., the visible lexical (or top-level) binding for each 
keyword is temporarily replaced by a new association between the keyword and the 
corresponding transformer. This affects any references to the keyword that resolve to the 
same lexical (or top-level) binding whether the references occur in the text of the body or 



are introduced during its expansion. In contrast, let-syntax captures only those references 
that occur within the text of its body. 

The following example shows how fluid-let-syntax differs from let-syntax. 

(let ((f (lambda (x) (+ x 1))))
(let-syntax ((g (syntax-rules ()

((_ x) (f x)))))
(let-syntax ((f (syntax-rules ()

((_ x) x))))
(g 1)))) 2 

(let ((f (lambda (x) (+ x 1))))
(let-syntax ((g (syntax-rules ()

((_ x) (f x)))))
(fluid-let-syntax ((f (syntax-rules ()

((_ x) x))))
(g 1)))) 1 

The two expressions are identical except that the inner let-syntax form in the first expression 
is a fluid-let-syntax form in the second. In the first expression, the f occurring in the 
expansion of (g 1) refers to the let-bound variable f, whereas in the second it refers to the 
keyword f by virtue of the fluid syntax binding for f. 

Section 8.2. Syntax-Rules Transformers

The syntax-rules form described in this section permits simple transformers to be specified in 
a convenient manner. These transformers may be bound to keywords using the 
mechanisms described in Section 8.1. While it is much less expressive than the 
mechanism described in Section 8.3, it is sufficient for defining many common syntactic 
extensions. syntax-rules has been adopted for inclusion in the Revised5 Report on Scheme. 

syntax: (syntax-rules (literal ...) clause ...)
returns: a transformer 

Each literal must be an identifier. Each clause takes the form: 

(pattern template) 

Each pattern specifies one possible syntax that the input form might take, and the 
corresponding template specifies how the output should appear in each case. 

Patterns consist of list structure, vector structure, identifiers, and constants. Each identifier 
within a pattern is either a literal, a pattern variable, or an ellipsis. The identifier ... is an 
ellipsis. Any identifier other than ... is a literal if it appears in the list of literals (literal ...); 
otherwise, it is a pattern variable. Literals serve as auxiliary keywords, such as else in case
and cond expressions. List and vector structure within a pattern specifies the basic 
structure required of the input, pattern variables specify arbitrary substructure, and literals 
and constants specify atomic pieces that must match exactly. Ellipses specify repeated 
occurrences of the subpatterns they follow. 



An input form F matches a pattern P if and only if 

• P is a pattern variable, 
• P is a literal identifier and F is an identifier with the same binding (see free-identifier=?

in Section 8.3), 
• P is of the form (P1 ... Pn) and F is a list of n elements that match P1 through Pn, 
• P is of the form (P1 P2 ... Pn . Px) and F is a list or improper list of n or more elements 

whose first n elements match P1 through Pn and whose nth cdr matches Px, 
• P is of the form (P1 ... Pn Px ...) and F is a proper list of n or more elements whose first 

n elements match P1 through Pn and whose remaining elements each match Px, 
• P is of the form #(P1 ... Pn) and F is a vector of n elements that match P1 through Pn, 
• P is of the form #(P1 ... Pn Px ...) and F is a vector of n or more elements whose first n

elements match P1 through Pn and whose remaining elements each match Px, or 
• P is a pattern datum (any nonlist, nonvector, nonsymbol object) and F is equal to P

in the sense of the equal? procedure. 

The outermost structure of a syntax-rules pattern must actually be in one of the list-
structured forms above, although subpatterns of the pattern may be in any of the above 
forms. Furthermore, the first element of the outermost pattern is ignored, since it is always 
assumed to be the keyword naming the syntactic form. (These statements do not apply to 
syntax-case; see Section 8.3.) 

If an input form passed to a syntax-rules transformer matches the pattern for a given clause, 
the clause is accepted and the form is transformed as specified by the associated 
template. As this transformation takes place, pattern variables appearing in the pattern are 
bound to the corresponding input subforms. Pattern variables appearing within a 
subpattern followed by one or more ellipses may be bound to a set or sets of zero or more 
input subforms. 

A template is a pattern variable, an identifier that is not a pattern variable, a pattern datum, 
a list of subtemplates (S1 ... Sn), an improper list of subtemplates (S1 S2 ... Sn . T), or a vector 
of subtemplates #(S1 ... Sn). Each subtemplate Si is either a template or a template followed 
by one or more ellipses. The final element T of an improper subtemplate list is a template. 

Pattern variables appearing within a template are replaced in the output by the input 
subforms to which they are bound. Pattern data and identifiers that are not pattern 
variables are inserted directly into the output. List and vector structure within the template 
remains list and vector structure in the output. A subtemplate followed by an ellipsis 
expands into zero or more occurrences of the subtemplate. The subtemplate must contain 
at least one pattern variable from a subpattern followed by an ellipsis. (Otherwise, the 
expander could not determine how many times the subform should be repeated in the 
output.) Pattern variables that occur in subpatterns followed by one or more ellipses may 
occur only in subtemplates that are followed by (at least) as many ellipses. These pattern 
variables are replaced in the output by the input subforms to which they are bound, 
distributed as specified. If a pattern variable is followed by more ellipses in the template 
than in the associated pattern, the input form is replicated as necessary. 

A template of the form (... template) is identical to template, except that ellipses within the 
template have no special meaning. That is, any ellipses contained within template are 
treated as ordinary identifiers. In particular, the template (... ...) produces a single ellipsis, .... 
This allows syntactic extensions to expand into forms containing ellipses. 



The definition of or below demonstrates the use of syntax-rules. 

(define-syntax or
(syntax-rules ()
((_) #f)
((_ e) e)
((_ e1 e2 e3 ...)
(let ((t e1)) (if t t (or e2 e3 ...)))))) 

The input patterns specify that the input must consist of the keyword and zero or more 
subexpressions. An underscore ( _ ), which is an ordinary pattern variable, is used by 
convention for the keyword position to remind the programmer and anyone reading the 
definition that the keyword position never fails to contain the expected keyword and need 
not be matched. (In fact, as mentioned above, syntax-rules ignores what appears in the 
keyword position.) If more than one subexpression is present (third clause), the expanded 
code must both test the value of the first subexpression and return the value if it is not 
false. In order to avoid evaluating the expression twice, the transformer introduces a 
binding for the temporary variable t. 

The expansion algorithm maintains lexical scoping automatically by renaming local 
identifiers as necessary. Thus, the binding for t introduced by the transformer is visible only 
within code introduced by the transformer and not within subforms of the input. Similarly, 
the references to the identifiers let and if are unaffected by any bindings present in the 
context of the input. 

(let ((if #f))
(let ((t 'okay))
(or if t))) okay 

This expression is transformed during expansion to the equivalent of the expression 
below. 

((lambda (if1)
((lambda (t1)
((lambda (t2)
(if t2 t2 t1))

if1))
'okay))

#f) okay 

In this sample expansion, if1, t1, and t2 represent identifiers to which if and t in the original 
expression and t in the expansion of or have been renamed. 

The definition of a simplified version of cond below (simplified because it requires at least 
one output expression per clause and does not support the auxiliary keyword =>) 
demonstrates how auxiliary keywords such as else are recognized in the input to a 
transformer, via inclusion in the list of literals. 

(define-syntax cond
(syntax-rules (else)
((_ (else e1 e2 ...)) (begin e1 e2 ...))
((_ (e0 e1 e2 ...)) (if e0 (begin e1 e2 ...)))
((_ (e0 e1 e2 ...) c1 c2 ...)
(if e0 (begin e1 e2 ...) (cond c1 c2 ...))))) 



Section 8.3. Syntax-Case Transformers

This section describes a more expressive mechanism for creating transformers, based on 
syntax-case, a generalized version of syntax-rules. This mechanism permits more complex 
transformations to be specified, including transformations that "bend" lexical scoping in a 
controlled manner, allowing a much broader class of syntactic extensions to be defined. 
Any transformer that may be defined using syntax-rules may be rewritten easily to use syntax-
case instead; in fact, syntax-rules itself may be defined as a syntactic extension in terms of 
syntax-case, as demonstrated within the description of syntax below. 

With this mechanism, transformers are procedures of one argument. The argument is a 
syntax object representing the form to be processed. The return value is a syntax object 
representing the output form. A syntax object contains contextual information about a form 
in addition to its structure. This contextual information is used by the expander to maintain 
lexical scoping. 

A syntax object representing an identifier is itself referred to as an identifier; thus, the term 
identifier may refer either to the syntactic entity (symbol, variable, or keyword) or to the 
concrete representation of the syntactic entity as a syntax object. It is rarely necessary to 
distinguish the two uses. 

Transformers destructure their input with syntax-case and rebuild their output with syntax. 
These two forms alone are sufficient for defining many syntactic extensions, including any 
that can be defined using syntax-rules. They are described below along with a set of 
additional forms and procedures that provide added functionality. 

The forms and procedures described in this section are extensions supported by the 
portable syntax-case system. 

syntax: (syntax-case exp (literal ...) clause ...)
returns: see below 

Each literal must be an identifier. Each clause must take one of the following two forms: 

(pattern output-expression)
(pattern fender output-expression) 

syntax-case patterns may be in any of the forms described in Section 8.2. 

syntax-case first evaluates exp, then attempts to match the resulting value against the 
pattern from the first clause. This value is usually a syntax object, but it may be any 
Scheme object. If the value matches the pattern and no fender is present, output-
expression is evaluated and its value returned as the value of the syntax-case expression. If 
the value does not match the pattern, the value is compared against the next clause, and 
so on. An error is signaled if the value does not match any of the patterns. 

If the optional fender is present, it serves as an additional constraint on acceptance of a 
clause. If the value of the syntax-case exp matches the pattern for a given clause, the 
corresponding fender is evaluated. If fender evaluates to a true value, the clause is 



accepted; otherwise, the clause is rejected as if the input had failed to match the pattern. 
Fenders are logically a part of the matching process, i.e., they specify additional matching 
constraints beyond the basic structure of an expression. 

Pattern variables contained within a clause's pattern are bound to the corresponding pieces 
of the input value within the clause's fender (if present) and output-expression. Pattern 
variables occupy the same name space as program variables and keywords; pattern 
variable bindings created by syntax-case can shadow (and be shadowed by) program 
variable and keyword bindings as well as other pattern variable bindings. Pattern 
variables, however, can be referenced only within syntax expressions. 

See the examples following the description of syntax. 

syntax: (syntax template)
returns: see below 

A syntax expression is like a quote expression except that the values of pattern variables 
appearing within template are inserted into template, and contextual information 
associated with any nonlist, nonvector items from the template is retained in the output. A 
syntax template is identical to a syntax-rules template and is treated similarly. 

The definition of or below is equivalent to the one given in Section 8.2 except that it 
employs syntax-case and syntax in place of syntax-rules. 

(define-syntax or
(lambda (x)
(syntax-case x ()
((_) (syntax #f))
((_ e) (syntax e))
((_ e1 e2 e3 ...)
(syntax (let ((t e1)) (if t t (or e2 e3 ...)))))))) 

In this version, the lambda expression that produces the transformer is explicit, as are the 
syntax forms in the output part of each clause. Any syntax-rules form can be expressed with 
syntax-case by making the lambda expression and syntax expressions explicit. This 
observation leads to the following definition of syntax-rules in terms of syntax-case. 

(define-syntax syntax-rules
(lambda (x)
(syntax-case x ()
((_ (i ...) ((keyword . pattern) template) ...)
(syntax (lambda (x)

(syntax-case x (i ...)
((dummy . pattern) (syntax template))
...))))))) 

The unreferenced pattern variable dummy is used in place of each keyword since the first 
position of each syntax-rules pattern is always ignored. 

Since the lambda and syntax expressions are implicit in a syntax-rules form, definitions 
expressed with syntax-rules are often shorter than the equivalent definitions expressed with 
syntax-case. The choice of which to use when either suffices is a matter of taste, but many 



transformers that can be written easily with syntax-case cannot be written easily or at all with 
syntax-rules (see Section 8.4). 

procedure: (identifier? obj)
returns: #t if obj is an identifier, #f otherwise 

identifier? is often used within fenders to verify that certain subforms of an input form are 
identifiers, as in the definition of unnamed let below. 

(define-syntax let
(lambda (x)
(define ids?
(lambda (ls)
(or (null? ls)

(and (identifier? (car ls))
(ids? (cdr ls))))))

(syntax-case x ()
((_ ((i v) ...) e1 e2 ...)
(ids? (syntax (i ...)))
(syntax ((lambda (i ...) e1 e2 ...) v ...)))))) 

Syntactic extensions ordinarily take the form (keyword subform ...), but the syntax-case system 
permits them to take the form of singleton identifiers as well. For example, the keyword 
pcar in the expression below may be used both as an identifier (in which case it expands 
into a call to car) or as a structured form (in which case it expands into a call to set-car!). 

(let ((p (cons 0 #f)))
(define-syntax pcar
(lambda (x)
(syntax-case x ()
(_ (identifier? x) (syntax (car p)))
((_ v) (syntax (set-car! p v))))))

(let ((a pcar))
(pcar 1)
(list a pcar))) (0 1) 

The fender (identifier? x) is used to recognize the singleton identifier case. 

procedure: (free-identifier=? identifier1 identifier2)
procedure: (bound-identifier=? identifier1 identifier2)
returns: see below 

Symbolic names alone do not distinguish identifiers unless the identifiers are to be used 
only as symbolic data. The predicates free-identifier=? and bound-identifier=? are used to 
compare identifiers according to their intended use as free references or bound identifiers 
in a given context. 

free-identifier=? is used to determine whether two identifiers would be equivalent if they were 
to appear as free identifiers in the output of a transformer. Because identifier references 
are lexically scoped, this means that (free-identifier=? id1 id2) is true if and only if the identifiers 
id1 and id2 refer to the same lexical or top-level binding. (For this comparison, all variables 
are assumed to have top-level bindings, whether defined yet or not.) Literal identifiers 



(auxiliary keywords) appearing in syntax-case patterns (such as else in case and cond) are 
matched with free-identifier=?. 

Similarly, bound-identifier=? is used to determine if two identifiers would be equivalent if they 
were to appear as bound identifiers in the output of a transformer. In other words, if bound-
identifier=? returns true for two identifiers, a binding for one will capture references to the 
other within its scope. In general, two identifiers are bound-identifier=? only if both are present 
in the original program or both are introduced by the same transformer application 
(perhaps implicitly---see datum->syntax-object). bound-identifier=? can be used for detecting 
duplicate identifiers in a binding construct or for other preprocessing of a binding construct 
that requires detecting instances of the bound identifiers. 

Two identifiers that are bound-identifier=? are also free-identifier=?, but two identifiers that are 
free-identifier=? are not necessarily bound-identifier=?. An identifier introduced by a transformer 
may refer to the same enclosing binding as an identifier not introduced by the transformer, 
but an introduced binding for one will not capture references to the other. 

The definition below is equivalent to the earlier definition of a simplified version of cond with 
syntax-rules, except that else is recognized via an explicit call to free-identifier? within a fender 
rather than via inclusion in the literals list. 

(define-syntax cond
(lambda (x)
(syntax-case x ()
((_ (e0 e1 e2 ...))
(and (identifier? (syntax e0))

(free-identifier=? (syntax e0) (syntax else)))
(syntax (begin e1 e2 ...)))
((_ (e0 e1 e2 ...)) (syntax (if e0 (begin e1 e2 ...))))
((_ (e0 e1 e2 ...) c1 c2 ...)
(syntax (if e0 (begin e1 e2 ...) (cond c1 c2 ...))))))) 

With either definition of cond, else is not recognized as an auxiliary keyword if an enclosing 
lexical binding for else exists. For example, 

(let ((else #f))
(cond (else (write "oops")))) 

does not write "oops", since else is bound lexically and is therefore not the same else that 
appears in the definition of cond. 

The following definition of unnamed let uses bound-identifier=? to detect duplicate identifiers. 

(define-syntax let
(lambda (x)
(define ids?
(lambda (ls)
(or (null? ls)

(and (identifier? (car ls))
(ids? (cdr ls))))))

(define unique-ids?
(lambda (ls)
(or (null? ls)

(and (let notmem? ((x (car ls)) (ls (cdr ls)))
(or (null? ls)



(and (not (bound-identifier=? x (car ls)))
(notmem? x (cdr ls)))))

(unique-ids? (cdr ls))))))
(syntax-case x ()
((_ ((i v) ...) e1 e2 ...)
(and (ids? (syntax (i ...)))

(unique-ids? (syntax (i ...))))
(syntax ((lambda (i ...) e1 e2 ...) v ...)))))) 

With the definition of let above, the expression 

(let ((a 3) (a 4)) (+ a a)) 

results in a syntax error, whereas 

(let-syntax ((dolet (lambda (x)
(syntax-case x ()
((_ b)
(syntax (let ((a 3) (b 4))

(+ a b))))))))
(dolet a)) 

evaluates to 7 since the identifier a introduced by dolet and the identifier a extracted from 
the input form are not bound-identifier=?. Since both occurrences of a, however, if left as free 
references, would refer to the same (top-level) binding for a, free-identifier=? would not 
distinguish them. 

syntax: (with-syntax ((pattern val) ...) exp1 exp2 ...)
returns: the value of the last expi

It is sometimes useful to construct a transformer's output in separate pieces, then put the 
pieces together. with-syntax facilitates this by allowing the creation of local pattern bindings. 

pattern is identical in form to a syntax-case pattern. The value of each val is computed and 
destructured according to the corresponding pattern, and pattern variables within the 
pattern are bound as with syntax-case to appropriate portions of the value within exp1 exp2 .... 

with-syntax may be defined as a syntactic extension in terms of syntax-case. 

(define-syntax with-syntax
(lambda (x)
(syntax-case x ()
((_ ((p e0) ...) e1 e2 ...)
(syntax (syntax-case (list e0 ...) ()

((p ...) (begin e1 e2 ...)))))))) 

The following definitions of full cond and case demonstrate the use of with-syntax to support 
transformers that employ recursion internally to construct their output. 

(define-syntax cond
(lambda (x)
(syntax-case x ()
((_ c1 c2 ...)
(let f ((c1 (syntax c1)) (cmore (syntax (c2 ...))))
(if (null? cmore)



(syntax-case c1 (else =>)
((else e1 e2 ...) (syntax (begin e1 e2 ...)))
((e0) (syntax (let ((t e0)) (if t t))))
((e0 => e1) (syntax (let ((t e0)) (if t (e1 t)))))
((e0 e1 e2 ...) (syntax (if e0 (begin e1 e2 ...)))))

(with-syntax ((rest (f (car cmore) (cdr cmore))))
(syntax-case c1 (=>)
((e0) (syntax (let ((t e0)) (if t t rest))))
((e0 => e1) (syntax (let ((t e0)) (if t (e1 t) rest))))
((e0 e1 e2 ...)
(syntax (if e0 (begin e1 e2 ...) rest))))))))))) 

(define-syntax case
(lambda (x)
(syntax-case x ()
((_ e c1 c2 ...)
(with-syntax ((body

(let f ((c1 (syntax c1)) (cmore (syntax (c2 ...))))
(if (null? cmore)

(syntax-case c1 (else)
((else e1 e2 ...) (syntax (begin e1 e2 ...)))
(((k ...) e1 e2 ...)
(syntax (if (memv t '(k ...)) (begin e1 e2 ...)))))

(with-syntax ((rest (f (car cmore) (cdr cmore))))
(syntax-case c1 ()
(((k ...) e1 e2 ...)
(syntax (if (memv t '(k ...))

(begin e1 e2 ...)
rest)))))))))

(syntax (let ((t e)) body))))))) 

procedure: (syntax-object->datum obj)
returns: obj stripped of syntactic information 

The procedure syntax-object->datum strips all syntactic information from a syntax object and 
returns the corresponding Scheme "datum." Identifiers stripped in this manner are 
converted to their symbolic names, which can then be compared with eq?. Thus, a 
predicate symbolic-identifier=? might be defined as follows: 

(define symbolic-identifier=?
(lambda (x y)
(eq? (syntax-object->datum x)

(syntax-object->datum y)))) 

Two identifiers that are free-identifier=? are symbolic-identifier=?; in order to refer to the same 
binding, two identifiers must have the same name. The converse is not always true, since 
two identifiers may have the same name but different bindings. 

procedure: (datum->syntax-object template-identifier obj)
returns: a syntax object 

datum->syntax-object constructs a syntax object from obj that contains the same contextual 
information as template-identifier, with the effect that the syntax object behaves as if it 
were introduced into the code when template-identifier was introduced. The template 



identifier is often the keyword of an input form, extracted from the form, and the object is 
often a symbol naming an identifier to be constructed. 

datum->syntax-object allows a transformer to "bend" lexical scoping rules by creating implicit 
identifiers that behave as if they were present in the input form, thus permitting the 
definition of syntactic extensions that introduce visible bindings for or references to 
identifiers that do not appear explicitly in the input form. For example, we can define a loop
expression that binds the variable break to an escape procedure within the loop body. 

(define-syntax loop
(lambda (x)
(syntax-case x ()
((k e ...)
(with-syntax ((break (datum->syntax-object (syntax k) 'break)))
(syntax (call-with-current-continuation

(lambda (break)
(let f () e ... (f)))))))))) 

(let ((n 3) (ls '()))
(loop
(if (= n 0) (break ls))
(set! ls (cons 'a ls))
(set! n (- n 1)))) (a a a) 

Were we to define loop as 

(define-syntax loop
(lambda (x)
(syntax-case x ()
((_ e ...)
(syntax (call-with-current-continuation

(lambda (break)
(let f () e ... (f))))))))) 

the variable break would not be visible in e .... 

It is also useful for obj to represent an arbitrary Scheme form, as demonstrated by the 
following definition of include, an expand-time version of load. 

(define-syntax include
(lambda (x)
(define read-file
(lambda (fn k)
(let ((p (open-input-file fn)))
(let f ((x (read p)))
(if (eof-object? x)

(begin (close-input-port p) '())
(cons (datum->syntax-object k x)

(f (read p))))))))
(syntax-case x ()
((k filename)
(let ((fn (syntax-object->datum (syntax filename))))
(with-syntax (((exp ...) (read-file fn (syntax k))))
(syntax (begin exp ...)))))))) 



(include "filename") expands into a begin expression containing the forms found in the file 
named by "filename". For example, if the file f-def.ss contains the expression (define f (lambda () 
x)), the expression 

(let ((x "okay"))
(include "f-def.ss")
(f)) 

evaluates to "okay". 

The definition of include uses datum->syntax-object to convert the objects read from the file into 
syntax objects in the proper lexical context, so that identifier references and definitions 
within those expressions are scoped where the include form appears. 

procedure: (generate-temporaries list)
returns: a list of distinct generated identifiers 

Transformers can introduce a fixed number of identifiers into their output by naming each 
identifier. In some cases, however, the number of identifiers to be introduced depends 
upon some characteristic of the input expression. A straightforward definition of letrec, for 
example, requires as many temporary identifiers as there are binding pairs in the input 
expression. The procedure generate-temporaries is used to construct lists of temporary 
identifiers. 

list may be any list; its contents are not important. The number of temporaries generated is 
the number of elements in list. Each temporary is guaranteed to be different from all other 
identifiers. 

A definition of letrec that uses generate-temporaries is shown below. 

(define-syntax letrec
(lambda (x)
(syntax-case x ()
((_ ((i v) ...) e1 e2 ...)
(with-syntax (((t ...) (generate-temporaries (syntax (i ...)))))
(syntax (let ((i #f) ...)

(let ((t v) ...)
(set! i t) ...
(let () e1 e2 ...))))))))) 

Any transformer that uses generate-temporaries in this fashion can be rewritten to avoid using 
it, albeit with a loss of clarity. The trick is to use a recursively defined intermediate form 
that generates one temporary per expansion step and completes the expansion after 
enough temporaries have been generated. A definition of letrec that does not use generate-
temporaries is left as an exercise for the reader. 

Section 8.4. Examples

This section presents a series of illustrative syntactic extensions defined with either syntax-
rules or syntax-case, starting with a few simple but useful syntactic extensions and ending 



with a fairly complex mechanism for defining structures with automatically generated 
constructors, predicates, field accessors, and field setters. 

The simplest example in this section is the following definition of rec. rec is a syntactic 
extension that permits internally recursive anonymous (not externally named) procedures 
to be created with minimal effort. 

(define-syntax rec
(syntax-rules ()
((_ x e) (letrec ((x e)) x)))) 

(map (rec sum
(lambda (x)
(if (= x 0)

0
(+ x (sum (- x 1))))))

'(0 1 2 3 4 5)) (0 1 3 6 10 15) 

Using rec, we can define the full let (both unnamed and named) as follows. 

(define-syntax let
(syntax-rules ()
((_ ((x v) ...) e1 e2 ...)
((lambda (x ...) e1 e2 ...) v ...))
((_ f ((x v) ...) e1 e2 ...)
((rec f (lambda (x ...) e1 e2 ...)) v ...)))) 

This definition relies upon the fact that the first pattern cannot match a named let, since the 
first subform of a named let must be an identifier, not a list of bindings. The following 
definition uses a fender to make this check more robust: 

(define-syntax let
(lambda (x)
(syntax-case x ()
((_ ((x v) ...) e1 e2 ...)
(syntax ((lambda (x ...) e1 e2 ...) v ...)))
((_ f ((x v) ...) e1 e2 ...)
(identifier? (syntax f))
(syntax ((rec f (lambda (x ...) e1 e2 ...)) v ...)))))) 

Of course, to be completely robust, the ids? and all-ids? checks employed in the definition of 
unnamed let in Section 8.3 should be employed here as well. 

The precise syntax of do cannot be expressed directly with a single pattern because some 
of the bindings in a do expression's binding list may take the form (var val) while others take 
the form (var val update). The following definition of do uses syntax-case internally to parse the 
bindings separately from the overall form. 

(define-syntax do
(lambda (x)
(syntax-case x ()
((_ (binding ...) (test res ...) exp ...)
(with-syntax ((((var val update) ...)

(map (lambda (b)
(syntax-case b ()
((var val)
(syntax (var val var)))



((var val update)
(syntax (var val update)))))

(syntax (binding ...)))))
(syntax (let doloop ((var val) ...)

(if test
(begin (if #f #f) res ...)
(begin exp ... (doloop update ...)))))))))) 

The odd looking expression (if #f #f) is inserted before the result expressions res ... in case 
no result expressions are provided, since begin requires at least one subexpression. The 
value of (if #f #f) is unspecified, which is what we want since the value of do is unspecified if 
no result expressions are provided. At the expense of a bit more code, we could use syntax-
case to determine whether any result expressions are provided and to produce a loop with 
either a one- or two-armed if as appropriate. The resulting expansion would be cleaner but 
semantically equivalent. 

As mentioned in Section 8.2, ellipses lose their special meaning within templates of the 
form (... template), This fact allows syntactic extensions to expand into syntax definitions 
containing ellipses. This usage is illustrated by the definition below of be-like-begin: 

(define-syntax be-like-begin
(syntax-rules ()
((_ name)
(define-syntax name
(syntax-rules ()
((_ e0 e1 (... ...))
(begin e0 e1 (... ...)))))))) 

With be-like-begin defined in this manner, (be-like-begin sequence) has the same effect as the 
following definition of sequence. 

(define-syntax sequence
(syntax-rules ()
((_ e0 e1 ...)
(begin e0 e1 ...)))) 

That is, a sequence form becomes equivalent to a begin form. 

The following example shows how one might restrict if expressions within a given 
expression to require the "else" (alternative) subexpression by defining the local if in terms 
of the top-level if: 

(let-syntax ((if (lambda (x)
(syntax-case x ()
((_ e1 e2 e3)
(syntax (if e1 e2 e3)))))))

(if 1 2 3)) 2 

(let-syntax ((if (lambda (x)
(syntax-case x ()
((_ e1 e2 e3)
(syntax (if e1 e2 e3)))))))

(if 1 2)) error

Although this local definition of if looks simple enough, there are a few subtle ways in 
which an attempt to write it might go wrong. If letrec-syntax were used in place of let-syntax, 



the identifier if inserted into the output would refer to the local if rather than the top-level if, 
and expansion would loop indefinitely. 

Similarly, if the underscore were replaced with the identifier if, expansion would again loop 
indefinitely. The if appearing in the template (if e1 e2 e3) would be treated as a pattern 
variable bound to the corresponding identifier if from the input form, which denotes the 
local version of if. 

Placing if in the list of literals in an attempt to patch up the latter version would not work 
either. This would cause syntax-case to compare the literal if in the pattern, which would be 
scoped outside the let-syntax expression, with the if in the input expression, which would be 
scoped inside the let-syntax. Since they would not refer to the same binding, they would not 
be free-identifier=?, and a syntax error would result. 

The conventional use of underscore ( _ ) helps the programmer avoid situations like these 
in which the wrong identifier is matched against or inserted by accident. 

It is an error to generate a reference to an identifier that is not present within the context of 
an input form, which can happen if the "closest enclosing lexical binding" for an identifier 
inserted into the output of a transformer does not also enclose the input form. For 
example, 

(let-syntax ((divide (lambda (x)
(let ((/ +))
(syntax-case x ()
((_ e1 e2)
(syntax (/ e1 e2))))))))

(let ((/ *)) (divide 2 1))) 

results in an error to the effect that / is referenced in an invalid context, since the 
occurrence of / in the output of divide is a reference to the variable / bound by the let
expression within the transformer. 

As noted in the description of identifier? in Section 8.3, singleton identifiers can be treated 
as syntactic extensions and expanded into arbitrary forms. Often, it is necessary to treat 
the case where an identifier appears in the first position of a structured expression 
differently from the case where it appears elsewhere, as in the pcar example given in the 
description for identifier?. In other situations, both cases must or may be treated the same. 
The form identifier-syntax defined below can make doing so more convenient. 

(define-syntax identifier-syntax
(lambda (x)
(syntax-case x ()
((_ e)
(syntax
(lambda (x)
(syntax-case x ()
(id
(identifier? (syntax id))
(syntax e))
((id x (... ...))
(identifier? (syntax id))
(syntax (e x (... ...))))))))))) 

(let ((x 0))



(define-syntax x++
(identifier-syntax
(let ((t x)) (set! x (+ t 1)) t)))

(let ((a x++))
(list a x))) (0 1) 

The following example uses identifier-syntax, datum->syntax-object, and local syntax definitions 
to define a form of method, one of the basic building blocks of object-oriented 
programming (OOP) systems. A method expression is similar to a lambda expression, except 
that in addition to the formal parameters and body, a method expression also contains a list 
of instance variables (ivar ...). When a method is invoked, it is always passed an object
(instance), represented as a vector of fields corresponding to the instance variables, and 
zero or more additional arguments. Within the method body, the object is bound implicitly 
to the identifier self and the additional arguments are bound to the formal parameters. The 
fields of the object may be accessed or altered within the method body via instance 
variable references or assignments. 

(define-syntax method
(lambda (x)
(syntax-case x ()
((k (ivar ...) formals e1 e2 ...)
(with-syntax (((index ...)

(let f ((i 0) (ls (syntax (ivar ...))))
(if (null? ls)

'()
(cons i (f (+ i 1) (cdr ls))))))

(self (datum->syntax-object (syntax k) 'self))
(set! (datum->syntax-object (syntax k) 'set!)))

(syntax
(lambda (self . formals)
(let-syntax ((ivar (identifier-syntax

(vector-ref self index)))
...)

(let-syntax ((set! (syntax-rules (ivar ...)
((_ ivar e)
(vector-set! self index e))
...
((_ x e) (set! x e)))))

e1 e2 ...))))))))) 

Local bindings for ivar ... and for set! make the fields of the object appear to be ordinary 
variables, with references and assignments translated into calls to vector-ref and vector-set!. 
datum->syntax-object is used to make the introduced bindings of self and set! visible in the 
method body. Nested let-syntax expressions are needed so that the identifiers ivar ... serving 
as auxiliary keywords for the local version of set! are scoped properly. The examples below 
demonstrate simple uses of method. 

(let ((m (method (a) (x) (list a x self))))
(m #(1) 2)) (1 2 #(1)) 

(let ((m (method (a) (x)
(set! a x)
(set! x (+ a x))
(list a x self))))

(m #(1) 2)) (2 4 #(2)) 



In a complete OOP system based on method, the instance variables ivar ... would likely be 
drawn from class declarations, not listed explicitly in the method forms, although the same 
techniques would be used to make instance variables appear as ordinary variables within 
method bodies. 

The next example defines a define-integrable form that is similar to define for procedure 
definitions except that it causes the code for the procedure to be integrated, or inserted, 
wherever a direct call to the procedure is found. No semantic difference is visible between 
procedures defined with define-integrable and those defined with define, except that a top-
level define-integrable form must appear before the first reference to the defined identifier, 
and syntactic extensions within the body of the defined procedure are expanded at the 
point of call. Lexical scoping is preserved, the actual parameters in an integrated call are 
evaluated once and at the proper time, integrable procedures may be used as first-class 
values, and recursive procedures do not cause indefinite recursive expansion. 

A define-integrable has the following form. 

(define-integrable name lambda-expression) 

A define-integrable form expands into a pair of definitions: a syntax definition of name and a 
variable definition of a generated name, residual-name. The transformer for name converts 
apparent calls to name into direct calls to lambda-expression. Since the resulting forms are 
merely direct lambda applications (the equivalent of let expressions), the actual parameters 
are evaluated exactly once and before evaluation of the procedure's body, as required. All 
other references to name are replaced with references to residual-name. The definition of 
residual-name binds it to lambda-expression. This allows the procedure to be used as a first-
class value. Within lambda-expression, wherever it appears, name is rebound to a 
transformer that expands all references into references to residual-name. The use of fluid-let-
syntax for this purpose prevents indefinite expansion from indirect recursion among 
integrable procedures. This allows the procedure to be recursive without causing indefinite 
expansion. Nothing special is done by define-integrable to maintain lexical scoping, since 
lexical scoping is maintained automatically by the expander. 

(define-syntax define-integrable
(lambda (x)
(define make-residual-name
(lambda (name)
(datum->syntax-object name
(string->symbol
(string-append "residual-" 
(symbol->string (syntax-object->datum name)))))))

(syntax-case x (lambda)
((_ name (lambda formals form1 form2 ...))
(identifier? (syntax name))
(with-syntax ((xname (make-residual-name (syntax name))))
(syntax
(begin
(define-syntax name
(lambda (x)
(syntax-case x ()
(_ (identifier? x) (syntax xname))
((_ arg (... ...))
(syntax
((fluid-let-syntax
((name (identifier-syntax xname)))



(lambda formals form1 form2 ...))
arg (... ...)))))))

(define xname
(fluid-let-syntax ((name (identifier-syntax xname)))
(lambda formals form1 form2 ...)))))))))) 

The final example of this section defines a simple structure definition facility that 
represents structures as vectors with named fields. Structures are defined with define-
structure, which takes the form: 

(define-structure name field ...) 

where name names the structure and field ... names its fields. define-structure expands into a 
series of generated definitions: a constructor make-name, a type predicate name?, and one 
accessor name-field and setter set-name-field! per field name. The constructor accepts as 
many arguments as there are fields in the structure and creates a vector whose first 
element is the symbol name and whose remaining elements are the argument values. The 
type predicate returns true if its argument is a vector of the expected length whose first 
element is name. 

Since a define-structure form expands into a begin containing definitions, it is itself a definition 
and can be used wherever definitions are valid. 

The generated identifiers are created with datum->syntax-object to allow the identifiers to be 
visible where the define-structure form appears. 

(define-syntax define-structure
(lambda (x)
(define gen-id
(lambda (template-id . args)
(datum->syntax-object template-id
(string->symbol
(apply string-append

(map (lambda (x)
(if (string? x)

x
(symbol->string
(syntax-object->datum x))))

args))))))
(syntax-case x ()
((_ name field ...)
(with-syntax
((constructor (gen-id (syntax name) "make-" (syntax name)))
(predicate (gen-id (syntax name) (syntax name) "?"))
((access ...)
(map (lambda (x) (gen-id x (syntax name) "-" x))

(syntax (field ...))))
((assign ...)
(map (lambda (x) (gen-id x "set-" (syntax name) "-" x "!"))

(syntax (field ...))))
(structure-length (+ (length (syntax (field ...))) 1))
((index ...) (let f ((i 1) (ids (syntax (field ...))))

(if (null? ids)
'()
(cons i (f (+ i 1) (cdr ids)))))))

(syntax (begin
(define constructor
(lambda (field ...)



(vector 'name field ...)))
(define predicate
(lambda (x)
(and (vector? x)

(= (vector-length x) structure-length)
(eq? (vector-ref x 0) 'name))))

(define access
(lambda (x)
(vector-ref x index)))

...
(define assign
(lambda (x update)
(vector-set! x index update)))

...))))))) 

The examples below demonstrate the use of define-structure. 

(define-structure tree left right)
(define t
(make-tree
(make-tree 0 1)
(make-tree 2 3))) 

t #(tree #(tree 0 1) #(tree 2 3))
(tree? t) #t
(tree-left t) #(tree 0 1)
(tree-right t) #(tree 2 3)
(set-tree-left! t 0)
t #(tree 0 #(tree 2 3)) 

Since the bodies of the generated procedures are short and simple, it may be desirable to 
use define-integrable as defined above in place of define for some or all of the generated 
procedure definitions. 



Chapter 9. Extended Examples
This chapter presents a series of programs that perform more complicated tasks than most 
of the simpler examples found throughout the earlier chapters of the book. They illustrate a 
variety of programming techniques and demonstrate a particular programming style. 

Each section of this chapter describes one program in detail. The program to be displayed 
is first described along with examples of its use. This is followed by a listing of the code. At 
the end of each section are exercises intended to stimulate thought about the program and 
to suggest possible extensions. These exercises are generally more difficult than those 
found in Chapters 2 and 3, and a few are major projects. 

Section 9.1 presents a simple matrix multiplication package. It demonstrates a set of 
procedures that could be written in almost any language. Its most interesting features are 
that all multiplication operations are performed by calling a single generic procedure, mul,
which calls the appropriate help procedure depending upon the dimensions of its 
arguments, and that it dynamically allocates results of the proper size. Section 9.2
presents a useful merge sorting algorithm for ordering lists according to arbitrary 
predicates. Section 9.3 describes a syntactic form that is used to construct sets. It 
demonstrates a simple but efficient syntactic transformation from set notation to Scheme 
code. Section 9.4 presents a word counting program borrowed from The C Programming 
Language [16], translated from C into Scheme. It shows character and string manipulation, 
data structure creation and manipulation, and basic file input and output. Section 9.5
presents a basic Scheme printer that supports both write and display for all standard object 
types. Section 9.6 presents a simple formatted output facility similar to those found in 
many Scheme systems and in other languages. Section 9.7 presents a simple interpreter 
for Scheme that illustrates Scheme as a language implementation vehicle while giving an 
informal operational semantics for Scheme as well as a useful basis for investigating 
extensions to Scheme. Section 9.8 presents a small, extensible abstract object facility that 
could serve as the basis for an entire object-oriented subsystem. Section 9.9 presents a 
recursive algorithm for computing the Fourier transform of a sequence of input values. It 
highlights the use of Scheme's complex arithmetic. Section 9.10 presents a concise 
unification algorithm that shows how procedures can be used as continuations and as 
substitutions (unifiers) in Scheme. Section 9.11 describes a multitasking facility and its 
implementation in terms of continuations. 

Section 9.1. Matrix and Vector Multiplication

This example program involves mostly basic programming techniques. It demonstrates 
simple arithmetic and vector operations, looping with the do syntactic form, dispatching 
based on object type, and generating error messages. 

Multiplication of scalar to scalar, scalar to matrix, or matrix to matrix is performed by a 
single generic procedure, called mul. Because scalar multiplication uses Scheme's 
multiplication procedure, *, mul scalars can be any built-in numeric type (exact or inexact 
complex, real, rational, or integer). 



The product of an m × n matrix A and an n × p matrix B is the m × p matrix C whose 
entries are defined by 

The product of a scalar x and an m × n matrix A is the m × n matrix C whose entries are 
defined by the equation: 

That is, each element of C is the product of x and the corresponding element of A. Vector-
vector, vector-matrix, and matrix-vector multiplication may be considered special cases of 
matrix-matrix multiplication, where a vector is represented as a 1 × n or n × 1 matrix. 

The structure of the code is worth explaining briefly. The first few definitions establish a set 
of procedures that support the matrix datatype. A matrix is a vector of vectors. Included 
are a procedure to create matrices, procedures to access and assign matrix elements, and 
a matrix predicate. Following these definitions is the definition of mul itself. Inside the lambda
expression for mul are a set of definitions for help procedures that support mul. 

The generic procedure mul checks the type of its arguments and chooses the appropriate 
help procedure to do the work. Each help procedure operates on arguments of specific 
types. For example, mat-sca-mul multiplies a matrix by a scalar. If the type of either 
argument is invalid or the arguments are incompatible, e.g., rows or columns do not match 
up, mul or one of the help procedures signals an error. Since standard Scheme does not 
include any mechanism for signaling errors, we use the Chez Scheme error procedure 
briefly described in Section 2.7. 

The mul procedure is called with two arguments. Here are a few examples, each preceded 
by the equivalent operation in standard mathematical notation. 

• Scalar times scalar: 

3 × 4 = 12 

(mul 3 4) 12 

• Scalar times vector (1 × 3 matrix): 

(mul 1/2 #(#(1 2 3))) #(#(1/2 1 3/2)) 

• Scalar times matrix: 

(mul -2 
#(#(3 -2 -1)
#(-3 0 -5)



#(7 -1 -1))) #(#(-6 4 2)
#(6 0 10)
#(-14 2 2)) 

• Vector times matrix: 

(mul #(#(1 2 3))
#(#(2 3)
#(3 4)
#(4 5))) #(#(20 26)) 

• Matrix times vector: 

(mul #(#(2 3 4)
#(3 4 5))

#(#(1) #(2) #(3))) #(#(20) #(26)) 

• Matrix times matrix: 

(mul #(#(1 2 3)
#(4 5 6))

#(#(1 2 3 4)
#(2 3 4 5)
#(3 4 5 6))) #(#(14 20 26 32)

#(32 47 62 77)) 

Exercises appear after the code at the end of the section. 

;;; make-matrix creates a matrix (a vector of vectors).
(define make-matrix
(lambda (rows columns)
(do ((m (make-vector rows))

(i 0 (+ i 1)))
((= i rows) m)
(vector-set! m i (make-vector columns))))) 

;;; matrix? checks to see if its argument is a matrix.
;;; It isn't foolproof, but it's generally good enough.
(define matrix?
(lambda (x)
(and (vector? x)

(> (vector-length x) 0)
(vector? (vector-ref x 0))))) 

;;; matrix-ref returns the jth element of the ith row.



(define matrix-ref
(lambda (m i j)
(vector-ref (vector-ref m i) j))) 

;;; matrix-set! changes the jth element of the ith row.
(define matrix-set!
(lambda (m i j x)
(vector-set! (vector-ref m i) j x))) 

;;; mul is the generic matrix/scalar multiplication procedure
(define mul
(lambda (x y)
;; type-error is called to complain when mul receives an invalid
;; type of argument.
(define type-error
(lambda (what)
(error 'mul
"~s is not a number or matrix"
what))) 

;; match-error is called to complain when mul receives a pair of
;; incompatible arguments.
(define match-error
(lambda (what1 what2)
(error 'mul
"~s and ~s are incompatible operands"
what1
what2))) 

;; matrix-rows returns the number of rows in a matrix.
(define matrix-rows
(lambda (x)
(vector-length x))) 

;; matrix-columns returns the number of columns in a matrix.
(define matrix-columns
(lambda (x)
(vector-length (vector-ref x 0)))) 

;; mat-sca-mul multiplies a matrix by a scalar.
(define mat-sca-mul
(lambda (m x)
(let* ((nr (matrix-rows m))

(nc (matrix-columns m))
(r (make-matrix nr nc)))

(do ((i 0 (+ i 1)))
((= i nr) r)
(do ((j 0 (+ j 1)))

((= j nc))
(matrix-set! r i j
(* x (matrix-ref m i j)))))))) 

;; mat-mat-mul multiplies one matrix by another, after verifying
;; that the first matrix has as many columns as the second
;; matrix has rows.
(define mat-mat-mul
(lambda (m1 m2)
(let* ((nr1 (matrix-rows m1))

(nr2 (matrix-rows m2))
(nc2 (matrix-columns m2))
(r (make-matrix nr1 nc2)))

(if (not (= (matrix-columns m1) nr2))



(match-error m1 m2))
(do ((i 0 (+ i 1)))

((= i nr1) r)
(do ((j 0 (+ j 1)))

((= j nc2))
(do ((k 0 (+ k 1))

(a 0
(+ a
(* (matrix-ref m1 i k)
(matrix-ref m2 k j)))))

((= k nr2)
(matrix-set! r i j a)))))))) 

;; body of mul; dispatch based on input types
(cond
((number? x)
(cond
((number? y) (* x y))
((matrix? y) (mat-sca-mul y x))
(else (type-error y))))

((matrix? x)
(cond
((number? y) (mat-sca-mul x y))
((matrix? y) (mat-mat-mul x y))
(else (type-error y))))

(else (type-error x))))) 

Exercise 9.1.1

Make the necessary changes to rename mul to *. 

Exercise 9.1.2

The predicate matrix? is usually sufficient but not completely reliable, since it may return #t
for objects that are not matrices. In particular, it does not verify that all of the matrix rows 
are vectors, that each row has the same number of elements, or that the elements 
themselves are numbers. Modify matrix? to perform each of these additional checks. 

Exercise 9.1.3

Write similar generic procedures for addition and subtraction. Devise a generic dispatch
procedure or syntactic form so that the type dispatching code need not be rewritten for 
each new operation. 

Exercise 9.1.4

This version of mul uses vectors of vectors to represent matrices. Rewrite the system, 
using nested lists to represent matrices. What efficiency is gained or lost by this change? 

Section 9.2. List Sorting

This section illustrates a list sorting algorithm based on a simple technique known as 
merge sorting. The procedure sort defined here accepts two arguments: a predicate and a 
list. It returns a list containing the elements of the old list sorted according to the predicate. 



The predicate should be a procedure that expects two arguments and returns #t if and only 
if its first argument must precede its second in the sorted list. That is, if the predicate is 
applied to two elements x and y, where x appears after y in the input list, it should return 
true only if x should appear before y in the output list. If this constraint is met, sort will 
perform a stable sort; with a stable sort, two elements that are already sorted with respect 
to each other will appear in the output in the same order in which they appeared in the 
input. Thus, sorting a list that is already sorted will result in no reordering, even if there are 
equivalent elements. 

(sort < '(3 4 2 1 2 5)) (1 2 2 3 4 5)
(sort > '(0.5 1/2)) (0.5 1/2)
(sort > '(1/2 0.5)) (1/2 0.5))
(list->string
(sort char>?

(string->list "coins"))) "sonic" 

A companion procedure, merge, is also defined by the code. merge accepts a predicate and 
two sorted lists and returns a merged list in sorted order of the elements of the two lists. 
With a properly defined predicate, merge is also stable in the sense that an item from the 
first list will appear before an item from the second list unless it is necessary that the item 
from the second list appear first.

(merge char<?
'(#\a #\c)
'(#\b #\c #\d)) (#\a #\b #\c #\c #\d)

(merge <
'(1/2 2/3 3/4)
'(0.5 0.6 0.7)) (1/2 0.5 0.6 2/3 0.7 3/4) 

The merge sorting algorithm works quite simply. The input list is split into two 
approximately equal sublists. These sublists are sorted recursively, yielding two sorted 
lists. The sorted lists are then merged to form a single sorted list. The base cases for the 
recursion are lists of one and two elements, which can be sorted trivially. 

(define sort #f)
(define merge #f)
(let ()
(define dosort
(lambda (pred? ls n)
(cond
((= n 1) (list (car ls)))
((= n 2) (let ((x (car ls)) (y (cadr ls)))

(if (pred? y x) (list y x) (list x y))))
(else
(let ((i (quotient n 2)))
(domerge pred?

(dosort pred? ls i)
(dosort pred? (list-tail ls i) (- n i))))))))

(define domerge
(lambda (pred? l1 l2)
(cond
((null? l1) l2)
((null? l2) l1)
((pred? (car l2) (car l1))
(cons (car l2) (domerge pred? l1 (cdr l2))))
(else (cons (car l1) (domerge pred? (cdr l1) l2))))))

(set! sort



(lambda (pred? l)
(if (null? l) l (dosort pred? l (length l)))))

(set! merge
(lambda (pred? l1 l2)
(domerge pred? l1 l2)))) 

Exercise 9.2.1

In dosort, when n is 1, why is (list (car ls)) returned instead of ls? Similarly, when n is 2 and 
(pred? y x) is false, why is (list x y) returned instead of ls? 

Exercise 9.2.2

Taking into account the answer to the previous exercise, how much work is actually saved 
by not copying the first part of the input list when splitting it in dosort? 

Exercise 9.2.3

All or nearly all allocation could be saved if the algorithm were to work destructively, using 
set-cdr! to separate and join lists. Write destructive versions sort! and merge! of the sort and 
merge. Determine the difference between the two sets of procedures in terms of allocation 
and run time for various inputs. 

Section 9.3. A Set Constructor

This example describes a syntactic extension, set-of, that allows the construction of sets 
represented as lists with no repeated elements [19]. It uses define-syntax and syntax-rules to 
compile set expressions into recursion expressions. The expanded code is often as 
efficient as that which can be produced by hand. 

A set-of expression takes the following form. 

(set-of value exp ...) 

value describes the elements of the set in terms of the bindings established by the 
expressions exp .... Each of the expressions exp ... can take one of three forms: 

1. An expression of the form (x in s) establishes a binding for x to each element of the 
set s in turn. This binding is visible within the remaining expressions exp ... and the 
expression value. 

2. An expression of the form (x is e) establishes a binding for x to e. This binding is 
visible within the remaining expressions exp ... and the expression value. This form 
is essentially an abbreviation for (x in (list e)). 

3. An expression taking any other form is treated as a predicate; this is used to force 
refusal of certain elements as in the second of the examples below. 

(set-of x
(x in '(a b c))) (a b c) 

(set-of x
(x in '(1 2 3 4))
(even? x)) (2 4) 



(set-of (cons x y)
(x in '(1 2 3))
(y is (* x x))) ((1 . 1) (2 . 4) (3 . 9)) 

(set-of (cons x y)
(x in '(a b))
(y in '(1 2))) ((a . 1) (a . 2) (b . 1) (b . 2)) 

A set-of expression is transformed into nested let, named let, and if expressions, 
corresponding to each is, in, or predicate subexpression. For example, the simple 
expression 

(set-of x (x in '(a b c))) 

is transformed into 

(let loop ((set '(a b c)))
(if (null? set)

'()
(let ((x (car set)))
(set-cons x (loop (cdr set)))))) 

The expression 

(set-of x (x in '(1 2 3 4)) (even? x)) 

is transformed into 

(let loop ((set '(1 2 3 4)))
(if (null? set)

'()
(let ((x (car set)))
(if (even? x)

(set-cons x (loop (cdr set)))
(loop (cdr set)))))) 

The more complicated expression 

(set-of (cons x y) (x in '(1 2 3)) (y is (* x x))) 

is transformed into 

(let loop ((set '(1 2 3)))
(if (null? set)

'()
(let ((x (car set)))
(let ((y (* x x)))
(set-cons (cons x y)

(loop (cdr set))))))) 

Finally, the expression 

(set-of (cons x y) (x in '(a b)) (y in '(1 2))) 

is transformed into nested named let expressions: 



(let loop1 ((set1 '(a b)))
(if (null? set1)

'()
(let ((x (car set1)))
(let loop2 ((set2 '(1 2)))
(if (null? set2)

(loop1 (cdr set1))
(let ((y (car set2)))
(set-cons (cons x y)

(loop2 (cdr set2))))))))) 

These are fairly straightforward transformations, except that the base case for the 
recursion on nested named let expressions varies depending upon the level. The base 
case for the outermost named let is always the empty list (), while the base case for an 
internal named let is the recursion step for the next outer named let. In order to handle this, 
the definition of set-of employs a help syntactic extension set-of-help. set-of-help takes an 
additional expression, base, which is the base case for recursion at the current level. 

;;; set-of uses helper syntactic extension set-of-help, passing it
;;; an initial base expression of '()
(define-syntax set-of
(syntax-rules ()
((_ e m ...)
(set-of-help e '() m ...)))) 

;;; set-of-help recognizes in, is, and predicate expressions and
;;; changes them into nested named let, let, and if expressions.
(define-syntax set-of-help
(syntax-rules (in is)
((_ e base)
(set-cons e base))
((_ e base (x in s) m ...)
(let loop ((set s))
(if (null? set)

base
(let ((x (car set)))
(set-of-help e (loop (cdr set)) m ...)))))

((_ e base (x is y) m ...)
(let ((x y)) (set-of-help e base m ...)))
((_ e base p m ...)
(if p (set-of-help e base m ...) base)))) 

;;; set-cons returns the original set y if x is already in y.
(define set-cons
(lambda (x y)
(if (memv x y)

y
(cons x y)))) 

Exercise 9.3.1

Write a procedure, union, that takes an arbitrary number of sets (lists) as arguments and 
returns the union of the sets, using only the set-of syntactic form. For example: 

(union) ()
(union '(a b c)) (a b c)
(union '(2 5 4) '(9 4 3)) (2 5 9 4 3)
(union '(1 2) '(2 4) '(4 8)) (1 2 4 8) 



Exercise 9.3.2

A single-list version of map can (almost) be defined as follows: 

(define map1
(lambda (f ls)
(set-of (f x) (x in ls)))) 

(map1 - '(1 2 3 2)) (-1 -3 -2) 

Why does this not work? What could be changed to make it work? 

Exercise 9.3.3

Devise a different definition for set-cons that maintains sets in some sorted order, making 
the test for set membership, and hence set-cons itself, potentially more efficient. 

Section 9.4. Word Frequency Counting

This program demonstrates several basic programming techniques, including string and 
character manipulation, file input/output, data structure manipulation, and recursion. As 
was mentioned in the introduction to this chapter, the program is adapted from Chapter 6 
of The C Programming Language [16]. One reason for using this particular example is to 
show how a C program might look when converted almost literally into Scheme. 

A few differences between the Scheme program and the original C program are worth 
noting. First, the Scheme version employs a different protocol for file input and output. 
Rather than implicitly use the standard input and output ports, it requires that filenames be 
passed in, thus demonstrating the opening and closing of files. Second, the procedure get-
word returns one of three values: a string (the word), a nonalphabetic character, or an eof 
value. The original C version returned a flag for letter (to say that a word was read) or a 
nonalphabetic character. Furthermore, the C version passed in a string to fill and a limit on 
the number of characters in the string; the Scheme version builds a new string of whatever 
length is required (the characters in the word are held in a list until the end of the word has 
been found, then converted into a string with list->string). Finally, char-type uses the primitive 
Scheme character predicates char-alphabetic? and char-numeric? to determine whether a 
character is a letter or digit. 

The main program, frequency, takes an input filename and an output filename as 
arguments, e.g., (frequency "pickle" "freq.out") prints the frequency count for each word in the 
file "pickle" to the file "freq.out". As frequency reads words from the input file, it inserts them 
into a binary tree structure (using a binary sorting algorithm). Duplicate entries are 
recorded by incrementing the count associated with each word. Once end of file is 
reached, the program traverses the tree, printing each word with its count. 

Assume that the file "pickle" contains the following text. 

Peter Piper picked a peck of pickled peppers;
A peck of pickled peppers Peter Piper picked.
If Peter Piper picked a peck of pickled peppers,
Where's the peck of pickled peppers Peter Piper picked? 



Then, after typing (frequency "pickle" "freq.out"), the file "freq.out" should contain the following. 

1 A
1 If
4 Peter
4 Piper
1 Where
2 a
4 of
4 peck
4 peppers
4 picked
4 pickled
1 s
1 the 

(On some systems, the capitalized words may appear after the others.) 

;;; If the next character on p is a letter, get-word reads a word
;;; from p and returns it in a string. If the character is not a
;;; letter, get-word returns the character (on eof, the eof-object).
(define get-word
(lambda (p)
(let ((c (read-char p)))
(if (eq? (char-type c) 'letter)

(list->string
(let loop ((c c))
(cons c
(if (memq (char-type (peek-char p)) '(letter digit))

(loop (read-char p))
'()))))

c)))) 

;;; char-type tests for the eof-object first, since the eof-object
;;; may not be a valid argument to char-alphabetic? or char-numeric?
;;; It returns the eof-object, the symbol letter, the symbol digit,
;;; or the argument itself if it is not a letter or digit.
(define char-type
(lambda (c)
(cond
((eof-object? c) c)
((char-alphabetic? c) 'letter)
((char-numeric? c) 'digit)
(else c)))) 

;;; Trees are represented as vectors with four fields: word, left,
;;; right, and count. Only one field, word, is initialized by an
;;; argument to the constructor procedure make-tree. The remaining
;;; fields are explicitly initialized and changed by subsequent
;;; operations. Most Scheme systems provide structure definition
;;; facilities that automate creation of structure manipulation
;;; procedures, but we simply define the procedures by hand here.
(define make-tree
(lambda (word)
(vector word '() '() 1))) 

(define tree-word (lambda (tree) (vector-ref tree 0))) 

(define tree-left (lambda (tree) (vector-ref tree 1)))
(define set-tree-left!
(lambda (tree new-left)



(vector-set! tree 1 new-left))) 

(define tree-right (lambda (tree) (vector-ref tree 2)))
(define set-tree-right!
(lambda (tree new-right)
(vector-set! tree 2 new-right))) 

(define tree-count (lambda (tree) (vector-ref tree 3)))
(define set-tree-count!
(lambda (tree new-count)
(vector-set! tree 3 new-count))) 

;;; If the word already exists in the tree, tree increments its
;;; count. Otherwise, a new tree node is created and put into the
;;; tree. In any case, the new or modified tree is returned.
(define tree
(lambda (node word)
(cond
((null? node) (make-tree word))
((string=? word (tree-word node))
(set-tree-count! node (+ (tree-count node) 1))
node)
((string<? word (tree-word node))
(set-tree-left! node (tree (tree-left node) word))
node)
(else
(set-tree-right! node (tree (tree-right node) word))
node)))) 

;;; tree-print prints the tree in "in-order," i.e., left subtree,
;;; then node, then right subtree. For each word, the count and the
;;; word are printed on a single line.
(define tree-print
(lambda (node p)
(if (not (null? node))

(begin
(tree-print (tree-left node) p)
(write (tree-count node) p)
(write-char #\space p)
(display (tree-word node) p)
(newline p)
(tree-print (tree-right node) p))))) 

;;; frequency is the driver routine. It opens the files, reads the
;;; words, and enters them into the tree. When the input port
;;; reaches end-of-file, it prints the tree and closes the ports.
(define frequency
(lambda (infn outfn)
(let ((ip (open-input-file infn))

(op (open-output-file outfn)))
(let loop ((root '()))
(let ((w (get-word ip)))
(cond
((eof-object? w) (tree-print root op))
((string? w) (loop (tree root w)))
(else (loop root)))))

(close-input-port ip)
(close-output-port op)))) 

Exercise 9.4.1



Replace the procedures used to implement the tree datatype with a structure definition, 
using the facilities provided by the Scheme system you are using or define-structure from 
Section 8.4. 

Exercise 9.4.2

In the output file shown earlier, the capitalized words appeared before the others in the 
output file, and the capital A was not recognized as the same word as the lowercase a. 
Modify tree to use the case-insensitive versions of the string comparisons so that this does 
not happen. 

Exercise 9.4.3

The "word" s appears in the file "freq.out", although it is really just a part of the contraction 
Where's. Adjust get-word to allow embedded single quote marks. 

Exercise 9.4.4

Modify this program to "weed out" certain common words such as a, an, the, is, of, etc., in 
order to reduce the amount of output for long input files. Try to devise other ways to cut 
down on useless output. 

Exercise 9.4.5

get-word buffers characters in a list, allocating a new pair (with cons) for each character. 
Make it more efficient by using a string to buffer the characters. Devise a way to allow the 
string to grow if necessary. [Hint: Use string-append.] 

Exercise 9.4.6

This tree algorithm works by creating trees and later filling in its left and right fields. This 
requires many unnecessary assignments. Rewrite the tree procedure to avoid set-tree-left!
and set-tree-right! entirely. 

Section 9.5. Scheme Printer

Printing Scheme objects may seem like a complicated process, but in fact a rudimentary 
printer is quite straightforward, as this example demonstrates. Both write and display are 
supported by the same code. Sophisticated Scheme implementations often support 
various printer controls and handle printing of cyclic objects, but the one given here is 
completely basic. 

The main driver for the program is a procedure wr, which takes an object to print x, a flag 
d?, and a port p. The flag d? is #t if the code is to display the object, #f if it is to write the 
object. The d? flag is important only for characters and strings. Recall from Section 7.2 that 
display prints strings without the enclosing quote marks and characters without the #\ 
syntax. 

The entry points write and display handle the optionality of the second (port) argument, 
passing the value of current-output-port when no port argument is provided. 



Procedures, ports, and end-of-file objects are printed as #<procedure>, #<port>, and #<eof>. 
The tests for the end-of-file objects and ports are made early, since implementations are 
permitted to implement these object types as special cases of other object types. Objects 
of types not recognized by the printer are printed as #<unknown>; this can occur if the 
Scheme implementation provides extensions to the standard set of object types. 

The code follows the module structure outlined in Section 3.5. 

(define write #f)
(define display #f) 

(let ()
;; wr is the driver, dispatching on the type of x
(define wr
(lambda (x d? p)
(cond
((eof-object? x) (write-string "#<eof>" p))
((port? x) (write-string "#<port>" p))
((symbol? x) (write-string (symbol->string x) p))
((pair? x) (wrpair x d? p))
((number? x) (write-string (number->string x) p))
((null? x) (write-string "()" p))
((boolean? x) (write-string (if x "#t" "#f") p))
((char? x) (if d? (write-char x p) (wrchar x p)))
((string? x) (if d? (write-string x p) (wrstring x p)))
((vector? x) (wrvector x d? p))
((procedure? x) (write-string "#<procedure>" p))
(else (write-string "#<unknown>" p))))) 

;; write-string writes each character of s to p
(define write-string
(lambda (s p)
(let ((n (string-length s)))
(do ((i 0 (+ i 1)))

((= i n))
(write-char (string-ref s i) p))))) 

;; wrpair handles pairs and nonempty lists
(define wrpair
(lambda (x d? p)
(write-char #\( p)
(let loop ((x x))
(wr (car x) d? p)
(cond
((pair? (cdr x))
(write-char #\space p)
(loop (cdr x)))
((null? (cdr x)))
(else
(write-string " . " p)
(wr (cdr x) d? p))))

(write-char #\) p))) 

;; wrchar handles characters, recognizing and printing the
;; special syntaxes for #\space and #\newline. Used only when
;; d? is #f.
(define wrchar
(lambda (x p)
(case x
((#\newline) (write-string "#\\newline" p))



((#\space) (write-string "#\\space" p))
(else (write-string "#\\" p)

(write-char x p))))) 

;; wrstring handles strings, inserting slashes where
;; necessary. Used only when d? is #f.
(define wrstring
(lambda (x p)
(write-char #\" p)
(let ((n (string-length x)))
(do ((i 0 (+ i 1)))

((= i n))
(let ((c (string-ref x i)))
(if (or (char=? c #\") (char=? c #\\))

(write-char #\\ p))
(write-char c p))))

(write-char #\" p))) 

;; wrvector handles vectors
(define wrvector
(lambda (x d? p)
(write-string "#(" p)
(let ((size (vector-length x)))
(if (not (= size 0))

(let ((last (- size 1)))
(let loop ((i 0))
(wr (vector-ref x i) d? p)
(if (not (= i last))

(begin
(write-char #\space p)
(loop (+ i 1))))))))

(write-char #\) p))) 

;; write calls wr with d? set to #f
(set! write
(lambda (x . rest)
(if (null? rest)

(wr x #f (current-output-port))
(wr x #f (car rest))))) 

;; display calls wr with d? set to #t
(set! display
(lambda (x . rest)
(if (null? rest)

(wr x #t (current-output-port))
(wr x #t (car rest)))))) 

Exercise 9.5.1

Numbers are printed with the help of number->string. Correct printing of all Scheme numeric 
types, especially inexact numbers, is a complicated task. Handling exact integers and 
rational numbers is fairly straightforward, however. Modify the code to print exact integers 
and rational numbers directly (without number->string), but continue to use number->string for 
inexact and complex numbers. 

Exercise 9.5.2



Modify wr and its helpers to direct their output to an internal buffer rather than to a port. 
Use the modified versions to implement a procedure object->string that, like number->string, 
returns a string containing a printed representation of its input. For example: 

(object->string '(a b c)) "(a b c)"
(object->string "hello") "\"hello\"" 

You may be surprised just how easy this change is to make. 

Section 9.6. Formatted Output

It is often necessary to print strings containing the printed representations of Scheme 
objects, especially numbers. Doing so with Scheme's standard output routines can be 
tedious. For example, the tree-print procedure of Section 9.4 requires a sequence of four 
calls to output routines to print a simple one-line message: 

(write (tree-count node) p)
(write-char #\space p)
(display (tree-word node) p)
(newline p) 

The formatted output facility defined in this section allows these four calls to be replaced 
by the single call to fprintf below: 

(fprintf p "~s ~a~%" (tree-count node) (tree-word node)) 

fprintf expects a port argument, a control string, and an indefinite number of additional 
arguments that are inserted into the output as specified by the control string. In the 
example, the value of (tree-count node) is written first, in place of ~s. This is followed by a 
space and the displayed value of (tree-word node), in place of ~a. The ~% is replaced in the 
output with a newline. 

The procedure printf, also defined in this section, is like fprintf except that no port argument 
is expected and output is sent to the current output port. 

~s, ~a, and ~% are format directives; ~s causes the first unused argument after the control 
string to be printed to the output via write, ~a causes the first unused argument to be printed 
via display, and ~% simply causes a newline character to be printed. The simple 
implementation of fprintf below recognizes only one other format directive, ~~, which inserts 
a tilde into the output. For example, 

(printf "The string ~s displays as ~~.~%" "~") 

prints 

The string "~" displays as ~. 

Uppercase ~A and ~S are equivalent to lowercase ~a and ~s. 

(let ()
;; dofmt does all of the work. It loops through the control
;; string, recognizing format directives and printing all other



;; characters without interpretation. A tilde at the end of
;; a control string is treated as an ordinary character. No
;; checks are made for proper inputs.
(define dofmt
(lambda (p cntl args)
(let ((nmax (- (string-length cntl) 1)))
(let loop ((n 0) (a args))
(if (<= n nmax)

(let ((c (string-ref cntl n)))
(if (and (char=? c #\~) (< n nmax))

(case (string-ref cntl (+ n 1))
((#\a #\A)
(display (car a) p)
(loop (+ n 2) (cdr a)))
((#\s #\S)
(write (car a) p)
(loop (+ n 2) (cdr a)))
((#\%)
(newline p)
(loop (+ n 2) a))
((#\~)
(write-char #\~ p)
(loop (+ n 2) a))
(else
(write-char c p)
(loop (+ n 1) a)))

(begin
(write-char c p)
(loop (+ n 1) a))))))))) 

;; printf and fprintf differ only in that fprintf passes its
;; port argument to dofmt while printf passes the current output
;; port.
(set! printf
(lambda (control . args)
(dofmt (current-output-port) control args)))

(set! fprintf
(lambda (p control . args)
(dofmt p control args)))) 

Exercise 9.6.1

Using the optional radix argument to number->string, augment printf and fprintf with support for 
the following new format directives: 
a. ~b or ~B: print the next unused argument, which must be a number, in binary; 
b. ~o or ~O: print the next unused argument, which must be a number, in octal; and 
c. ~x or ~X: print the next unused argument, which must be a number, in hexadecimal. 

For example: 

(printf "#x~x #o~o #b~b~%" 16 8 2) 

would print 

#x10 #o10 #b10 

Exercise 9.6.2



Add an "indirect" format directive, ~@, that treats the next unused argument, which must 
be a string, as if it were spliced into the current format string. For example: 

(printf "--- ~@ ---" "> ~s <" '(a b c)) 

would print 

---> (a b c) <---

Exercise 9.6.3

Implement format, a version of fprintf that places its output into a string instead of writing to a 
port. Make use of object->string from Exercise 9.5.2 to support the ~s and ~a directives. 

(let ((x 3) (y 4))
(format "~s + ~s = ~s" x y (+ x y))) "3 + 4 = 7" 

Exercise 9.6.4

Modify format, fprintf, and printf to allow a field size to be specified after the tilde in the ~a and 
~s format directives. For example, the directive ~10s would cause the next unused 
argument to be inserted into the output left-justified in a field of size 10. If the object 
requires more spaces than the amount specified, allow it to extend beyond the field. 

(let ((x 'abc) (y '(def)))
(format "(cons '~5s '~5s) = ~5s"
x y (cons x y))) "(cons 'abc '(def)) = (abc def)" 

[Hint: Use format recursively.] 

Section 9.7. A Meta-Circular Interpreter for Scheme

The program described in this section is a meta-circular interpreter for Scheme, i.e., it is an 
interpreter for Scheme written in Scheme. The interpreter shows how small Scheme is 
when the core structure is considered independently from its syntactic extensions and 
primitives. It also illustrates interpretation techniques that can be applied equally well to 
languages other than Scheme. 

The relative simplicity of the interpreter is somewhat misleading. An interpreter for Scheme 
written in Scheme can be quite a bit simpler than one written in most other languages. 
Here are a few reasons why this one is simpler. 

• Tail calls are handled properly only because tail calls in the interpreter are handled 
properly by the host implementation. All that is required is that the interpreter itself 
be tail-recursive. 

• First-class procedures in interpreted code are implemented by first-class 
procedures in the interpreter, which in turn are supported by the host 
implementation. 

• First-class continuations created with call/cc are provided by the host 
implementation's call/cc. 



• Primitive procedures such as cons and assq and services such as storage 
management are provided by the host implementation. 

Converting the interpreter to run in a language other than Scheme may require explicit 
support for some or all of these items. 

The interpreter stores lexical bindings in an environment, which is simply an association 
list (see assq). Evaluation of a lambda expression results in the creation of a procedure 
within the scope of variables holding the environment and the lambda body. Subsequent 
application of the procedure combines the new bindings (the actual parameters) with the 
saved environment. 

The interpreter handles only the core syntactic forms described in Section 3.1, and it 
recognizes bindings for only a handful of primitive procedures. It performs no error 
checking. 

(interpret 3) 3 

(interpret '(cons 3 4)) (3 . 4) 

(interpret
'((lambda (x . y)

(list x y))
'a 'b 'c 'd)) (a (b c d)) 

(interpret
'(((call/cc (lambda (k) k))
(lambda (x) x))
"HEY!")) "HEY!" 

(interpret
'((lambda (memq)

(memq memq 'a '(b c a d e)))
(lambda (memq x ls)
(if (null? ls) #f

(if (eq? (car ls) x)
ls
(memq memq x (cdr ls))))))) (a d e) 

(interpret
'((lambda (reverse)

(set! reverse
(lambda (ls new)
(if (null? ls)

new
(reverse (cdr ls) (cons (car ls) new)))))

(reverse '(a b c d e) '()))
#f)) (e d c b a) 

(define interpret #f)
(let ()
;; primitive-environment is an environment containing a small
;; number of primitive procedures; it can be extended easily
;; to include additional primitives.
(define primitive-environment
(list (cons 'apply apply)

(cons 'assq assq)
(cons 'call/cc call/cc)



(cons 'car car)
(cons 'cadr cadr)
(cons 'caddr caddr)
(cons 'cadddr cadddr)
(cons 'cddr cddr)
(cons 'cdr cdr)
(cons 'cons cons)
(cons 'eq? eq?)
(cons 'list list)
(cons 'map map)
(cons 'memv memv)
(cons 'null? null?)
(cons 'pair? pair?)
(cons 'read read)
(cons 'set-car! set-car!)
(cons 'set-cdr! set-cdr!)
(cons 'symbol? symbol?))) 

;; new-env returns a new environment from a formal parameter
;; specification, a list of actual parameters, and an outer
;; environment. The symbol? test identifies "improper"
;; argument lists. Environments are association lists,
;; associating variables with values.
(define new-env
(lambda (formals actuals env)
(cond
((null? formals) env)
((symbol? formals) (cons (cons formals actuals) env))
(else
(cons (cons (car formals) (car actuals))

(new-env (cdr formals) (cdr actuals) env)))))) 

;; lookup finds the value of the variable var in the environment
;; env, using assq. Assumes var is bound in env.
(define lookup
(lambda (var env)
(cdr (assq var env)))) 

;; assign is similar to lookup but alters the binding of the
;; variable var in the environment env by changing the cdr of
;; association pair
(define assign
(lambda (var val env)
(set-cdr! (assq var env) val))) 

;; exec evaluates the expression, recognizing all core forms.
(define exec
(lambda (exp env)
(cond
((symbol? exp) (lookup exp env))
((pair? exp)
(case (car exp)
((quote) (cadr exp))
((lambda)
(lambda vals
(let ((env (new-env (cadr exp) vals env)))
(let loop ((exps (cddr exp)))
(if (null? (cdr exps))

(exec (car exps) env)
(begin
(exec (car exps) env)
(loop (cdr exps))))))))



((if)
(if (exec (cadr exp) env)

(exec (caddr exp) env)
(exec (cadddr exp) env)))

((set!)
(assign (cadr exp)

(exec (caddr exp) env)
env))

(else
(apply (exec (car exp) env)

(map (lambda (x) (exec x env))
(cdr exp))))))

(else exp)))) 

;; interpret starts execution with the primitive environment.
(set! interpret
(lambda (exp)
(exec exp primitive-environment)))) 

Exercise 9.7.1

As written, the interpreter cannot interpret itself because it does not support several of the 
syntactic forms used in its implementation: let (named and unnamed), internal define, case, 
cond, and begin. Rewrite the code for the interpreter, using only core syntactic forms. 

Exercise 9.7.2

After completing the preceding exercise, use the interpreter to run a copy of the 
interpreter, and use the copy to run another copy of the interpreter. Repeat this process to 
see how many levels deep it will go before the Scheme system grinds to a halt. 

Exercise 9.7.3

At first glance, it might seem that the lambda case could be written more simply as follows: 

((lambda)
(lambda vals
(let ((env (new-env (cadr exp) vals env)))
(let loop ((exps (cddr exp)))
(let ((val (exec (car exps) env)))
(if (null? (cdr exps))

val
(loop (cdr exps)))))))) 

Why would this be incorrect? [Hint: What property of Scheme would be violated?] 

Exercise 9.7.4

Try to make the interpreter more efficient by looking for ways to ask fewer questions or to 
allocate less storage space. [Hint: Before evaluation, convert lexical variable references 
into (access n), where n represents the number of values in the environment association list 
in front of the value in question.] 

Exercise 9.7.5



Scheme evaluates arguments to a procedure before applying the procedure and applies 
the procedure to the values of these arguments (call- by-value). Modify the interpreter to 
pass arguments unevaluated and arrange to evaluate them upon reference (call- by-name). 
[Hint: Use lambda to delay evaluation.] You will need to create versions of the primitive 
procedures (car, null?, etc.) that take their arguments unevaluated. 

Section 9.8. Defining Abstract Objects

This example demonstrates a syntactic extension that facilitates the definition of simple 
abstract objects (see Section 2.9). This facility has unlimited potential as the basis for a 
complete object-oriented subsystem in Scheme. 

Abstract objects are similar to basic data structures such as pairs and vectors. Rather than 
being manipulated via access and assignment operators, however, abstract objects 
respond to messages. The valid messages and the actions to be taken for each message 
are defined by code within the object itself rather than by code outside the object, resulting 
in more modular and potentially more secure programming systems. The data local to an 
abstract object is accessible only through the actions performed by the object in response 
to the messages. 

A particular type of abstract object is defined with define-object, which has the general form 

(define-object (name var1 ...)
((var2 val) ...)
((msg action) ...)) 

The first set of bindings ((var2 val) ...) may be omitted. define-object defines a procedure that is 
called to create new abstract objects of the given type. This procedure is called name, and 
the arguments to this procedure become the values of the local variables var1 .... After the 
procedure is invoked, the variables var2 ... are bound to the values val ... in sequence (as 
with let*) and the messages msg ... are bound to the procedure values action ... in a mutually 
recursive fashion (as with letrec). Within these bindings, the new abstract object is created; 
this object is the value of the creation procedure. 

The syntactic form send-message is used to send messages to abstract objects. (send-
message object msg arg ...) sends object the message msg with arguments arg .... When an 
object receives a message, the arg ... become the parameters to the action procedure 
associated with the message, and the value returned by this procedure is returned by send-
message. 

The following examples should help to clarify how abstract objects are defined and used. 
The first example is a simple kons object that is similar to Scheme's built-in pair object type, 
except that to access or assign its fields requires sending it messages. 

(define-object (kons kar kdr)
((get-car (lambda () kar))
(get-cdr (lambda () kdr))
(set-car! (lambda (x) (set! kar x)))
(set-cdr! (lambda (x) (set! kdr x))))) 

(define p (kons 'a 'b))
(send-message p get-car) a



(send-message p get-cdr) b
(send-message p set-cdr! 'c)
(send-message p get-cdr) c 

The simple kons object does nothing but return or assign one of the fields as requested. 
What makes abstract objects interesting is that they can be used to restrict access or 
perform additional services. The following version of kons requires that a password be 
given with any request to assign one of the fields. This password is a parameter to the kons
procedure. 

(define-object (kons kar kdr pwd)
((get-car (lambda () kar))
(get-cdr (lambda () kar))
(set-car!
(lambda (x p)
(if (string=? p pwd)

(set! kar x))))
(set-cdr!
(lambda (x p)
(if (string=? p pwd)

(set! kar x)))))) 

(define p1 (kons 'a 'b "magnificent"))
(send-message p1 set-car! 'c "magnificent")
(send-message p1 get-car) c
(send-message p1 set-car! 'd "please")
(send-message p1 get-car) c 

(define p2 (kons 'x 'y "please"))
(send-message p2 set-car! 'z "please")
(send-message p2 get-car) z 

One important ability of an abstract object is that it can keep statistics on messages sent to 
it. The following version of kons counts accesses to the two fields. This version also 
demonstrates the use of explicitly initialized local bindings. 

(define-object (kons kar kdr)
((count 0))
((get-car
(lambda ()
(set! count (+ count 1))
kar))

(get-cdr
(lambda ()
(set! count (+ count 1))
kdr))

(accesses
(lambda () count)))) 

(define p (kons 'a 'b))
(send-message p get-car) a
(send-message p get-cdr) b
(send-message p accesses) 2
(send-message p get-cdr) b
(send-message p accesses) 3 

The implementation of define-object is straightforward. The object definition is transformed 
into a definition of the object creation procedure. This procedure is the value of a lambda



expression whose arguments are those specified in the definition. The body of the lambda
consists of a let* expression to bind the local variables and a letrec expression to bind the 
message names to the action procedures. The body of the letrec is another lambda
expression whose value represents the new object. The body of this lambda expression 
compares the messages passed in with the expected messages using a case expression 
and applies the corresponding action procedure to the remaining arguments. 

For example, the definition 

(define-object (kons kar kdr)
((count 0))
((get-car
(lambda ()
(set! count (+ count 1))
kar))

(get-cdr
(lambda ()
(set! count (+ count 1))
kdr))

(accesses
(lambda () count)))) 

is transformed into 

(define kons
(lambda (kar kdr)
(let* ((count 0))
(letrec ((get-car

(lambda ()
(set! count (+ count 1)) kar))

(get-cdr
(lambda ()
(set! count (+ count 1)) kdr))

(accesses (lambda () count)))
(lambda (msg . args)
(case msg
((get-car) (apply get-car args))
((get-cdr) (apply get-cdr args))
((accesses) (apply accesses args))
(else
(error 'kons "invalid message ~s"
(cons msg args))))))))) 

;;; define-object creates an object constructor that uses let* to bind
;;; local fields and letrec to define the exported procedures. An
;;; object is itself a procedure that accepts messages corresponding
;;; to the names of the exported procedures. The second pattern is
;;; used to allow the set of local fields to be omitted.
(define-syntax define-object
(syntax-rules ()
((_ (name . varlist)

((var1 val1) ...)
((var2 val2) ...))

(define name
(lambda varlist
(let* ((var1 val1) ...)
(letrec ((var2 val2) ...)
(lambda (msg . args)
(case msg



((var2) (apply var2 args)) ...
(else
(error 'name "invalid message ~s"
(cons msg args))))))))))

((_ (name . varlist)
((var2 val2) ...))

(define-object (name . varlist)
()
((var2 val2) ...))))) 

;;; send-message abstracts the act of sending a message from the act
;;; of applying a procedure and allows the message to be unquoted.
(define-syntax send-message
(syntax-rules ()
((_ obj msg arg ...)
(obj 'msg arg ...)))) 

Exercise 9.8.1

Use define-object to define the stack object type from Section 2.9. 

Exercise 9.8.2

Use define-object to define a queue object type. A queue object should accept the messages 
empty?, get! (removes and returns the first element), and put! (adds an element to the end of 
the queue). Elements should be removed in the same order as they are entered. 

Exercise 9.8.3

It is often useful to describe one object in terms of another. For example, the second kons
object type could be described as the same as the first but with a password argument and 
different actions associated with the set-car! and set-cdr! messages. This is called 
inheritance; the new type of object is said to inherit attributes from the first. Modify define-
object to support inheritance by allowing the optional declaration (inherit object-name) to 
appear after the message/action pairs. This will require saving some information about 
each object definition for possible use in subsequent object definitions. Conflicting 
argument names should be disallowed, but other conflicts should be resolved by using the 
initialization or action specified in the new object definition. 

Exercise 9.8.4

What if we want to describe an object type in terms not of just one but of two or more 
existing object types? Further modify define-object to support multiple inheritance by 
extending the inherit expression to allow multiple object names. What should happen if two 
or more inherited objects initialize a conflicting variable or message name differently? 

Section 9.9. Fast Fourier Transform

The program described in this section uses Scheme's complex arithmetic to compute the 
discrete Fourier transform (DFT) of a sequence of values [3]. Discrete Fourier transforms 
are used to analyze and process sampled signal sequences in a wide variety of digital 
electronics applications such as pattern recognition, bandwidth compression, radar target 
detection, and weather surveillance. 



The DFT of a sequence of N input values, 

is the sequence of N output values, 

each defined by the equation 

It is convenient to abstract away the constant amount (for given N) 

in order to obtain the more concise but equivalent equation 

A straightforward computation of the N output values, each as a sum of N intermediate 
values, requires on the order of N2 operations. A fast Fourier transform (FFT), applicable 
when N is a power of 2, requires only on the order of Nlog2N operations. Although usually 
presented as a rather complicated iterative algorithm, the fast Fourier transform is most 
concisely and elegantly expressed as a recursive algorithm [6]. The recursive algorithm 
can be derived by manipulating the preceding summation as follows. We first split the 
summation into two summations and recombine them into one summation from 0 to N/2 -
1. 

We then pull out the common factor . 

We can reduce to 1 when m is even and -1 when m is odd, since 

This allows us to specialize the summation for the even and odd cases of m = 2k and m = 
2k + 1, . 



The resulting summations are DFTs of the N/2-element sequences 

and 

Thus, the DFT of an N-element sequence can be computed recursively by interlacing the 
DFTs of two N/2-element sequences. If we select a base case of two elements, we can 
describe a recursive fast Fourier transformation (RFFT) algorithm as follows. For N = 2, 

since . For N > 2, 

with the attendant interlacing of even and odd components.

The diagram below, adapted from [6], shows the computational structure of the RFFT 
algorithm. The first stage computes pairwise sums and differences of the first and second 
halves of the input; this stage is labeled the butterfly stage. The second stage recurs on 
the resulting subsequences. The third stage interlaces the output of the two recursive calls 
to RFFT, thus yielding the properly ordered seqence . 



The procedure dft defined by the code below accepts a sequence (list) of values, x, the 
length of which is assumed to be a power of 2. dft precomputes a sequence of powers of 

, , and initiates the recursion. The code for rfft follows the algorithm outlined 
above. 

(define (dft x)
(define (w-powers n)
(let ((pi (* (acos 0.0) 2)))
(let ((delta (/ (* -2.0i pi) n)))
(let f ((n n) (x 0.0))
(if (= n 0)

'()
(cons (exp x) (f (- n 2) (+ x delta))))))))

(define (evens w)
(if (null? w)

'()
(cons (car w) (evens (cddr w)))))

(define (interlace x y)
(if (null? x)

'()
(cons (car x) (cons (car y) (interlace (cdr x) (cdr y))))))

(define (split ls)
(let split ((fast ls) (slow ls))
(if (null? fast)

(values '() slow)
(call-with-values



(lambda () (split (cddr fast) (cdr slow)))
(lambda (front back)
(values (cons (car slow) front) back))))))

(define (butterfly x w)
(call-with-values
(lambda () (split x))
(lambda (front back)
(values
(map + front back)
(map * (map - front back) w)))))

(define (rfft x w)
(if (null? (cddr x))
(let ((x0 (car x)) (x1 (cadr x)))
(list (+ x0 x1) (- x0 x1)))

(call-with-values
(lambda () (butterfly x w))
(lambda (front back)
(let ((w (evens w)))
(interlace (rfft front w) (rfft back w)))))))

(rfft x (w-powers (length x)))) 

Exercise 9.9.1

Alter the algorithm to employ a base case of four points. What simplifications can be made 
to avoid multiplying any of the base case outputs by elements of w? 

Exercise 9.9.2

Recode dft to accept a vector rather than a list as input, and have it produce a vector as 
output. Use lists internally if necessary, but do not simply convert the input to a list on entry 
and the output to a vector on exit. 

Exercise 9.9.3

Rather than recomputing the powers of w on each step for a new number of points, the 
code simply uses the even numbered elements of the preceding list of powers. Show that 
doing so yields the proper list of powers. That is, show that (evens (w-powers n)) is equal to 
(w-powers (/ n 2)). 

Exercise 9.9.4

The recursion step creates several intermediate lists that are immediately discarded. 
Recode the recursion step to avoid any unnecessary allocation. 

Exercise 9.9.5

Each element of a sequence of input values may be regenerated from the discrete Fourier 
transform of the sequence via the equation 

Noting the similarity between this equation and the original equation defining X(m), create
a modified version of dft, inverse-dft, that performs the inverse transformation. Verify that 
(inverse-dft (dft seq)) returns seq for several input sequences seq. 



Section 9.10. A Unification Algorithm

Unification [20] is a pattern-matching technique used in automated theorem proving, type-
inference systems, computer algebra, and logic programming, e.g., Prolog [5]. 

A unification algorithm attempts to make two symbolic expressions equal by computing a 
unifying substitution for the expressions. A substitution is a function that replaces variables 
with other expressions. A substitution must treat all occurrences of a variable the same 
way, e.g., if it replaces one occurrence of the variable x by a, it must replace all 
occurrences of x by a. A unifying substitution, or unifier, for two expressions e1 and e2 is a 
substitution, , such that . 

For example, the two expressions f(x) and f(y) can be unified by substituting x for y (or y
for x). In this case, the unifier could be described as the function that replaces y with x
and leaves other variables unchanged. On the other hand, the two expressions x + 1 and y
+ 2 cannot be unified. It might appear that substituting 3 for x and 2 for y would make both 
expressions equal to 4 and hence equal to each other. The symbolic expressions, 3 + 1 
and 2 + 2, however, still differ. 

Two expressions may have more than one unifier. For example, the expressions f(x,y) and 
f(1,y) can be unified to f(1,y) with the substitution of 1 for x. They may also be unified to 
f(1,5) with the substitution of 1 for x and 5 for y. The first substitution is preferable, since it 
does not commit to the unnecessary replacement of y. Unification algorithms typically 
produce the most general unifier, or mgu, for two expressions. The mgu for two 
expressions makes no unnecessary substitutions; all other unifiers for the expressions are 
special cases of the mgu. In the example above, the first substitution is the mgu and the 
second is a special case. 

For the purposes of this program, a symbolic expression can be a variable, a constant, or 
a function application. Variables are represented by Scheme symbols, e.g., x; a function 
application is represented by a list with the function name in the first position and its 
arguments in the remaining positions, e.g., (f x); and constants are represented by zero-
argument functions, e.g., (a). 

The algorithm presented here finds the mgu for two terms, if it exists, using a continuation 
passing style, or CPS (see Section 3.4), approach to recursion on subterms. The 
procedure unify takes two terms and passes them to a help procedure, uni, along with an 
initial (identity) substitution, a success continuation, and a failure continuation. The 
success continuation returns the result of applying its argument, a substitution, to one of 
the terms, i.e., the unified result. The failure continuation simply returns its argument, a 
message. Because control passes by explicit continuation within unify (always with tail 
calls), a return from the success or failure continuation is a return from unify itself. 

Substitutions are procedures. Whenever a variable is to be replaced by another term, a 
new substitution is formed from the variable, the term, and the existing substitution. Given 
a term as an argument, the new substitution replaces occurrences of its saved variable 
with its saved term in the result of invoking the saved substitution on the argument 
expression. Intuitively, a substitution is a chain of procedures, one for each variable in the 
substitution. The chain is terminated by the initial, identity substitution. 



(unify 'x 'y) y
(unify '(f x y) '(g x y)) "clash"
(unify '(f x (h)) '(f (h) y)) (f (h) (h))
(unify '(f (g x) y) '(f y x)) "cycle"
(unify '(f (g x) y) '(f y (g x))) (f (g x) (g x))
(unify '(f (g x) y) '(f y z)) (f (g x) (g x)) 

(define unify #f)
(let ()
;; occurs? returns true if and only if u occurs in v
(define occurs?
(lambda (u v)
(and (pair? v)

(let f ((l (cdr v)))
(and (pair? l)

(or (eq? u (car l))
(occurs? u (car l))
(f (cdr l)))))))) 

;; sigma returns a new substitution procedure extending s by
;; the substitution of u with v
(define sigma
(lambda (u v s)
(lambda (x)
(let f ((x (s x)))
(if (symbol? x)

(if (eq? x u) v x)
(cons (car x) (map f (cdr x)))))))) 

;; try-subst tries to substitute u for v but may require a
;; full unification if (s u) is not a variable, and it may
;; fail if it sees that u occurs in v.
(define try-subst
(lambda (u v s ks kf)
(let ((u (s u)))
(if (not (symbol? u))

(uni u v s ks kf)
(let ((v (s v)))
(cond
((eq? u v) (ks s))
((occurs? u v) (kf "cycle"))
(else (ks (sigma u v s))))))))) 

;; uni attempts to unify u and v with a continuation-passing
;; style that returns a substitution to the success argument
;; ks or an error message to the failure argument kf. The
;; substitution itself is represented by a procedure from
;; variables to terms.
(define uni
(lambda (u v s ks kf)
(cond
((symbol? u) (try-subst u v s ks kf))
((symbol? v) (try-subst v u s ks kf))
((and (eq? (car u) (car v))

(= (length u) (length v)))
(let f ((u (cdr u)) (v (cdr v)) (s s))
(if (null? u)

(ks s)
(uni (car u)

(car v)
s



(lambda (s) (f (cdr u) (cdr v) s))
kf))))

(else (kf "clash"))))) 

;; unify shows one possible interface to uni, where the initial
;; substitution is the identity procedure, the initial success
;; continuation returns the unified term, and the initial failure
;; continuation returns the error message.
(set! unify
(lambda (u v)
(uni u

v
(lambda (x) x)
(lambda (s) (s u))
(lambda (msg) msg))))) 

Exercise 9.10.1

Modify unify so that it returns its substitution rather than printing the unified term. Apply this 
substitution to both input terms to verify that it returns the same result for each. 

Exercise 9.10.2

As mentioned above, substitutions on a term are performed sequentially, requiring one 
entire pass through the input expression for each substituted variable. Represent the 
substitution differently so that only one pass through the expression need be made. Make 
sure that substitutions are performed not only on the input expression but also on any 
expressions you insert during substitution. 

Exercise 9.10.3

Extend the continuation-passing style unification algorithm into an entire continuation-
passing style logic programming system. 

Section 9.11. Multitasking with Engines

Engines are a high-level process abstraction supporting timed preemption [8,12]. Engines 
may be used to simulate multiprocessing, implement light-weight threads, implement 
operating system kernels, and perform nondeterministic computations. The engine 
implementation is one of the more interesting applications of continuations in Scheme. 

An engine is created by passing a thunk (procedure of no arguments) to make-engine. The 
body of the thunk is the computation to be performed by the engine. An engine itself is a 
procedure of three arguments: 

1. ticks, a positive integer that specifies the amount of fuel to be given to the engine. 
An engine executes until this fuel runs out or until its computation finishes. 

2. complete, a procedure of two arguments that specifies what to do if the computation 
finishes. Its arguments will be the amount of fuel left over and the result of the 
computation. 



3. expire, a procedure of one argument that specifies what to do if the fuel runs out 
before the computation finishes. Its argument will be a new engine capable of 
continuing the computation from the point of interruption. 

When an engine is applied to its arguments, it sets up a timer to fire in ticks time units. If 
the engine computation completes before the timer goes off, the system invokes complete, 
passing it the number of ticks left over and the value of the computation. If, on the other 
hand, the timer goes off before the engine computation completes, the system creates a 
new engine from the continuation of the interrupted computation and passes this engine to 
expire. complete and expire are invoked in the continuation of the engine invocation. 

The following example creates an engine from a trivial computation, 3, and gives the 
engine 10 ticks. 

(define eng
(make-engine
(lambda () 3))) 

(eng 10
(lambda (ticks value) value)
(lambda (x) x)) 3 

It is often useful to pass list as the complete procedure to an engine, causing the engine to 
return a list of the ticks remaining and the value if the computation completes. 

(eng 10
list
(lambda (x) x)) (9 3) 

In the example above, the value was 3 and there were 9 ticks left over, i.e., it took only one 
unit of fuel to evaluate 3. (The fuel amounts given here are for illustration only. The actual 
amount may differ.) 

Typically, the engine computation does not finish in one try. The following example 
displays the use of an engine to compute the 10th Fibonacci number (see Section 3.2) in 
steps. 

(define fibonacci
(lambda (n)
(if (< n 2)

n
(+ (fibonacci (- n 1))
(fibonacci (- n 2)))))) 

(define eng
(make-engine
(lambda ()
(fibonacci 10)))) 

(eng 50
list
(lambda (new-eng)
(set! eng new-eng)
"expired")) "expired" 

(eng 50



list
(lambda (new-eng)
(set! eng new-eng)
"expired")) "expired" 

(eng 50
list
(lambda (new-eng)
(set! eng new-eng)
"expired")) "expired" 

(eng 50
list
(lambda (new-eng)
(set! eng new-eng)
"expired")) (23 55) 

Each time the engine's fuel ran out, the expire procedure assigned eng to the new engine. 
The entire computation required four allotments of 50 ticks to complete; of the last 50 it 
used all but 23. Thus, the total amount of fuel used was 177 ticks. This leads us to the 
following procedure, mileage, which uses engines to "time" a computation. 

(define mileage
(lambda (thunk)
(let loop ((eng (make-engine thunk)) (total-ticks 0))
(eng 50
(lambda (ticks value)
(+ total-ticks (- 50 ticks)))

(lambda (new-eng)
(loop new-eng (+ total-ticks 50))))))) 

(mileage (lambda () (fibonacci 10))) 177 

The choice of 50 for the number of ticks to use each time is arbitrary, of course. It might 
make more sense to pass a much larger number, say 10000, in order to reduce the 
number of times the computation is interrupted. 

The next procedure, round-robin, could be the basis for a simple time-sharing operating 
system. round-robin maintains a queue of processes (a list of engines) and cycles through 
the queue in a round-robin fashion, allowing each process to run for a set amount of time. 
round-robin returns a list of the values returned by the engine computations in the order that 
the computations complete. 

(define round-robin
(lambda (engs)
(if (null? engs)

'()
((car engs) 1
(lambda (ticks value)
(cons value (round-robin (cdr engs))))

(lambda (eng)
(round-robin
(append (cdr engs) (list eng)))))))) 

Assuming the amount of computation corresponding to one tick is constant, the effect of 
round-robin is to return a list of the values sorted from the quickest to complete to the 
slowest to complete. Thus, when we call round-robin on a list of engines, each computing 



one of the Fibonacci numbers, the output list is sorted with the earlier Fibonacci numbers 
first, regardless of the order of the input list. 

(round-robin
(map (lambda (x)

(make-engine
(lambda ()
(fibonacci x))))

'(4 5 2 8 3 7 6 2))) (1 1 2 3 5 8 13 21) 

More interesting things could happen if the amount of fuel varied each time through the 
loop. In this case, the computation would be nondeterministic, i.e., the results would vary 
from call to call. 

The following syntactic form, por (parallel-or), returns the first of its expressions to 
complete with a true value. por is implemented with the procedure first-true, which is similar 
to round-robin but quits when any of the engines completes with a true value. If all of the 
engines complete, but none with a true value, first-true (and hence por) returns #f. 

(define-syntax por
(syntax-rules ()
((_ x ...)
(first-true
(list (make-engine (lambda () x)) ...))))) 

(define first-true
(lambda (engs)
(if (null? engs)

#f
((car engs) 1
(lambda (ticks value)
(or value (first-true (cdr engs))))

(lambda (eng)
(first-true
(append (cdr engs) (list eng)))))))) 

Even if one of the expressions is an infinite loop, por can still finish (as long as one of the 
other expressions completes and returns a true value). 

(por 1 2) 1
(por ((lambda (x) (x x)) (lambda (x) (x x)))

(fibonacci 10)) 55 

The first subexpression of the second por expression is nonterminating, so the answer is 
the value of the second subexpression. 

Let's turn to the implementation of engines. Any preemptive multitasking primitive must 
have the ability to interrupt a running process after a given amount of computation. This 
ability is provided by a primitive timer interrupt mechanism in some Scheme 
implementations. We will construct a suitable one here. 

Our timer system defines three procedures: start-timer, stop-timer, and decrement-timer, which 
can be described operationally as follows. 



• (start-timer ticks handler) initializes the timer to ticks and installs handler as the 
procedure to be invoked (without arguments) when the timer expires. 

• (stop-timer) resets the timer and returns the number of ticks remaining. 
• (decrement-timer) decrements the timer by one tick if the timer is on, i.e., if it is not 

zero. When the timer reaches zero, decrement-timer invokes the saved handler. If the 
timer has already reached zero, decrement-timer returns without changing the timer. 

Code to implement these procedures is given along with the engine implementation below. 

Using the timer system requires inserting calls to decrement-timer in appropriate places. 
Consuming a timer tick on entry to a procedure usually provides a sufficient level of 
granularity. This can be accomplished by using timed-lambda as defined below in place of 
lambda. timed-lambda simply invokes decrement-timer before executing the expressions in its 
body. 

(define-syntax timed-lambda
(syntax-rules ()
((_ formals exp1 exp2 ...)
(lambda formals (decrement-timer) exp1 exp2 ...)))) 

It may be useful to redefine named let and do to use timed-lambda as well, so that recursions 
expressed with these constructs are timed. If you use this mechanism, do not forget to use 
the timed versions of lambda and other forms in code run within an engine, or no ticks will 
be consumed. 

Now that we have a suitable timer, we can implement engines in terms of the timer and 
continuations. We use call/cc in two places in the engine implementation: (1) to obtain the 
continuation of the computation that invokes the engine so that we can return to that 
continuation when the engine computation completes or the timer expires, and (2) to 
obtain the continuation of the engine computation when the timer expires so that we can 
return to this computation if the newly created engine is subsequently run.

The state of the engine system is contained in two variables local to the engine system: do-
complete and do-expire. When an engine is started, the engine assigns to do-complete and do-
expire procedures that, when invoked, return to the continuation of the engine's caller to 
invoke complete or expire. The engine starts (or restarts) the computation by invoking the 
procedure passed as an argument to make-engine with the specified number of ticks. The 
ticks and the local procedure timer-handler are then used to start the timer. 

Suppose that the timer expires before the engine computation completes. The procedure 
timer-handler is then invoked. It initiates a call to start-timer but obtains the ticks by calling 
call/cc with do-expire. Consequently, do-expire is called with a continuation that, if invoked, will 
restart the timer and continue the interrupted computation. do-expire creates a new engine 
from this continuation and arranges for the engine's expire procedure to be invoked with 
the new engine in the correct continuation. 

If, on the other hand, the engine computation completes before the timer expires, the timer 
is stopped and the number of ticks remaining is passed along with the value to do-complete; 
do-complete arranges for the engine's complete procedure to be invoked with the ticks and 
value in the correct continuation. 



Let's discuss a couple of subtle aspects to this code. The first concerns the method used 
to start the timer when an engine is invoked. The code would apparently be simplified by 
letting new-engine start the timer before it initiates or resumes the engine computation, 
instead of passing the ticks to the computation and letting it start the timer. Starting the 
timer within the computation, however, prevents ticks from being consumed prematurely. If 
the engine system itself consumes fuel, then an engine provided with a small amount of 
fuel may not progress toward completion. (It may, in fact, make negative progress.) If the 
software timer described above is used, this problem is actually avoided by compiling the 
engine-making code with the untimed version of lambda. 

The second subtlety concerns the procedures created by do-complete and do-expire and 
subsequently applied by the continuation of the call/cc application. It may appear that do-
complete could first invoke the engine's complete procedure, then pass the result to the 
continuation (and similarly for do-expire) as follows: 

(escape (complete value ticks)) 

This would result in improper treatment of tail recursion, however. The problem is that the 
current continuation would not be replaced with the continuation stored in escape until the 
call to the complete procedure returns. Consequently, both the continuation of the running 
engine and the continuation of the engine invocation could be retained for an indefinite 
period of time, when in fact the actual engine invocation may appear to be tail-recursive. 
This is especially inappropriate because the engine interface encourages use of 
continuation-passing style and hence tail recursion. The round-robin scheduler and first-true
provide good examples of this, since the expire procedure in each invokes engines tail-
recursively. 

We maintain proper treatment of tail recursion by arranging for do-complete and do-expire to 
escape from the continuation of the running engine before invoking the complete or expire
procedures. Since the continuation of the engine invocation is a procedure application, 
passing it a procedure of no arguments results in application of the procedure in the 
continuation of the engine invocation. 

(define start-timer #f)
(define stop-timer #f)
(define decrement-timer #f)
(let ((clock 0) (handler #f))
(set! start-timer
(lambda (ticks new-handler)
(set! handler new-handler)
(set! clock ticks)))

(set! stop-timer
(lambda ()
(let ((time-left clock))
(set! clock 0)
time-left)))

(set! decrement-timer
(lambda ()
(if (> clock 0)

(begin
(set! clock (- clock 1))
(if (= clock 0) (handler)))))))

(define make-engine
(let ((do-complete #f) (do-expire #f))



(define timer-handler
(lambda ()
(start-timer (call/cc do-expire) timer-handler)))

(define new-engine
(lambda (resume)
(lambda (ticks complete expire)
((call/cc
(lambda (escape)
(set! do-complete
(lambda (ticks value)
(escape (lambda () (complete ticks value)))))

(set! do-expire
(lambda (resume)
(escape (lambda ()

(expire (new-engine resume))))))
(resume ticks)))))))

(lambda (proc)
(new-engine
(lambda (ticks)
(start-timer ticks timer-handler)
(let ((value (proc)))
(let ((ticks (stop-timer)))
(do-complete ticks value)))))))) 

Exercise 9.11.1

It may appear that the nested let expressions in the body of make-engine: 

(let ((value (proc)))
(let ((ticks (stop-timer)))
(do-complete ticks value))) 

could be replaced with: 

(let ((value (proc)) (ticks (stop-timer)))
(do-complete value ticks)) 

Why is this not correct? 

Exercise 9.11.2

It would also be incorrect to replace the nested let expressions discussed in the preceding 
exercise with: 

(let ((value (proc)))
(do-complete value (stop-timer))) 

Why? 

Exercise 9.11.3

Modify the engine implementation to provide a procedure, engine-return, that returns 
immediately from an engine. 

Exercise 9.11.4



Implement the kernel of a small operating system using engines for processes. Processes 
should request services (such as reading input from the user) by evaluating an expression 
of the form (trap 'request). Use call/cc and engine-return from the preceding exercise to 
implement trap. 

Exercise 9.11.5

Write the same operating-system kernel without using engines, building instead from 
continuations and timer interrupts. 

Exercise 9.11.6

This implementation of engines does not allow one engine to call another, i.e., nested 
engines [8]. Modify the implementation to allow nested engines. 



Formal Syntax of Scheme
The formal grammars and accompanying text appearing here describe the syntax of 
Scheme programs and data. Consult the Summary of Forms and Procedures and the 
individual descriptions given in Chapters 4 through 8 for additional details on specific 
syntactic forms. 

Programs and data are formed from tokens, whitespace, and comments. Tokens include 
identifiers, booleans, numbers, characters, strings, open and close parentheses, the open 
vector parenthesis #(, the dotted pair marker . (dot), the quotation marks ' and `, and the 
unquotation marks , and ,@. Whitespace consists of spaces and newline characters and in 
some implementations also consists of other characters, such as tabs or form feeds. A 
comment consists of a semicolon ( ; ) followed by any number of characters up to the next 
line break. A token may be surrounded by any number of whitespace characters and 
comments. Identifiers, numbers, characters, and dot are delimited by whitespace, the start 
of a comment, an open or close parenthesis, or a string quote. 

In the productions below, <empty> stands for the empty string. An item followed by an 
asterisk ( * ) represents zero or more occurrences of the item, and an item followed by a 
raised plus sign ( + ) represents one or more occurrences. Spacing between items within a 
production appears for readability only and should be treated as if it were not present. 

Programs. A program consists of a sequence of definitions and expressions. 

<program> <form>*
<form> <definition> | <expression> 

Definitions. Definitions include variable and syntax definitions, begin forms containing 
zero or more definitions, let-syntax and letrec-syntax forms expanding into zero or more 
definitions, and derived definitions. Derived definitions are syntactic extensions that 
expand into some form of definition. A transformer expression is a syntax-rules form or some 
other expression that produces a transformer. 

<definition> <variable definition>
| <syntax definition>
| (begin <definition>*)
| (let-syntax (<syntax binding>*) <definition>*)
| (letrec-syntax (<syntax binding>*) <definition>*)
| <derived definition>

<variable definition> (define <variable> <expression>)
| (define (<variable> <variable>*) <body>)
| (define (<variable> <variable>* . <variable>) <body>)

<variable> <identifier>
<body> <definition>* <expression>+



<syntax definition> (define-syntax <keyword> <transformer expression>)
<keyword> <identifier>
<syntax binding> (<keyword> <transformer expression>)

Expressions. Expressions include core expressions, let-syntax or letrec-syntax forms 
expanding into a sequence of one or more expressions, and derived expressions. The 
core expressions are self-evaluating constants, variable references, applications, and 
quote, lambda, if, and set! expressions. Derived expressions include and, begin, case, cond, 
delay, do, let, let*, letrec, or, and quasiquote expressions plus syntactic extensions that expand 
into some form of expression. 

<expression> <constant>
| <variable>
| (quote <datum>) | ' <datum>
| (lambda <formals> <body>)
| (if <expression> <expression> <expression>) | (if <expression> <expression>)
| (set! <variable> <expression>)
| <application>
| (let-syntax (<syntax binding>*) <expression>+)

| (letrec-syntax (<syntax binding>*) <expression>+)

| <derived expression>
<constant> <boolean> | <number> | <character> | <string>
<formals> <variable> | (<variable>*) | (<variable>+ . <variable>)
<application> (<expression> <expression>*)

Identifiers. Identifiers may denote variables, keywords, or symbols, depending upon 
context. They are formed from sequences of letters, digits, and special characters. With 
three exceptions, identifiers cannot begin with a character that can also begin a number, 
i.e., they cannot begin with ., +, -, or a digit. The three exceptions are the identifiers ..., +, 
and -. Case is insignificant in symbols so that, for example, newspaper, NewsPaper, and 
NEWSPAPER all represent the same identifier. 

<identifier> <initial> <subsequent>* | + | - | ...
<initial> <letter> | ! | $ | % | & | * | / | : | < | = | > | ? | ~ | _ | ^
<subsequent> <initial> | <digit> | . | + | -
<letter> a | b | ... | z
<digit> 0 | 1 | ... | 9

Data. Data include booleans, numbers, characters, strings, symbols, lists, and vectors. 
Case is insignificant in the syntax for booleans, numbers, and character names, but it is 
significant in other character constants and in strings. For example, #T is equivalent to #t, 
#E1E3 is equivalent to #e1e3, #X2aBc is equivalent to #x2abc, and #\NewLine is equivalent to 
#\newline; but #\A is distinct from #\a and "String" is distinct from "string". 



<datum> <boolean> | <number> | <character> | <string> | <symbol> | <list> | <vector>
<boolean> #t | #f
<number> <num 2> | <num 8> | <num 10> | <num 16>
<character> #\ <any character> | #\newline | #\space
<string> " <string character>* "
<string character> \" | \\ | <any character other than " or \>
<symbol> <identifier>
<list> (<datum>*) | (<datum>+ . <datum>) | <abbreviation>
<abbreviation> ' <datum> | ` <datum> | , <datum> | ,@ <datum>
<vector> #(<datum>* )

Numbers. Numbers can appear in one of four radixes: 2, 8, 10, and 16, with 10 the 
default. The first several of productions below are parameterized by the radix, r, and each 
represents four productions, one for each of the four possible radixes. Numbers that 
contain radix points or exponents are constrained to appear in radix 10, so <decimal r> is 
valid only when r is 10. 

<num r> <prefix r> <complex r>
<complex r> <real r> | <real r> @ <real r>

| <real r> + <imag r> | <real r> - <imag r>
| + <imag r> | - <imag r>

<imag r> i | <ureal r> i
<real r> <sign> <ureal r>
<ureal r> <uinteger r> | <uinteger r> / <uinteger r> | <decimal r>
<uinteger r> <digit r>+ #*
<prefix r> <radix r> <exactness> | <exactness> <radix r>
<decimal 10> <uinteger 10> <exponent>

| . <digit 10>+ #* <suffix>
| <digit 10>+ . <digit 10>* #* <suffix>
| <digit 10>+ #+ . #* <suffix>

<suffix> <empty> | <exponent>
<exponent> <exponent marker> <sign> <digit 10>+

<exponent marker> e | s | f | d | l
<sign> <empty> | + | -
<exactness> <empty> | #i | #e
<radix 2> #b

<radix 8> #o

<radix 10> <empty> | #d
<radix 16> #x

<digit 2> 0 | 1



<digit 8> 0 | 1 | ... | 7
<digit 10> <digit>
<digit 16> <digit> | a | b | c | d | e | f



Summary of Forms
The table that follows summarizes the Scheme syntactic forms and procedures described 
in Chapters 4 through 8. It shows the category of the form and the page number where it is 
defined. The category states whether the form describes a syntactic form or a procedure. 

All page numbers appearing here refer to the printed version of this book and also serve 
as hypertext links to the corresponding locations in the electronic version of this book. 

Form Category Page

'obj syntax 83
(* num  ...) procedure 125
(+ num ...) procedure 125
,obj syntax 83
,@obj syntax 83
(- num1) procedure 125
(- num1 num2 num3 ...) procedure 125
(/ num1) procedure 126
(/ num1 num2 num3 ...) procedure 126
(< real1 real2 real3 ...) procedure 124
(<= real1 real2 real3 ...) procedure 124
(= num1 num2 num3 ...) procedure 124
(> real1 real2 real3 ...) procedure 124
(>= real1 real2 real3 ...) procedure 124
`obj syntax 83
(abs real) procedure 129
(acos num) procedure 133
(and exp ...) syntax 87
(angle num) procedure 132
(append list ...) procedure 119
(apply procedure obj ... list) procedure 85
(asin num) procedure 133
(assoc obj alist) procedure 121
(assq obj alist) procedure 121
(assv obj alist) procedure 121
(atan num) procedure 134
(atan real1 real2) procedure 134



(begin exp1 exp2 ...) syntax 85
(boolean? obj) procedure 113
(bound-identifier=? identifier1 identifier2) procedure 170
(caaaar pair) procedure 117
(caaadr pair) procedure 117
(caaar pair) procedure 117
(caadar pair) procedure 117
(caaddr pair) procedure 117
(caadr pair) procedure 117
(caar pair) procedure 117
(cadaar pair) procedure 117
(cadadr pair) procedure 117
(cadar pair) procedure 117
(caddar pair) procedure 117
(cadddr pair) procedure 117
(caddr pair) procedure 117
(cadr pair) procedure 117
(call-with-current-continuation procedure) procedure 93
(call-with-input-file filename proc) procedure 152
(call-with-output-file filename proc) procedure 156
(call-with-values producer consumer) procedure 99
(call/cc procedure) procedure 93
(car pair) procedure 116
(case exp0 clause1 clause2 ...) syntax 89
(cdaaar pair) procedure 117
(cdaadr pair) procedure 117
(cdaar pair) procedure 117
(cdadar pair) procedure 117
(cdaddr pair) procedure 117
(cdadr pair) procedure 117
(cdar pair) procedure 117
(cddaar pair) procedure 117
(cddadr pair) procedure 117
(cddar pair) procedure 117
(cdddar pair) procedure 117
(cddddr pair) procedure 117
(cdddr pair) procedure 117
(cddr pair) procedure 117
(cdr pair) procedure 117



(ceiling real) procedure 128
(char->integer char) procedure 138
(char-alphabetic? char) procedure 136
(char-ci<=? char1 char2 char3 ...) procedure 136
(char-ci<? char1 char2 char3 ...) procedure 136
(char-ci=? char1 char2 char3 ...) procedure 136
(char-ci>=? char1 char2 char3 ...) procedure 136
(char-ci>? char1 char2 char3 ...) procedure 136
(char-downcase char) procedure 137
(char-lower-case? letter) procedure 137
(char-numeric? char) procedure 136
(char-ready?) procedure 154
(char-ready? input-port) procedure 154
(char-upcase char) procedure 137
(char-upper-case? letter) procedure 137
(char-whitespace? char) procedure 137
(char<=? char1 char2 char3 ...) procedure 135
(char<? char1 char2 char3 ...) procedure 135
(char=? char1 char2 char3 ...) procedure 135
(char>=? char1 char2 char3 ...) procedure 135
(char>? char1 char2 char3 ...) procedure 135
(char? obj) procedure 115
(close-input-port input-port) procedure 152
(close-output-port output-port) procedure 155
(complex? obj) procedure 114
(cond clause1 clause2 ...) syntax 88
(cons obj1 obj2) procedure 116
constant syntax 83
(cos num) procedure 133
(current-input-port) procedure 151
(current-output-port) procedure 155
(datum->syntax-object template-identifier obj) procedure 174
(define var exp) syntax 76
(define (var0 var1 ...) exp1 exp2 ...) syntax 76
(define (var0 . varr) exp1 exp2 ...) syntax 76
(define (var0 var1 var2 ... . varr) exp1 exp2 ...) syntax 76
(define-syntax keyword exp) syntax 162
(delay exp) syntax 97
(denominator rat) procedure 131



(display obj) procedure 157
(display obj output-port) procedure 157
(do ((var val update) ...) (test res ...) exp ...) syntax 90
(dynamic-wind in body out) procedure 94
(eof-object? obj) procedure 154
(eq? obj1 obj2) procedure 107
(equal? obj1 obj2) procedure 111
(eqv? obj1 obj2) procedure 109
(eval obj) procedure 103
(even? int) procedure 127
(exact->inexact num) procedure 130
(exact? num) procedure 124
(exp num) procedure 133
(expt num1 num2) procedure 130
(floor real) procedure 128
(fluid-let-syntax ((keyword exp) ...) form1 form2 ...) syntax 164
(for-each procedure list1 list2 ...) procedure 92
(force promise) procedure 97
(free-identifier=? identifier1 identifier2) procedure 170
(gcd int ...) procedure 129
(generate-temporaries list) procedure 175
(identifier? obj) procedure 170
(if test consequent alternative) syntax 86
(if test consequent) syntax 86
(imag-part num) procedure 131
(inexact->exact num) procedure 130
(inexact? num) procedure 124
(input-port? obj) procedure 151
(integer->char int ) procedure 139
(integer? obj) procedure 114
(lambda formals exp1 exp2 ...) syntax 73
(lcm int ...) procedure 129
(length list) procedure 118
(let ((var val) ...) exp1 exp2 ...) syntax 74
(let name ((var val) ...) exp1 exp2 ...) syntax 89
(let* ((var val) ...) exp1 exp2 ...) syntax 75
(let-syntax ((keyword exp) ...) form1 form2 ...) syntax 163
(letrec ((var val) ...) exp1 exp2 ...) syntax 76
(letrec-syntax ((keyword exp) ...) form1 form2 ...) syntax 163



(list obj ...) procedure 118
(list->string list) procedure 144
(list->vector list) procedure 146
(list-ref list n) procedure 118
(list-tail list n) procedure 119
(list? obj) procedure 118
(load filename) procedure 158
(log num) procedure 133
(magnitude num) procedure 132
(make-polar real1 real2) procedure 132
(make-rectangular real1 real2) procedure 132
(make-string n) procedure 141
(make-string n char) procedure 141
(make-vector n) procedure 145
(make-vector n obj) procedure 145
(map procedure list1 list2 ...) procedure 92
(max real1 real2 ...) procedure 129
(member obj list) procedure 120
(memq obj list) procedure 120
(memv obj list) procedure 120
(min real1 real2 ...) procedure 129
(modulo int1 int2) procedure 128
(negative? real) procedure 127
(newline) procedure 158
(newline output-port) procedure 158
(not obj) procedure 86
(null? obj) procedure 113
(number->string num) procedure 134
(number->string num radix) procedure 134
(number? obj) procedure 114
(numerator rat) procedure 131
(odd? int) procedure 127
(open-input-file filename) procedure 151
(open-output-file filename) procedure 155
(or exp ...) syntax 87
(output-port? obj) procedure 155
(pair? obj) procedure 113
(peek-char) procedure 153
(peek-char input-port) procedure 153



(positive? real) procedure 126
(procedure exp ...) syntax 84
(procedure? obj) procedure 115
(quasiquote obj) syntax 83
(quote obj) syntax 83
(quotient int1 int2) procedure 127
(rational? obj) procedure 114
(rationalize real1 real2) procedure 131
(read) procedure 153
(read input-port) procedure 153
(read-char) procedure 153
(read-char input-port) procedure 153
(real-part num) procedure 131
(real? obj) procedure 114
(remainder int1 int2) procedure 127
(reverse list) procedure 120
(round real) procedure 128
(set! var exp) syntax 78
(set-car! pair obj) procedure 117
(set-cdr! pair obj) procedure 117
(sin num) procedure 133
(sqrt num) procedure 132
(string char ...) procedure 141
(string->list string) procedure 143
(string->number string) procedure 134
(string->number string radix) procedure 134
(string->symbol string) procedure 147
(string-append string ...) procedure 142
(string-ci<=? string1 string2 string3 ...) procedure 141
(string-ci<? string1 string2 string3 ...) procedure 141
(string-ci=? string1 string2 string3 ...) procedure 141
(string-ci>=? string1 string2 string3 ...) procedure 141
(string-ci>? string1 string2 string3 ...) procedure 141
(string-copy string) procedure 142
(string-fill! string char) procedure 143
(string-length string) procedure 141
(string-ref string n) procedure 142
(string-set! string n char) procedure 142
(string<=? string1 string2 string3 ...) procedure 140



(string<? string1 string2 string3 ...) procedure 140
(string=? string1 string2 string3 ...) procedure 140
(string>=? string1 string2 string3 ...) procedure 140
(string>? string1 string2 string3 ...) procedure 140
(string? obj) procedure 115
(substring string start end) procedure 143
(symbol->string symbol) procedure 148
(symbol? obj) procedure 115
(syntax template) syntax 169
(syntax-case exp (literal ...) clause ...) syntax 168
(syntax-object->datum obj) procedure 174
(syntax-rules (literal ...) clause ...) syntax 164
(tan num) procedure 133
(transcript-off) procedure 158
(transcript-on filename) procedure 158
(truncate real) procedure 128
(unquote obj) syntax 83
(unquote-splicing obj) syntax 83
(values obj ...) procedure 99
variable syntax 73
(vector obj ...) procedure 145
(vector->list vector) procedure 146
(vector-fill! vector obj) procedure 146
(vector-length vector) procedure 145
(vector-ref vector n) procedure 145
(vector-set! vector n obj) procedure 145
(vector? obj) procedure 115
(with-input-from-file filename thunk) procedure 153
(with-output-to-file filename thunk) procedure 157
(with-syntax ((pattern val) ...) exp1 exp2 ...) syntax 172
(write obj) procedure 157
(write obj output-port) procedure 157
(write-char char) procedure 157
(write-char char output-port) procedure 157
(zero? num) procedure 126


