Part 1
Functional programming

Chapter 1 Basic concepts

Chapter 2 Advanced concepts: Miranda

2 FUNCTIONAL PROGRAMMING

This part serves as an introduction to functional programming.

Since there are many different functional programming languages,
the first chapter focuses on the basic concepts most functional lan-
guages have in common. By first focusing on these concepts it will be
relatively easy to master the basics of any functional language with its
own syntactical sugar. The concrete examples in Chapter 1 are given in
asubset of Miranda.

In Chapter 2 the more sophisticated features of Miranda are shown
to demonstrate the expressive power and notational elegance of a spe-
cific state-of-the-art functional programming language. More elaborate
program examples are given with modest suggestions for a functional
programming methodology.

For readers who want to study the art of functional programmingin
more detail good introductory books are available (e.g. Bird and
Wadler, 1988).

Chapter 1
Basic concepts

11
1.2
13
1.4

15

Why functional programming? 1.6 Data structures

Functions in mathematics 1.7 Higher order functions and

A functional program currying

The evaluation of a functional 1.8 Correctness proof of functional
program programs

Functions with guarded 1.9 Program examples

equations and patterns

This chapter first explains the advantages and drawbacks of a func-
tional programming style compared with the commonly used classical
imperative style of programming (Section 1.1). The difference in objec-
tives between a mathematical specification of a function and a function
specification in a functional programming language is explained in Sec-
tion 1.2.

This is followed by an overview of the basic concepts of most
functional programming languages (Sections 1.3-1.7). These concepts
are explained using a concrete functional programming language: Mi-
randa (Turner, 1985). Functions can be defined by a single equation
(Section 1.3) as well as by more than one equation using guards and
patterns to discriminate between the alternative equations (Section
1.5). Other topics that are covered are: higher order functions and cur-
rying (Section 1.7), lists as basic data structures (Section 1.6) and (lazy
as well as eager) function evaluation (Section 1.4).

Traditional proof techniques like symbolic substitution and mathe-
matical induction can be used to prove correctness of functional pro-
grams (Section 1.8). Finally, some small example programs are pre-
sented in Section 1.9.

4 BASIC CONCEPTS

1.1 Why functional programming?

Imagine the availability of perfect computer systems: software and
hardware systems that are user-friendly, cheap, reliable and fast. Imag-
ine that programs can be specified in such a way that they are not only
very understandable but that their correctness can easily be proven as
well. Moreover, the underlying hardware ideally supports these software
systems and superconduction in highly parallel architectures makes it
possible to get an answer to our problems at dazzling speed.

WEell, in reality people always have problems with their computer
systems. Actually, one does not often find a bug-free piece of software
or hardware. We have learned to live with the software crisis, and have
to accept that most software products are unreliable, unmanageable and
unprovable. We spend money on a new release of a piece of softwarein
which old bugs are removed and new ones are introduced. Hardware
systems are generally much more reliable than software systems, but
most hardware systems appear to be designed in a hurry and even well-
established processors contain errors.

Software and hardware systems clearly have become very com-
plex. A good, orthogonal design needs many person years of research
and development, while at the same time pressure increases to put the
product on the market. So it is understandable that these systems con-
tain bugs. The good news is that hardware becomes cheaper and
cheaper (thanksto very large scale integration) and speed can be bought
for prices one never imagined. But the increase of processing power
automatically leads to an increase of the use of that power with an in-
creasing complexity of the software as a result. So computers are never
fast enough, while the complexity of the systems is growing enor-
mously.

The two key problems that the computer science community has to
solve are:

How can we, at low cost, make large software systems that remain
reliable and user-friendly?

How can weincrease processing power at low cost?

Researchers are looking for solutions to these problems: by investigat-
ing software engineering techniques, to deal with problems related to
the management of software projects and the construction and mainte-
nance of software; by designing new proof techniques to tackle the
problems in proving the correctness of systems; by developing program
transformation techniques, to transform the specification of a problem
into a program that solves it; and by designing new (parallel) computer
architectures using many processors (thousands or more). In the mean
time the quest for revolutionary new technologies (e.g. optical chips,
superconduction) is always going on.

WHY FUNCTIONAL PROGRAMMING? 5

Another approach is based on the idea that the problems mentioned
above are fundamental problems that cannot be solved unless a totally
different approach is used and hardware and software are designed with
acompletely different model of computation in mind.

1.1.1 An imperative programming style

Most computer programs are written in an imper ative pr ogramming
language in which algorithms are expressed by a sequence of com-
mands. These languages, such as FORTRAN, C, Algol, COBOL, PL/1
and Pascal, are originally deduced from (and form an abstraction of) the
computer architectures they are running on (see Figure 1.1). These com-
puter architectures, although different in detail, are all based on the
same architecture: the Von Neumann computer ar chitecture (Burks et
al., 1946). The Von Neumann computer architecture is based on a
mathematical model of computation proposed by Turing in 1937: the
Turing machine.

main memory
O
abstraction global data
central + i +
pro=Esing mpilation
unit machine . comp sequence of
instructions commands
g
Von Neumann architecture imperative program
Figure 1.1 Imperative programming and the Von Neumann computer

architecture.

The great advantage of this model and the corresponding architec-
ture is that they are extremely simple. The Von Neumann architecture
consists of a piece of memory that contains information that can be read
and changed by a central processing unit (the CPU). Conceptually there
are two kinds of information: program instructions in the form of ma-
chine code, information that is interpreted by the CPU and that controls
the computation in the computer; and data, information that is manipu-
lated by the program. This simple concept has made it possible to make
efficient realizations in hardware at arelatively low cost.

In the beginning of the computer era, the ‘high-level’ imperative
programming languages were designed to provide a notation to express
computations in a machine-independent way. Later on, one recognized
the importance of expressing computations such that programs are

6 BASIC CONCEPTS

understandable for the human being and their correctness can be proven.
It became clear that, in order to make it possible to reason about pro-
grams, not every machine instruction should have a direct equivalent in
the high-level programming language. For instance, it is common
knowledge that with the use of GOTO statements, which are the direct
abstraction of the branch and jump instructions that are available on any
computer, programs can be written in such a way that reasoning about
them is almost impossible (Dijkstra, 1968). We strongly believe that a
similar kind of problem is caused by the assignment statement.

Consider the following example written in an imperative programming style:
BOOLEAN even := TRUE;

PROCEDURE calculate (INTEGER value) : INTEGER;
BEGIN

even := NOT even;

IF even

THEN value + 1

ELSE value + 2

ENDIF
END;

print(calculate (6));
print(calculate (6));

Both print statements in this program are syntactically the same. Still they
may produce different results. Clearly either the value 7 or 8 is printed in both
cases, but the exact value printed depends on the number of times the proce-
dure calculate is called. The result returned by the procedure not only depends
on the actual value of its argument, but also on the value the global boolean
has at that particular moment. This value is ‘secretly’ changed in each proce-
dure call. Such side-effects cause the result of a procedure call to be context
dependent. Results become very hard to predict when, in a large program,
global variables are changed al over the place.

One of the most important drawbacks of an imperative program-
ming style is that an imperative program consists of a sequence of
commands of which the dynamic behaviour must be known to under-
stand how such a program works. The assignment causes problems be-
cause it changes the value (and often even the meaning) of a variable.
Owing to side-effects it can happen that evaluating the same expression
in succession produces different answers. Reasoning about the correct-
ness of an imperative program is therefore very difficult.

WHY FUNCTIONAL PROGRAMMING? 7

Furthermore, because of the command sequence, algorithms are
more sequential than is necessary. Therefore it is hard to detect which
parts of the algorithm can or cannot be executed concurrently. Thisisa
pity, since concurrent evaluation seems to be a natural way to increase
execution speed.

A conjecture adopted by many researchers nowadays is that the
software crisis and the speed problem are inherent to the nature of im-
perative programming languages and the underlying model of computa-
tion. Therefore, other styles of programming, such as object oriented,
logical and functional styles of programming are investi gated.

1.1.2 A functional programming style

John Backus (1978) pointed out that the solution for the software prob-
lems has to be found in using a new discipline of programming: a func-
tional programming style instead of an imperative one.

In a functional program the result of a function call is uniquely
determined by the actual values of the function arguments. No assign-
ments are used, so no side-effects are possible. As a consequence, it
makes no difference where and under what conditions a function is
called. The result of afunction will, under all conditions, be determined
solely by the value of its arguments. For instance, in the program below
the value printed will be 42 in both cases.

FUNCTION increment (INTEGER value) : INTEGER;
BEGIN

value + 1
END;

print(increment (41));
print(increment (41));

It is much easier to reason about the result produced by a function that
has no side-effects than about the result of an imperative procedure call
with side-effects (see also Section 1.8).

Advantages of functional programming languages

So perhaps a functional programming style is important and side-
effects, and hence the assignment statement, should be abandoned. But
why should we use a functional programming language? Is it not pos-
sible to use the familiar languages? The common imperative languages
also have functions, so why not restrict ourselves and only use the func-
tional subset of for instance C, Algol or Modula2?

8 BASIC CONCEPTS

WEell, one can use the functional subset of imperative languages
(i.e. only using functions and leaving out the assignment), but then one
Is deprived of the expressive power of the new generation of functional
languages that treat functions as ‘first class citizens'. In most imperative
languages functions can only be used restrictively. An arbitrary func-
tion cannot be passed as an argument to a function nor yielded as result.

For instance, the function twice takes a function and an argument, applies the
function ‘twice’ to the argument and yields the result that again might be a
function. The function twice can be used in various ways, e.g. by applying the
result again as a function to respectively one or two arguments, etc.

FUNCTION

twice (f : FUNCTION from ANYTYPE to ANYTYPE, x: ANYTYPE) :
result ANYTYPE;

BEGIN

FF())

END;

print(twice (increment, 0));

print((twice (twice, increment)) (0));

print((twice (twice, twice)) (increment, 0));

print(((twice (twice, twice)) (twice, increment)) (0));

Functions like twice are hard to expressin a classical imperative language.

Functional programming languages have the advantage that they
offer a general use of functions which is not available in classical im-
perative languages. This is a fact of life, not a fundamental problem.
The restricted treatment of functions in imperative languages is due to
the fact that when these languages were designed people simply did not
know how to implement the general use of functions efficiently. It is
also not easy to change the imperative languages afterwards. For in-
stance, the type systems of these languages are not designed to handle
these kinds of function. Also the compilers have to be changed dramati-
cally.

In atraditional imperative language one would probably have severe problems
expressing the type of twice. In a functional language such a function defini-

tion and its application can be expressed and typed in the following way:

twice:: (* ->*) ->* ->* || type definition
twicefx = f(fx) || function definition

?twice increment 0 || function application, yields a number

WHY FUNCTIONAL PROGRAMMING? 9

?twice twice increment 0 || function application, yields a number
?twice twice twice increment 0 || function application, yields a number

Another advantage is that in most modern functional programming
language(s) (FPLs) the functional programming style is guaranteed: the
assignment statement is simply not available (like GOTOs are not avail-
able in decent modern imperative languages). FPLs in which there are
no side-effects or imperative features of any kind are called pure func-
tional languages. Examples of pure functional languages are Miranda,
LML (Augustsson, 1984), HOPE (Burstall et al., 1980), Haskell (Hudak
et al., 1992) and Concurrent Clean (Nocker et al., 1991b). LISP
(McCarthy, 1960) and ML (Harper et al., 1986) are examples of well-
known functional languages which are impure. From now on only pure
aspects of FPLs are considered.

In pure FPLs the programmer can only define functions that com-
pute values uniquely determined by the values of their arguments. The
assignment statement is not available, and nor is the heavily used pro-
gramming notion of a variable as something that holds a value that is
changed from time to time by an assignment. Rather, the variables that
exist in purely functional languages are used in mathematics to name
and refer to a yet unknown constant value. This value can never be al-
tered. In afunctional style a desired computation is expressed in a static
fashion instead of a dynamic one. Due to the absence of side-effects,
program correctness proofs are easier than for imperative languages (see
Section 1.8). Functions can be evaluated in any order, which makes
FPLs suitable for parallel evaluation (see Section 1.4). Furthermore, the
guaranteed absence of side-effects enables certain kinds of analysis of a
program, for example strictness analysis (see Chapter 7) and unigueness
analysis (see Chapter 8).

Besides the full availability of functions, the new generation func-
tional languages also offer an elegant, user-friendly notation. Patterns
and guards provide the user with simple access to complex data struc-
tures; basically one does not have to worry about memory management
any more. Incorrect access of data structures is impossible. Functional
programs are in general much shorter than their conventional counter-
parts and thus in principle easier to enhance and maintain.

The question arises, is it possible to express any possible computa-
tion by using pure functions only? Fortunately, this question has already
been answered years ago. The concept of afunction is one of the funda-
mental notions in mathematics. One of the greatest advantages of func-
tional languages is that they are based on a sound and well-understood
mathematical model, the A-calculus (Church, 1932; 1933). One could
say that functional languages are sugared versions of this calculus. The
A-calculus was introduced at approximately the same time as the Turing
model (Turing, 1937). Church’s thesis (Church, 1936) states that the

10 BASIC CONCEPTS

class of effectively computable functions, i.e. the functions that intu-
itively can be computed, is the same as the class of functions that can be
defined in the A-calculus. Turing formalized machine computability and
showed that the resulting notion of Turing computability is equivalent to
A-definability. So the power of both models is the same. Hence any
computation can be expressed using a functional style only. For more
information on A-calculus we refer to Barendregt (1984).

Disadvantages of functional programming languages

The advantages mentioned above are very important. But although
functional languages are being used more frequently, in particular as a
language for rapid prototyping and as a language in which students
learn how to program, functional languages are not yet commonly used
for general purpose programming. The two main drawbacks lie in the
fields of

« efficiency and
» suitability for applications with a strongly imperative nature.

Firstly, until recently programs written in afunctional language ran
very, very slowly in comparison with their imperative counterparts. The
main problem is that the traditional machine architectures on which
these programs have to be executed are not designed to support func-
tional languages. On these architectures function calls are relatively ex-
pensive, in particular when the lazy evaluation scheme (see Section 1.4)
is used. Our computers are ideally suited for destructive updates as pre-
sent in imperative languages (assignments), but these are conceptually
absent in functional languages. It is therefore not easy to find an effi-
cient compilation scheme. Another big problem is caused by the fact
that for some algorithms, due to the absence of destructive updates, the
time and space complexity can be much worse for a functional program
than for its imperative equivalent. In such a case, to retain the effi-
ciency, program transformations are necessary.

As will be shown in this textbook, by using several new (and old)
compilation techniques, the efficiency of (lazy) functional programs can
nowadays be made acceptable in many (but certainly not all) cases. New
compilation techniques have been developed at several research insti-
tutes. These techniques are quite complex. Commercial compilers are
therefore not widely available yet. This will soon change. Anyhow, in
our opinion, the advantages of functional languages are so important
that some loss of efficiency is quite acceptable. One has to keep in mind
that decades ago we accepted aloss of efficiency when we started to use
high-level imperative languages instead of machine assembly lan-

guages.

WHY FUNCTIONAL PROGRAMMING? 11

Secondly, a very important drawback of functional languages was
that some algorithms could not be expressed elegantly in a functional
programming style. In particular, this seemed to hold for applications
that strongly interact with the environment (interactive programs,
databases, operating systems, process control). But, the problem is
largely caused by the fact that the art of functional programming is still
in development. We had and still have to learn how to express the dif-
ferent kinds of applications elegantly in a functional style. We now
know that strongly interactive applications can be expressed very ele-
gantly in afunctional programming style. One example is the way inter-
active programs that use windows, dialogs, menus and the like can be
specified in Clean (see Chapter 8). Another example is the definition of
the abstract imperative machine given in Chapter 10.

The advantages of a functional programming style are very impor-
tant for the development of reliable software. The disadvantages can be
reduced to an acceptable level. Therefore we strongly believe that one
day functional languages will be used worldwide as general purpose
programming languages.

1.2 Functions in mathematics

Before discussing the basic concepts of most functional languages, we
want to recall the mathematical concept of afunction. In mathematics a
function isamapping from objects of a set called the domain to objects
of aset called co-domain or range (see Figure 1.2).

()
f(xg) = f(xg)

Domain f Range f

Figure 1.2 A function f maps objects x from the domain set to objects
f(x) in the range set.

This mapping need not be defined for all objects in the domain. If the
mapping is defined for an object, this object is mapped to exactly one
object in the range. This object in the range is called the image of the
corresponding object in the domain. If al objects in the domain have an

12 BASIC CONCEPTS

image, the function is called atotal function, otherwise it is called a
partial function. If x is an object in domain A and f is a function de-
fined on domain A, theimage of x is called f(x).

Thetype of a function isdefined asfollows. If x is an object in the
domain A, x is said to be of type A. If y isan object inrange B, y is said
to be of type B. If afunction f maps objects from the domain A to the
range B, fissaid to be of type A —. B, which is pronounced as ‘from A
to B'. Thetypeof f isgeneraly specified as:

f: A.B

In mathematics, there are several ways to define afunction. The type of
afunction can be specified separately from the function definition.

One way to define a function is by explicit enumeration of all ob-
jects in the domain on which the function is defined with their corre-
sponding images. An example of thisis the following partial function
(domain names z and N are used for the domains of integers and natural
numbers).

abs. Z - N
abs(-1) = 1
abs(0) = 0
abs(1) =1

Another way to define functions is by using definitions that consist of
one or more (recursive) equations. For example, with this method the
abs-function above can easily be defined as a total function, applicable
for all objects in the domain. Of course, the functions and operators
used on the right-hand side must be defined on the appropriate domains.

abs. Z - N

abs(n) =n, n>0
=0, n=0
= -n n<0

A function like factorial can be defined as follows:

fac: N - N
fac(n) 1, n=0
n*fac(n-1), n>0

or an aternative definition method is:

fac. N - N
fac(0)
fac(n)

1
n*fac(n-1), n>0

FUNCTIONSIN MATHEMATICS 13

A mathematician would consider the definitions above as very common,
ordinary function definitions. But these examples are also perfect ex-
amples of function definitions in a functional programming language.
Notationally a function definition in a functional language has many
similarities with a function definition in mathematics. However, thereis
an important difference in objective. The objective in a functional lan-
guage is not only to define a function, but also to define a computation
that automatically computes the image (result) of a function when it is
applied to a specific object in its domain (the actual argument of the
function).

Some function definitions, well-defined from a mathematical point
of view, cannot be defined similarly in a functional language, because
the images of some functions are very difficult to compute or even can-
not be computed at all.

Consider, for example, the following function definition:

halting: All_Programs - N
halting(p) = 1, if the execution of p will stop
0, otherwise

The halting function as indicated above is a problem that is not computable,
and therefore an attempt to express it will not produce the desired computa-
tion. Suppose that a function in an FPL would try to calculate the image of the
halting function for an arbitrary program. The only way of doing thisis more
or less running the program. But then the function would simply not terminate
If the argument program does not terminate, in which case the result 0 would
never be produced. For another example, consider:

fFR-RgR-R

f'-6g = 6snx

69" + a’f' = 6.cosx
f(0)=0,f(0)=0,0(00=1,9(0) =1

The equations for f, g and their derivativesf', f ", g and g" are solvable, but it
is not easy to compute such functions.

Some special purpose programming languages are able to calculate
functions by applying specia purpose calculation techniques (symbolic
computation using computer algebra techniques or formula transforma-
tions). But a general purpose functional programming language uses a
very simple model of computation, based on substitution. So when func-
tions are defined in an FPL a computation through substitutions is de-
fined implicitly (see Section 1.4).

14 BASIC CONCEPTS

1.3 A functional program

A program written in a functional language consists of a collection of
function definitions written in the form of recursive equations and an
initial expression that has to be evaluated. From now on a Miranda-
based syntax (see Appendix A) will be used.

1.3.1 Function definitions

A function definition consists of one or more equations. An equation
consists of aleft-hand side, an equals symbol (=) and aright-hand side.

The left-hand side defines the function name and its for mal ar gu-
ments (also called formal parameters). The right-hand side specifies
the function result. It is aso called the function body. This function
body consists of an expression. Such an expression can be a denotation
of some value, or it can be aformal argument, or a function application.

In afunction application a function is applied to an expression,
the actual argument. The application of afunction f to an expression a
Is denoted as f a. So function application is denoted by simple juxtapo-
sition of the function and its argument. An important syntactical con-
vention is that in every expression function application has always the
highest priority (on both sides of the equations). A function definition
can be preceded by its type definition (indicated by post-fixing the
function namewith a‘::’ followed by itstype).

Below are some examples of function definitions (now in Miranda-based no-
tation). In Section 1.6 more complex definitions can be found with more than
one alternative per function and guards or patterns to indicate which alterna-
tive has to be chosen. The || indicates that the rest of the line is acomment.

ident:: num -> num || identisafunction from num to num,
identx = x || theidentity function on numbers
alwaysseven:: num -> num || afunction from num to num,
alwaysseven x = 7 || that yields 7, independent of arg. x
inc:: num -> num || afunction from num to num,

incx = x+1 || that returnsthe value of itsarg. + 1
square:: num -> num || square function

square X = X*X

squareinc:: num -> num || squareincrement of argument
squareinc x = square (inc X)

fac:: num -> num || thefactorial function

facx = cond (x=0) 1 (x * fac (x — 1))

A FUNCTIONAL PROGRAM 15

In the last example cond is a predefined operator with three arguments: a
boolean, a then part and an else part. Its semantics corresponds to a condi-
tional choice in imperative languages.

A formal argument, such as x in the example above, isalso caled a
variable. The word variable is used here in the mathematical sense of
the word that is not to be confused with the use of the word variable in
an imperative language. This variable does not vary. Its scopeislimited
to the equation in which it occurs (whereas the defined function names
have the whole program as scope).

Functions defined as above are called user-defined functions. One
can aso denote and manipulate objects of certain predefined typeswith
given predefined operators. These predefined basic operators can be re-
garded as predefined functions. For mathematical-historical reasons,
and therefore also for user convenience, such primitive functions are of-
ten defined as infix functions or operators. Thisisin contrast to the user-
defined functions that are generally defined as prefix functions.

Examples of predefined types (numbers, booleans, characters), corresponding
to predefined operators (functions), denotation of values (concrete objects) of
these types, and the ‘real-life’ domain with which they can be compared.

Types Operators Denotation of values Comparable with
num + =% 0,1, 34.7,-1.2E15, ... real numbers

bool and, or, ... True, False truth values

char =<, a, 'c, ... characters

1.3.2 The initial expression
The initial expression is the expression whose value has to be calcu-
lated.

For example, in the case that the value of 2 + 3 has to be calculated, the initial
expression 2 + 3 iswritten. But one can also calculate any application of user-
defined functions. squareinc 7.

1.4 The evaluation of a functional program

The execution of afunctional program consists of the evaluation of the
initial expression in the context of the function definitions in the pro-
gram called the environment.

A functional program: a set of function definitions and an initial expression.

ident:: num -> num
identx = x

16 BASIC CONCEPTS

inc:: num -> num
incx = x+1

square:: num -> num
square x = X*X

squareinc:: num -> num
squareinc x = square (inc X)

squareinc 7

The evaluation consists of repeatedly performing reduction or
rewriting steps. In each reduction step (indicated by a“ -") a function
application in the expression is replaced (reduced, rewritten) by the cor-
responding function body (the right-hand side of the equation), substi-
tuting the formal arguments by the corresponding actual arguments. A
(sub)expression that can be rewritten according to some function defini-
tion is caled aredex (reducible expression). The basic idea is that the
reduction process stops when none of the function definitions can be ap-
plied any more (there are no redexes left) and the initial expressionisin
its most simple form, the normal form. This is the result of the func-
tional program that is then printed out.

For instance, given the function definitions above (the environment), the ini-
tial expressions below can be evaluated (reduced) as follows. In the examples
the redex that will be reduced has been underlined.

ident 42 - 42

squareinc 7 = square (inc 7) N square (7 +1)
- square8 - 8*8 - 64

square (1+2) - (1+2)*(1+2) - 3*@1+2) - 3*3 . 9

However, the initial expression may not have anormal form at all.
As a conseguence, the evaluation of such an initial expression will not
terminate. Infinite computations may produce partial results that will be
printed as soon as they are known (see Section 1.6.3).

Example of a non-terminating reduction. Take the following definition:

inf = inf

then the evaluation of the following initial expression will not terminate:

inf- - inf - inf -

THE EVALUATION OF A FUNCTIONAL PROGRAM 17

1.4.1 The order of evaluation

Because there are in general many redexes in the expression, one can
perform rewrite stepsin several orders. The actual order of evaluation is
determined by the reduction strategy which is dependent on the kind
of language being used. There are a couple of important things to know
about the ordering of reduction steps.

Due to the absence of side-effects, the result of a computation does
not depend on the chosen order of reduction (see also Chapter 3). If all
redexes are vanished and the initial expression isin normal form, the re-
sult of the computation (if it terminates) will always be the same: the
normal form is unique.

For instance, one can compute one of the previous expressions in a different
order, but the result isidentical:

square (1+2) - square3 - 3*3 - 9

It is sometimes even possible to rewrite several redexes at the same
time. Thisformsthe basis for parallel evaluation.

Reducing several redexes at the same time:

square(1+2) - (L+2)*(1+2) - 3*3 - 9

However, the order is not completely irrelevant. Some reduction orders
may not lead to the normal form at all. So a computation may not ter-
minate in one particular order while it would terminate when the right
order was chosen (see again Chapter 3).

Example of a non-terminating reduction order. Assume that the following (re-
cursive) functions are defined:

inf = inf
alwayssevenx = 7

Now it is possible to repeatedly choose the ‘wrong’ redex which causes an in-
finite calculation:

alwaysseven inf 5 alwaysseven inf 5 alwaysseven inf -

In this case another choice would lead to termination and to the unique normal
form:

alwaysseven inf - 7

18 BASIC CONCEPTS

The reduction strategy followed depends on the kind of FPL. In some
languages, e.g. LISP, ML and HOPE, the arguments of a function are
always reduced before the function application itself is considered as a
redex. These languages are called eager or strict languages. In most re-
cent FPLs, e.g. Miranda and Haskell, the rewriting is done lazily. In
lazy functional languages the value of a subexpression (redex) is cal-
culated if and only if this value must be known to find the normal form.
The lazy evaluation order will find the normal form if it exists.

[lustrating lazy rewriting:

alwaysseven inf N 7

A more complex example to illustrate lazy evaluation is shown below. The
predefined conditional function demands the evaluation of its first argument to
make a choice between the then and el se parts possible. The equality function
forces evaluation in order to yield the appropriate Boolean value. Multiplica-
tion and subtraction are only possible on numbers; again evaluation is forced.

fac 2

- cond(2=0)1(2*fac(2-1))

—~ cond FALSE 1 (2 *fac (2 —1))

- 2*fac(2-1)

-~ 2*cond (2=1=0)1(2-1)*fac((2-1)-1))
~ 2*cond (L=0)1((2-1)*fac (2 -1) - 1))

-~ 2*cond FALSE 1 ((2—-1)*fac ((2—1) — 1))

- 2*(2=1l)*fac((2-1)-1)

- 2*1*fac((2-1)-1)

- 2*fac((2-1)-1)

-~ 2*cond ((2=-1)-1=0)1(((2-1)-1)*fac ((2-1)-1)-1))
- - 2*1*1 - 2*1 - 2

1.5 Functions with guarded equations and patterns

In the previous section ordinary recursive equations were used to define
a function. But often one needs a function description that depends on
the actual values of the objects in the domain, or one wants to make a
separate description for each subclass of the domain that has to be dis-
tinguished. Of course, a (predefined) function can be used, like cond in
the factorial example in Section 1.3. However, it is much more conve-
nient to use guarded equations or patternsfor such a case analysis.

1.5.1 Guarded equations

The right-hand side of a definition can be a guarded equation. A func-
tion definition using guarded equations consists of a sequence of al-

FUNCTIONS WITH GUARDED EQUATIONS AND PATTERNS 19

ternative equations, each having a guard: an expression yielding a
Boolean result, the textual first alternative for which the corresponding
guard is True being selected. Guards can be preceded by the keyword if.
The guard of the last alternative can be just the keyword otherwise and
the corresponding alternative is chosen if and only if all other guards
evaluate to False. Although it is alowed, it is good programming style
not to use overlapping guards.

Function definitions with guarded equations:
fac:: num -> num

fac n 1, if n=0
n*fac(n-1), ifn>0

abs:: num -> num
absn = n, if n>=0
= —n, otherwise
It is quite possible to define partial functions using guards. When a
function is called with actual parameters that do not satisfy any of the
guards, it is considered to be afatal programming error.

For example, the Fibonacci function below will cause afatal error when it is
called with an argument less than one (the \/-operator denotes the logical OR).

fib:: num -> num
fib n 1, if (n=1)V((n=2)
fib(n-1)+fibb(n-2), ifn>2

The programmer should of course avoid this situation. One way to
avoid it is to specify the domain (type) of a function accurately, in such
away that atotal function is defined on that domain. The type system of
the language should therefore allow the specification of new types or of
subtypes (see Chapter 2). However, an arbitrary accurate specification
of the domain is generally not possible because it leads to undecidable
type systems. Total functions can be accomplished in another way by
adjusting the definition of the partial function. The guards should then
always cover the whole domain the function is defined on. To make this
possible in an easy way most languages are equipped with an error rou-
tine that fitsin any type.

The Fibonacci function above is now changed into atotal function. It will still
yield a run-time error when it is called with an argument less than one. But
now this situation is handled by the programmer and an appropriate error mes-
sage can be given.

20 BASIC CONCEPTS

fib:: num -> num

fib n 1, if (n=1)V(n=2)
fib (n—1) + fib (n - 2), if n>2

error "Fibonacci called with argument less than one", otherwise

1.5.2 Patterns

It is also possible to discriminate between alternative equations by using
patterns on the left-hand side. These patter ns are values (e.g. 0) includ-
ing data constructors (see the next section) or variables. The meaning
of a pattern is that the equation in question is only applicable if the ac-
tual arguments of the function match the pattern. An actual argument
matches a corresponding pattern value if it has the same value. A pat-
tern variable is matched by any actual argument. An equation is only
applicable if al the actual arguments match the corresponding patterns.
Patterns are tried from left to right, equations are tried in textual order:
from top to bottom. When an actual argument is matched against a non-
variable pattern, the argument is evaluated first after which the resulting
value is compared with the specified pattern.

A function definition with patterns:

fac:: num -> num
fac O =1
facn = n*fac(n-1)

0 and n are the patterns of the first two rules (a variable as formal parameter
indicates that it does not matter what the value is). Calling fac (7 — 1) will re-
sult in a call to the pattern-matching facility, which decides that (after the
evaluation of the actual argument) only the second ruleis applicable (6 ~= 0).

Patterns can also be used in combination with guarded equations.

fac:: num -> num

fac O 1

facn n *fac (n — 1), if n>0
error "factorial called with argument less than zero", otherwise

1.5.3 The difference between patterns and guards

Patterns have alimited power: they can only be used to test whether ac-
tual arguments are of a certain value or form. Using guards any function
yielding a Boolean result can be applied to the actual arguments. So
guards are more powerful than patterns, but, on the other hand, patterns
are easier to read and sufficient for most definitions. Using patternsin

FUNCTIONS WITH GUARDED EQUATIONS AND PATTERNS 21

combination with guards often leads to clearer and more concise defini-
tions and is highly recommended.

1.6 Data structures

In imperative languages one can define global data structures that are
globally accessible for reading and writing during execution. Since this
Is not possible in functional languages it will be clear that the use of
data structures in these languages is quite different. After creation of a
data structure, the only possible access is read access. Data structures
cannot be overwritten. Furthermore, data structures are not globally
available but they must always be passed as arguments to the functions
that need them.

Modern functional languages allow the definition of structured
data objects like the records in Pascal. How user-defined data structures
can be defined is explained in the next chapter. In this chapter only lists
are treated.

Lists are the most important basic data structure in any FPL. Lists
in FPLs are actually linked lists, each element in the list has the samet
type T (see Figure 1.3). Thelast element in thelist isindicated by a spe-
cial element, generally called Nil.

1

®
Y

2

®
w
®

Y

Nil

Figure 1.3 An exampleof alist.

Because lists are so important, they are generally predefined. A list is
conceptually not different from any other user-defined data structure
(see Chapter 2).

Lists, like any data structure in an FPL, are built using data con-
structors. A data constructor isaspecial constant value that is used as
atag that uniquely identifies (and is part of) an object of a certain type.
So one can recognize the type of a data structure just by looking at the
data constructor it contains. Several different data constructors can be
used to identify the different objects of the same type.

Lists are constructed using two data constructors (see Figures 1.4
and 1.5). A list element is tagged with a constructor that is usually
named ‘Cons’ (prefix notation) or ‘' (infix notation, as used in Mi-
randa). The end of a list is an empty list that just contains a tag, the
constructor ‘Nil’ or ‘[]". A non-empty list element contains, besides the
constructor ‘cons’ (or ‘:’), avalue of a certain type T and (a reference

1 Note that in most languages all elements of alist have to be of the same type.
In some other languages (e.g. LI1SP) the types of the list elements may differ from
each other. In Miranda tuples are used for this purpose (see Chapter 2).

22 BASIC CONCEPTS

to) the rest of the list of that same type T. A list of elements of type T is
denoted as[T].

[EEN
[]

Cons | 2

Cons | 3

[]
Y

Cons Nil

Figurel.4 A list prefix tagged with the constructors Cons and Nil.

Hence, in Miranda, a non-empty list element contains the infix construc-
tor *:’, while the end of thelist only containsa‘[].

1 L4)2 ® 3 Y > []

Figure 1.5 Miranda lists are infix tagged with the constructors: and [].

1.6.1 Denotation of lists

In Miranda, lists are denoted as follows.

Denotation of lists:

1:2:3:4:6B:1D) [| list of numbersfrom1 upto5
True : (False : (False : [])) [| list of booleans

[] || denotesthe empty list
1:2:3:4:5:[] [| list of numbersfrom1 upto5

Note that the list constructor *:” is right associative. For the convenience
of the programmer Miranda allows a special notation for lists, with
sguare brackets:

Lists, shorthand notation:

[1,2,3,4,5] || sameas1:2:3:4:5:[]
[True, False, False] || sameas True : False : False : []
0:[1, 2, 3] || sameas|o, 1, 2, 3]

1.6.2 Predefined functions on lists

The data constructors *:” and ‘[]" are special constant values. The ele-
ments of a list can therefore easily be selected by using the pattern
match mechanism in which these data constructors appear.

The (usually predefined) projection functions on lists are head (hd) and tail
(tl). Projection functions like these are of general use and can be defined on
lists of any type (see Chapter 2). The functions given below are restrictively
defined on list of numbers.

DATA STRUCTURES 23

hd:: [num] -> num || hdisafunction from list-of-num to num
hd (first : rest) = first || yieldsthefirst element of anon-empty list
tl:: [num] -> [num] [| afunction from list-of-num to list-of-num
tl (first : rest) = rest || returnsthetail of thelist

Note that the parentheses on the left-hand side are not part of the list denota-
tion. They are added to disambiguate the patterns concerning the application.

This way of handling lists is very user-friendly. One does not need to
worry about ‘memory management’ nor about ‘ updating pointers'.
Below some other predefined operations on lists are given. These
are: length of a list (denoted by #), subscription, followed by a number
indicating the subscript (counting from zero), and concatenation (++).

List operations:

#[2, 3, 4, 5] || length of list, yields 4
[2,3,4,5]!2 || subscription, yields 4

[0, 1] ++ [2, 3] || concatenation, yields|0, 1, 2, 3]

1.6.3 Infinite lists

One of the powerful features of lazy FPLsisthe possibility of declaring
infinite data structures by recursive definitions.

Definition of a function yielding an infinite list of numbers n, equal to
[n,n,n,n,..]

infnums:: num -> [num]
infnrumsn = n:infnumsn

The following program, the sieve of Eratosthenes, yields an infinite list of
prime numbers. First an infinite list of all numbers [n, n+1, n+2, ...] is defined
using the function gen.

gen:: num -> [num]
genn = n:gen(incn)

filter has two arguments: a number and a (possibly infinite) list. The filter re-
moves all multiples of the given number pr from the list. Note the type of this
function. It is explained in the next section.

filter:: num -> [num] -> [num]
filter pr (x : xs) = x:filter prxs, if x mod pr~=0
= filter pr xs, otherwise

24 BASIC CONCEPTS

sieve yields an infinitelist of primes. It is assumed that the first element in the
infinite list is a prime. This value is delivered as result in the head of a list.
The function recursively callsitself, filtering all multiples of the found prime
from the input list.

sieve:: [num] -> [num]
sieve (pr:rest) = pr:sieve (filter pr rest)

Theinitial expression that will yield the infinite list of all prime numbers[2, 3,
5,7,11, ...] isthefollowing:

sieve (gen 2)

Programs having infinite data structures as results do not terminate,
of course. When an infinite list is yielded, the lazy evaluation scheme
will force the evaluation of the list elements from ‘left to right’. It
would not be wise to postpone printing this list until the last element has
been calculated. Therefore, one after another the values of the elements
of the list are printed as soon as they have been evaluated.

Infinite data structures are of more practical importance than one
may conclude from the examples above. One has to remember that, if
functions are evaluated with the lazy evaluation scheme, the computa-
tion of avalueisonly started when its value is needed to produce the re-
sult. For instance, if one needs a certain element of an infinite list, the
computation will not force the evaluation of the whole list, but only of
the part that is needed for the evaluation of the required element. There-
fore, such a computation can be performed in finite time, even if an in-
finite list is being used. Of course, if an attempt to find the last element
of an infinite list is made, the computation will not terminate.

So in lazy languages infinite data structures can be defined; more-
over, they make elegant programs possible. For example, if a function
has to be defined that yields the first thousand prime numbers, one can
simply take the first thousand elements of the list of all primes.

Thefollowing initial expression will yield the second prime number of an infi-
nite list of all primes. The evaluation will terminate even if an infinite list is
being used.

hd (tl (sieve (gen 2)))
-~ hd (tl (sieve (2 : gen (inc 2))))

-~ hd (tL(2_: sieve (filter 2 (gen (inc 2)))))

- hd (sieve (filter 2 (gen (inc 2))))

— hd (sieve (filter 2 (inc 2 : gen (inc (inc 2)))))
-~ hd (sieve (filter 2 (3 : gen (inc (inc 2)))))

-~ hd (sieve (3 : filter 2 (gen (inc (inc 2)))))

DATA STRUCTURES 25

- hd (3 : sieve (filter 3 (filter 2 (gen (inc (inc 2))))))
- 3

Infinite data structures cannot be handled in eager languages, because
they evaluate arguments regardless of whether they are needed or not,
which leads to infinite computations.

The evaluation of theinitial expression in the previous example in eager FPLs
will not terminate.

hd (tl (sieve (gen 2)))

- hd (tl (sieve (2 : gen (inc 2))))

- hd (tl (sieve (2 : gen 3)))

- hd (tl (sieve (2 : 3 : gen (inc 3))))
- hd(tl (sieve (2:3:...)

In alazy functional programming language most functions that are de-
fined on lists can also be used to handle infinite lists. For instance, the
hd function (defined above) can take the head of all lists, regardless of
whether the list isfinite or infinite.

1.7 Higher order functions and currying

Compared with the traditional imperative languages, which normally
allow also the declaration of functions, functional programming lan-
guages such as Miranda have a more general view of the concept of
functions: they are treated as ‘first-class citizens', i.e. functions are
treated just like other objects in the language. As a consequence, func-
tions can have functions as arguments and as results.

1.7.1 Higher order functions

Functions that have functions as actual arguments or yield a function as
result are called higher order functions, in contrast to first-order
functions, which have only non-function values as argument or as re-
sult.

Example of a higher order function that takes a function as argument (note
how thisisreflected in the type):

atzero:: (hum -> num) -> num
atzerof = fO

Now consider the following initial expressions (inc, square and ident are
taken to be defined asin Section 1.3):

26 BASIC CONCEPTS

atzero inc - inc 0 - 0+1 - 1
atzero square . square0 - 0*0 = 0
atzero ident - ident O - 0

Example of a higher order function that yields a function as result (note the

type):

funcresult:: num -> (num -> num)
funcresult0 = inc
funcresult1 = square

funcresult n ident

And consider the following initial expressions:

funcresult 0 6 - Inc6 - 6+1 - 7
funcresult 1 6 - square6 - 6*6 - 36
funcresult 2 6 -~ ident 6 - 6

funcresult 3 6 - ident 6 - 6

At first sight the substitutions in the example above may seem a bit
strange. But, remember that the application of afunction f to an expres-
sion aisdenoted asf a. So if afunction is applied to more than one ar-
gument, say n, this can be denoted as:

(...((fap) a2) ... an)

Function application is left associative. So this can be denoted in an
equivalent, more readable way:

fajaz ... an

Hence, the expression funcresult 0 6 IS equivalent to (funcresult 0) 6, which
immediately explains why the substitution above is allowed. Higher or-
der functions are very natural and provide a powerful programming
tool, asis shown below.

1.7.2 Currying

The possibility of yielding a function as result makes it unnecessary to
have functions with more than one argument. A function with n argu-
ments can be simulated by a higher order function with one argument
that returns a new function. Now this new function can be applied to the
next argument, and so on, until finally all n arguments are handled.

The idea of handling functions with n arguments by using a se-
guence of applications of higher order functions with one argument is
called currying (Schonfinkel, 1924; Curry and Feys, 1958), see aso

HIGHER ORDER FUNCTIONS AND CURRYING 27

Chapter 3. The final result of such a sequence of applications of higher
order functions with one argument is the same as the result yielded by
the equivalent function with n arguments.

Consider a function definition, in Miranda, of a function with more
than one argument, say n. Assume that these arguments are, respec-
tively, of type A, A,, ..., A, and that the result of the function is of type
B. In general such afunction definition has the following form:

function-name argy argz ... argn = expression

In Miranda, all functions are used in a curried manner. Functions with
more than one argument are simulated by a sequence of applications
using currying. Therefore the definition above should be read as:

(-.- ((function-name argi) argp) ... argn) = expression
The type of this function is not
function-name:: A1 X A2 X ... X Ap -> B

which is the mathematical type with as domain the Cartesian product of
the n argument types, but

function-name:: A1 -> (A2 -> ... -> (Aqh->B) ...)

The arrow -> is defined to be right associative, so the type can also be
specified as

function-name:: A1 ->A> > ... ->Ap ->B

1.7.3 The use of currying

The question arises: why should one use this currying scheme and make
things more complicated? Well, notationally it is amost equivalent to
having functions with more than one argument: function application is
left associative, so the parentheses can be left out. Currying enables the
use of afamiliar notation; only the types of the functions are different.
But a great advantage of currying is that it increases the expressive
power of afunctional language.

Parametrizing functions

The currying scheme makes it possible to apply afunction defined on n
arguments to any number of arguments from 1 up to n, resulting in a
parametrized function. A function defined with n arguments can, with-
out currying, only be applied when all these n arguments are available.

28 BASIC CONCEPTS

In the curried variant some of the arguments can be ‘fed’ to the func-
tion; the result (a parametrized function) can be passed to another
function that can fill in the remaining arguments.

Consider the following definition:

plus:: num -> num -> num
plusxy = x+vy

This definition is equivalent to:

plus:: num -> (num -> num)
(plusx)y = x+y

Now take the following initial expression:
plus 1

Clearly, we need another argument to be able to actually perform the addition
specified in the function body. The result of this initial expression is a func-
tion of type num -> num. It is afunction of one argument; the function has no
name.

Assuming plus to be defined as above, the function incr can be defined in two
ways:. as afunction with an explicit formal argument:

incr:: num -> num
incrx = plus1lx

or as a parametrized version of plus:

incr:: num -> num
incr = plus1l

The only difference between the two incr functions is that the second defini-
tion is more concise.

It is very useful to be able to create new functions by adding parameters
to more general functions. So currying enables a new way of pro-
gramming by elegantly specifying general purpose functions.

Another example of parametrized functions. The function map takes a func-
tion of type num -> num, a (possibly infinite) list of numbers and applies the
given function to all numbers in the list. incr and plus are assumed to be de-
fined as above.

HIGHER ORDER FUNCTIONS AND CURRYING 29

map:: (num -> num) -> [num] -> [num]

map f[] = [l
map f (x:xs) = fx:mapfxs

A function that increments the elements of a list can now simply be con-
structed as follows:

mapincr:: [num] -> [num]
mapincr = map incr

or as

mapincr:: [num] -> [num]
mapincr = map (plus 1)

In Mirandait is, in general, not the intention to yield a function as
the final result of a program. Functions cannot be printed. The intention
is to yield some non-function value, probably a string of characters, as
the final result. Therefore, in ordinary programs curried functions will
in the end receive all arguments needed to do the computation.

The following example of an expression with mapincr as defined above (the
second definition) shows how eval uation might actually proceed when curry-
ing is used.

mapincr [1,2,3]
- map (plus 1) [1,2,3]
= map (plus1) (1:2:3:[])

- plusl1l:map(plusl)(2:3:[]
-~ 2:map(plus1)(2:3:[])

- 2:(plus1)2:map (plus1) (3:[]
S . S 2:3:4:[1=[2,34]

1.8 Correctness proof of functional programs

A functional programming style has advantages that are common in any
mathematical notation:

 Thereis consistency in the use of names: variables do not vary,
they stand for a, perhaps not yet known, constant value throughout
their scope.

» Thanksto the absence of side-effects, in FPL s the same expression
always denotes the same value. This property is called referential
transparency.

30 BASIC CONCEPTS

A definition like x = x + 1 would mean in an imperative language
that x is incremented. In a functional language however this definition
means that any occurrence of x can always be substituted by x + 1.
Clearly the initial expression x does not have a normal form: substitu-
tion will continue forever (some systems recognize such situations in
certain simple cases and report an error message).

X - x+1 - (@x+1)+1 -

Due to the referential transparency! one is allowed to replace in any ex-
pression any occurrence of any left-hand side of a definition by its cor-
responding right-hand side and vice versa.

Referential transparency makes it possible to use common mathe-
matical techniques such as symbolic substitution and induction. With the
help of these techniques a program can be transformed into a more effi-
cient one or certain properties of a program, such as its correctness, can
be proven. Take again the factorial example:

fac:: num -> num

fac 0 1 [l (1)
fac n n*fac (n—1), if n>0 | (2
error "factorial called with argument less than zero", otherwise

The Miranda definition of this function has a great similarity to the
mathematical definition of factorial. In order to prove that this function
indeed calculates the mathematical factorial written as n! for n >= 0,
mathematical induction is used: first it has to be proven that the function
calculates factorial for a start value n = 0 (step 1). Then, under the as-
sumption that the function calculates factorial for a certain value n (the
induction hypothesis), it has to be proven that the function also calcu-
lates factorial for the value n + 1 (step 2). The proof istrivial:

stepl: fac0=1 , by applying rule (1)
1 =0 , by the definition of factorial

step 2: Assumethat fac n =n!, n>=0 (induction hypothesis)

fac(n+1)=(n+1)*facn , by applying rule (2): n+1>0
(n+1)*n! , by the induction hypothesis
(n+1)! , by the definition of factorial

1 Sometimes the notion ‘functional programming language’ is used for lan-
guages which support higher order functions and the notion ‘ applicative program-
ming language' for languages which support referential transparency. Outside the
functional programming community the notion ‘functional’ is widely used as a syn-
onym for ‘useful’.

CORRECTNESS PROOF OF FUNCTIONAL PROGRAMS 31

Note that the proof assumes, as is common in mathematics, that the
function is only applied to arguments on which it is defined: the math-
ematical definition does not concern itself with ‘incorrect input’ (n < 0).
In general, aproof must cover the complete domain of the function.
There is a strong correspondence between a recursive definition
and an induction proof. Recursive functions generally have the form of
a sequence of definitions: first the special cases (corresponding to the
start values in an induction proof), textually followed by the general
cases that are recursively expressed (corresponding to the induction

step).

1.9 Program examples

This section illustrates the expressive power of the functional pro-
gramming languages in two small examples.

1.9.1 Sorting a list

The function (quick) sort needs a list of numbers as argument and deliv-
ersthe sorted list as result.

sort:: [num] -> [num]
sort[] = []
sort (x : xs) = sort (smalleq x xs) ++ [X] ++ sort (greater x xs)

The functions smalleq and greater take two arguments, namely an ele-
ment and alist. This element must be of the same type as the type of the
elements of thelist. It is assumed that the elements are of type num; the
operators <= and > are therefore well defined.

smalleq:: num -> [num] -> [num]

smalleq a] [1

smalleq a (X : xs) x :smalleqgaxs, if x<=a
smalleq a xs, otherwise

greater:: num -> [num] -> [num]

greater a[] [1

greater a (X : Xs) X : greateraxs, if x>a
greater a xs, otherwise

1.9.2 Roman numbers

Outline of the problem

Roman numbers consist of the characters (roman ciphers) m, D, C, L, X,
v and 1. Each of these characters has its own value. The values of roman
ciphers are: M := 1000, D := 500, C := 100, L := 50, X := 10, V := 5, | := 1.

32 BASIC CONCEPTS

These characters always occur in sorted order, characters with a higher
value before characters with alower value. Exceptionsto thisrule are a
number of ‘abbreviations’, given below. The value of a roman number
can be found by adding the values of the characters that occur in the
roman number (MCCLVI = 1000 + 100 + 100 + 50 + 5 + 1 = 1256). The fol-
lowing abbreviations are commonly used: bcccc := CM, CCCC := CD,
LXXXX := XC, XXXX := XL, VIII := IX, 1l := V. These abbreviations make it
less simple to calculate the value of a roman number because now the
value of the character depends on its position in the string. Negative
numbers and the number zero cannot be expressed in roman numbers.

Task

 Develop an algorithm that calculates the integer value of a roman
number, represented as a string, assuming that the string is a proper
roman number.

 Develop an algorithm that converts an integer value into a roman
number without abbreviations, assuming that the integer value is
positive.

Solution
First the value of aroman cipher is defined:

value:: char -> num

value 'M' = 1000
value'D' = 500
value'C" = 100
value'l' = 50
value 'X' = 10
value V' = 5
value 'l = 1

The function romtonum converts a roman number to a decimal number. It
assumes that the supplied argument is a proper roman number.

romtonum:: [char] -> num
romtonum (‘'C': 'M': rs)
romtonum (‘C': 'D' : rs)
romtonum (‘X' : 'C': rs)
romtonum (‘X" : 'L": rs)

value 'M' — value 'C' + romtonum rs
value 'D' — value 'C' + romtonum rs
value 'C' — value 'X' + romtonum rs
value ‘L' — value 'X' + romtonum rs
romtonum ('I' : "X : rs) value 'X' —value 'I' + romtonum rs
romtonum ('I': 'V': rs) value 'V' —value 'I' + romtonum rs
romtonum (r: rs) = value r + romtonum rs

romtonum [] 0

PROGRAM EXAMPLES 33

The function numtorom converts a decimal number to a roman number
by repeated subtraction of 1000, 500, 100, 50, 10, 5 and 1, in this order. It
assumes that the argument is a number greater than zero.

numtorom:: num -> [char]
numtoromn = countdown n[M''D','C",'L','X",'V",'l']

countdown:: num -> [char] -> [char]

countdown 0O rs [

countdown n (r : rs) [r] ++ countdown (n —valuer) (r : rs), if n>=valuer
countdown n rs, otherwise

The style in which these algorithms were presented (bottom-up) is not
the way in which they were deduced. In Chapter 2 styles of functional
programming are discussed.

Summary

A functional programconsists of a collection of (predefined) func-
tion definitions and an initial expression that has to be evaluated
according to these definitions.

A function definition consists of a sequence of one or more alterna-
tive equations. The choice between these alternatives is determined
by patterns and/or guards.

The evaluation of a functional program is called reduction or
rewriting.

A function application that can be rewritten according to a function
definition is called a redex.

In each reduction step a redex is replaced by the corresponding
function body, substituting formal arguments by actual arguments.

The evaluation of a functional program stops if there are no more
redexes left in the resulting expression. Then the expression isin
normal form.

Redexes can be chosen in arbitrary order; in principle it is even
possible that they are reduced in paralléel.

A reduction strategy determines the order in which redexes are re-
duced.

In alazy FPL redexes are only chosen if their result is needed to
achieve the normal form.

In an eager FPL the arguments of afunction are reduced to normal
form before the function application itself is reduced.

BASIC CONCEPTS

Data structuresin FPLs are not globally available but constructed
In expressions, passed as arguments, decomposed and used as
components for the construction of new structures.

Data structures in FPLs are composed using data constructors.
With pattern matching data structures can be decomposed.

The most important basic data structurein FPLsisalist.
Lazy FPLs can handle infinite data structures, eager FPL s cannot.

A function with n arguments can be simulated using higher order
functions with at most one argument (currying).

FPLs have a high expressive power due to the availability of higher
order functions, pattern matching and guarded equations.

Due to referential transparency traditional mathematical proof
techniques, such as induction and substitution, can be used for the
correctness proof of functional programs.

EXERCISES

11

12

13

14

Write in your favourite imperative language a program that finds
the maximum element in alist of numbers. Rewrite the program so
that only the functional subset of the imperative language is used.

Consider the following function definition:
maxi:: num -> num -> num
maxi Xy =X, if x>=y
=y, if x<y
Check whether the following initial expressions are legal, and if so,
give the result yielded:

e maxi56 e maxi (5) e maxi5
* maxi (5,6) * maxi maxi56 4 * maxi [5,6]
e maxi (maxi 5 6) 4 e maxi'a' 4

Write a function maxilist that uses the function maxi of Exercise 1.2
to calculate the greatest element of a list of numbers. How does
maxilist react on the empty list? Are there lists for which your pro-
gram does not terminate? Does it make any difference if you
change the order of the guards or patternsin your program?

Suppose you now want to find the smallest element of a list with
minimal rewriting of the programs written in Exercise 1.3. To
solve this problem first write a higher order function find in Mi-
randathat gets alist of numbers and a function f of type num -> num

15

16

17

18

1.9

EXERCISES 35

-> num as arguments and produces a num as its result such that find
[ag,az,...,an]f=fa; (fas (... (fan_1 an))).

Then, write down the stepwise lazy evaluation of the function ap-
plication find [1,2,3] s With s:: num -> num -> num ands ab = a + b.
What does find list s calcul ate?

Finally, write afunction to find the smallest element of alist.

Define functions that print alist of characters on the screen in dif-
ferent ways:. vertically below each other; each character in the
same place; with two spaces between the characters; diagonally.

Define afunction which yields the last two elementsin alist.
Define afunction which yields the average of alist of numbers.

Define a function search that takes two arguments of type [char]
yielding a bool indicating whether the first argument is part of the
second.

Examine the definition of the function map in this chapter. Define a
function mapfun that applies alist of functions to a number and re-
turns a list of the results of the function applications. So the fol-
lowing must hold: mapfun [f,g,h] x = [f x, g x, h x].

1.10 Define afunction that yields all factorial numbers.

