
Department of Computer Science
Australian National University

COMP3610

Principles of Programming Languages

An Introduction to the Lambda Calculus

Clem Baker-Finch
August 13, 2013

Contents

1 Motivation 1

2 The Untyped Lambda Calculus 1

2.1 Introduction . 1

2.1.1 Scope . 3

2.2 β Conversion . 3

2.3 β Reduction . 4

2.4 Substitution . 6

3 Lambda Calculus as a Model of Computation 7

3.1 Multiple Arguments . 8

3.2 Booleans . 8

3.3 Church Numerals . 9

3.4 Combinators . 12

3.5 Recursion . 12

4 The Typed Lambda Calculus 14

4.1 Extending the Typed Lambda Calculus . 15

4.2 The Typing Relation . 15

4.3 The Curry-Howard Correspondence . 17

4.4 Conditional Expressions . 17

4.5 Type Variables and Polymorphism . 18

4.6 Recursion . 19

i

1 MOTIVATION 1

1 Motivation

The lambda calculus is a system (calculus) of pure functions. That is, everything is a function. It
was invented in the 1940s by logician Alonzo Church as a study of the foundations of mathematics
and computation. The lambda calculus is one of the most important cornerstones of Computer
Science. Of particular interest for us, the λ-calculus is:

• one of the standard models of computation

• a foundation for denotational semantics

• the core of all functional programming languages

• yet another view of natural deduction

Much of programming language research has been built on the lambda calculus. For example,
the foundations of object-oriented languages may be studied in terms of the lambda calculus ex-
tended with records. The experimental language PCF (Programming language of Computable
Functions) is a small extension of the lambda calculus that has been widely studied by pro-
gramming language researchers as the simplest language to demonstrate a number of interesting
semantic features.

LISP, one of the first programming languages to be invented, is fundamentally based on the
lambda calculus.

The type systems in languages like Haskell and ML are extensions of the simply typed lambda
calculus (and PCF).

This section of the COMP3610 lecture notes provide an introduction to the λ-calculus, mainly
focusing on the dot-points listed above. Other parts of the course may make reference to, or be
based on these notes.

2 The Untyped Lambda Calculus

There are in fact many variants of λ-calculi: untyped, λI, λK, simply typed (Church or Curry
style), second-order polymorphic λ-calculus, System Fω etcetera, etcetera. We will only look at
two, beginning with the untyped λ-calculus followed by the typed λ-calculus extended with some
features reminiscent of the functional programming languages with which we are familiar.

2.1 Introduction

The λ-calculus is a calculus of “pure” functions. To see what that might mean, consider the
notation we have learnt in Mathematics classes to define functions:

f x = x2 + x+ 1

(Mathematicians are probably more likely to write f(x) = . . . but we’re computer scientists.)
How does this describe a function? What is “the function” itself? We’re forced to speak
indirectly in terms of a name, the argument and the result : “f is the function which, when
applied to any argument x, yields x2 + x + 1.” The name of the function f is arbitrary — it
may just as well be g or fred. (Of course, the parameter name x is equally arbitrary.) Can we
describe and define functions without giving them names?

2 THE UNTYPED LAMBDA CALCULUS 2

Lambda notation allows us to do so. First, instead of writing the formal parameter on the
left of the defining equation, a different choice of notation allows us to put it on the right:

f = λx. x2 + x+ 1

where the formal parameter is identified by prefixing it with λ and separating it from the function
body with a period. Now f is still the same function; only the notation we have used to define
it has changed. What is really interesting is that the left hand side of the equation is no longer
in the form of an application — it’s just a name, so the right hand side is the function and
we thus have a way of expressing functions directly without giving them names. We sometimes
refer to them as anonymous functions.

λx.x2 + x+ 1

is the function which, when applied to any argument x, yields x2 +x+ 1. Applying the function
to an argument, say (f 3), is expressed by writing the function followed by the argument (with
parantheses if necessary to avoid ambiguity:

(λx.x2 + x+ 1) 3

Such an application is evaluated by replacing the parameter x by 3 in the body to give 32 +3+1,
and arithmetic tells us the result is 13.

The sceptical reader may question how this might extend to recursive function definitions which
it seems must rely on functions being named. Consider

fact n = if n == 0 then 1 else n× fact(n− 1)

Since the name seems to be essential to express the recursion (it appears on both sides of the
equation) it is reasonable to ask whether recursive functions can be defined anonymously using
lambda notation. The answer is “yes” and is the main topic of a later section of the course, but
we will also deal with it briefly here in term of the λ-calculus.

The pure λ-calculus embodies this kind of function definition and application in its purest
form. In the pure λ-calculus everything is a function: arguments to functions are themselves
functions and the result returned by a function is another function.

The syntax of lambda terms comprises only three kinds of terms. A variable x is a term; the
abstraction of a variable from a term M is a term; and the application of one term M to another
term N is a term. We also allow parentheses to express the structure of terms. Later in the
course we will consider the concepts of concrete and abstract syntax, where the real purpose of
the parentheses will become clearer.

M ::= x | λx.M |MN | (M)

The term x is a variable, λx.M is an abstraction, and MN is an application.

Intuitively, abstractions represent functions. The variable following the λ is the parameter.
Evaluation is by substitution, e.g.:

(λx.λy.x)MN = (λy.M)N (by substituting M for parameter x in the body λy.x)
= M (by substituting N for parameter y in the body M)

2 THE UNTYPED LAMBDA CALCULUS 3

Parentheses are minimised by convention:

• application associates to the left (as is familiar from Haskell):
MNP = (MN)P

• application has precedence over abstraction:
λx.MN = λx.(MN)
so the body of the λ-abstraction continues as far to the right as possible;

• sequences of λs may be collapsed:
λxyz.M = λx.λy.λz.M

For example, λxy.xyx is taken to be the same term as λx.(λy.((xy)x))

2.1.1 Scope

An occurrence of a variable x is said to be bound when it occurs in the body M of an abstraction
λx.M . We say that λx is a binder whose scope is M . An occurrence of x is free if it appears in
a position where it is not bound by an enclosing abstraction on x.

For example, the occurrences of x in xy and λy.xy are free while the occurences of x in λx.x
and λz.λx.λy.x(yz) are bound. In (λx.x)x the first occurence of x is bound and the second is
free. You might like to think of bound variables as local and free variables as global.

We can inductively define the set of bound variables in a term as follows:

BV (x) = ∅
BV (λx.M) = BV (M) ∪ {x}

BV (MN) = BV (M) ∪ BV (N)

Similarly free variables:

FV (x) = {x}
FV (λx.M) = FV (M)− {x}

FV (MN) = FV (M) ∪ FV (N)

A term with no free variables is closed. We often call closed terms combinators. The simplest
combinator is the identity function:

id = λx.x

2.2 β Conversion

The original studies of λ-calculus focused on the equational theory produced by evaluation of
applications. for reasons I have yet to discover, this was called beta conversion.

(λx.M)N = M [x := N] (β)

Where the notation M [x := N] means to substitute term N for all occurrences of x in term M .
We will have more to say about substitution later in these notes.

2 THE UNTYPED LAMBDA CALCULUS 4

The intuition is that

• λx.M is a function with parameter x.

• (λx.M)N is an application and N is the argument.

• The application is evaluated by substituting the argument for the parameter in the body
of the function.

We call a term of the form (λx.M)N a reducible expression or redex for short.

β-conversion is the basis of a theory of equality between λ-terms. To complete the theory we
need a few structural rules.

Conversion applies to any subterms:

M = N

MP = NP

M = N

PM = PN

M = N

λx.M = λx.N

(=) is an equivalence relation:

M = M (reflexive)

M = N

N = M
(symmetric)

M = L L = N

M = N
(transitive)

2.3 β Reduction

Conversion is all very interesting, but as computer scientists we’re typically more interested
in computation, which essentially implies a direction on the beta rule. In its pure form, the
λ-calculus has no built-in constants or primitive operators and the sole means by which terms
“compute” is the application of functions to arguments (which are themselves functions).

Instead of β-conversion we have β-reduction:

(λx.M)N → M [x := N] (β)

Since a lambda term may have several redexes, the question remains as to which redex to choose
to evaluate next. Different evaluation strategies lead to different outcomes.

2 THE UNTYPED LAMBDA CALCULUS 5

Full β-reduction. Under this strategy, any redex may be chosen as the next one to reduce.
For example, the term

(λx. x) ((λx. x) (λz. (λx. x) z))

which we can write more readably as id (id (λz. id z)), contains three redexes:

id (id (λz. id z))

id (id (λz. id z))

id (id (λz. id z))

If a term contains no redexes, we say it is in normal form. For this term we end up with the
same normal form λz.z no matter which order we choose the next redex. In fact this is a
general result:

Under full β-reduction, if a term has a normal form that normal form is unique. This
is a consequence of a stronger result known as the Church-Rosser property which
says that if we can reach two distinct terms M and M ′ by β-reduction from some
term N , then there is a term P to which both M and M ′ β-reduce.

Normal Order. Under this strategy, the leftmost outermost redex is always reduced first.
The term above would be reduced as follows

id (id (λz. id z))

→ id (λz. id z)

→ λz. id z

→ λz. z

Normal order is a normalising strategy in the sense that if a term has a normal form, this strategy
will find it.

Applicative Order. Under this strategy, the leftmost innermost redex is always reduced first.
The term above would be reduced as follows:

id (id (λz. id z))

→ id (id (λz. z))

→ id (λz. z)

→ λz. z

In contrast with normal order, under this strategy arguments are evaluated before being passed
to functions. It turns out that applicative order is not a normalising strategy. For example,
suppose that M does not have a normal form (that is, reducing M does not terminate). In that
case, applicative order evaluation of (λx.λy.y)M will never find the normal form of the term
(λy.y).

2 THE UNTYPED LAMBDA CALCULUS 6

Call-by-Name. This is a restriction of normal order, where no reductions are allowed inside
abstractions. For our example term, the reduction is the same but stops earlier:

id (id (λz. id z))

→ id (λz. id z)

→ λz. id z

Algol-60 introduced call-by-name parameter passing, and Haskell’s semantics is a more efficient
variant known as call-by-need where instead of re-evaluating an argument each time it is used,
all occurrences of the argument are overwritten with its value the first time it is evaluated. This
requires that we have a run-time representation of terms that allows sharing of subexpressions,
leading to a terms becoming graphs rather than trees.

Call-by-Value. Most languages, including Java and ML use this strategy, where again no
reductions are allowed inside abstractions and a redex is only reduced when its argument part
has already been reduced to a value — in the pure lambda calculus, an abstraction or a variable.

(id (λy. y)) (λz. id z)

→(λy. y) (λz. id z)
→(λy. y) (λz. z)

→ λz. z

Call-by-value is related to applicative order, in exactly the same way that call-by-name relates
to normal order. The call-by-value strategy is strict in the sense that the arguments to a
function are evaluated whether or not they are used by the function. In contrast non-strict
(or lazy) strategies such as call-by-name and call-by-need only evaluate the arguments that are
actually used. The difference between strict and non-strict becomes clearer when we consider
the possibility of non-termination. We will see a more formal definition of these concepts later
in the course.

2.4 Substitution

The idea of substituting a term for all occurences of a variable, as in the definition of β-reduction
is intuitively appealing but it turns out that a formal definition is quite a delicate matter. A
näıve (and ultimately incorrect) attempt might be:

x[x := N] = N

y[x := N] = y

(λy.M)[x := N] = λy.(M [x := N])
(MP)[x := N] = (M [x := N])(P [x := N])

For most examples this seems to work. For example

(λy.x)[x := (λz.zw)] = λy.λz.zw

which matches our intuitions about how substitution should behave. However

(λx.x)[x := y] = λx.y

3 LAMBDA CALCULUS AS A MODEL OF COMPUTATION 7

conflicts with a basic understanding that the names of bound variables (i.e. parameters) don’t
matter. The identity function is the same whether we write it as λx.x or λz.z or λfred .fred .
If these don’t behave the same way under substitution they won’t behave the same way under
evaluation and that seems wrong. The mistake is that the substitution should only apply to
free variables and not bound ones. In the example, x is bound in the term so we should not
substitute it. That seems to give us what we want:

(λx.x)[x := y] = λx.x

But that’s still not quite enough, as the following example demonstrates:

(λz.x)[x := z] = λz.z

This has changed a constant function into the identity function — in some sense this is the
dual of the problem identified above. Once again, the choice of z as the binder in λz.x should
be completely arbitrary. This phenomenon is known as free variable capture as the z being
substituted is free, but in the result it is bound. Our solution will be to allow renaming of
bound variables (a process traditionally known as α-conversion). We are now in a position to
give a formal definition of substitution which accounts for the issues explored here.

x[x := N] = N

y[x := N] = y

(λx.M)[x := N] = λx.M (†)
(λy.M)[x := N] = λy.M [x := N] if y 6∈ FV (N)
(λy.M)[x := N] = λz.M [y := z][x := N] if y ∈ FV (N), z a fresh variable (‡)

(MP)[x := N] = (M [x := N])(P [x := N])

assuming that x and y are different variables.

Notice in (†) that the substitution does not apply to bound occurrences of x. In (‡) notice the
replacement of bound variables to avoid capture of free variables.

That all seems quite complicated — and it is — so it is common to abide by a convention rather
than keep dealing with this machinery. Typically we work with lambda terms “up to renaming
of bound variables” or “up to α-conversion” and don’t allow variable capture. In fact many
compilers, including ghc, rename all variables to be unique, so as to circumvent such problems.

Exercise 2.1
The λ-calculus reduction workbench, available through the course web site, automatically gener-
ates fresh variables to avoid free variable capture. Try evaulating some term on the workbench,
such as (\ x . \ y .x) y and (\ x . \ x . x) y to see it in action.

3 Lambda Calculus as a Model of Computation

So far this may all seem ungrounded, almost vacuous — it all looks like symbol pushing and
nothing more. There are none of the data values which we are used to having at the basis
of computation, such as numbers and booleans. Without them, what can we do with the λ-
calculus?

3 LAMBDA CALCULUS AS A MODEL OF COMPUTATION 8

In this section we will see how to represent such data types in the λ-calculus. This is not such
an unfamiliar idea: we are used to the idea of interpreting sequences of bits as integers, floats,
characters, instructions and so on. Here we will interpret certain lambda terms as representing
boolean and numeric values, in a manner that can be extended to other classes of values and
data structures. What arises from defining a sufficient set of representations is a model of
computation equivalent in power to Turing machines, recursive function theory and every other
standard model of computation.

3.1 Multiple Arguments

First we will deal with a straightforward matter. Many functions of interest (addition, for
example) take more than one argument, yet λ-calculus abstractions only have a single binder.
There are two solutions: either pass a single argument consisting of a tuple of values, or curry
the functions. The first solution requires that we find a way to represent tuples in the λ-calculus,
which turns out to be not too difficult. The second approach, which we will adopt here, treats
a function of several arguments as taking each argument in turn, one at a time, and should be
familiar from your Haskell programming experience.1

3.2 Booleans

It may be that we naturally consider boolean values to somehow be primitive or atomic —
they are what they are. In fact, what we are interested in (and this is a rather “algebraic”
attitude that extends to all data types and structures) is how they behave. At the heart of
our understanding of boolean values is that they guide a choice: if something is true choose
this, otherwise choose that. So what we want is to come up with a way of representing true,
false and choice (i.e. conditional) as lambda terms, such that they work together as we wish
— that is, their evaluation leads to results that correspond to (representations of) our intuitive
computational expectations.

tt = λxy.x

ff = λxy.y

cond = λabc.abc

where tt represents true, ff represents false and cond represents if-then-else.

Notice that tt is a function that takes two arguments and returns the first, while ff also takes
two arguments and returns the second. The cond combinator takes three arguments and applies
the first to the second and the third. The key observation is that the first argument to cond will
be either tt or ff, thus choosing either the second or the third argument respectively.

So for example, if true then M else N is represented by the term:

cond tt MN = (λabc.abc)(λxy.x)MN

1The expression curry is after Haskell Brooks Curry, a student of Church and one of the λ-calculus pioneers.

3 LAMBDA CALCULUS AS A MODEL OF COMPUTATION 9

which evaluates as follows:

(λabc.abc)(λxy.x)MN

→ (λbc.(λxy.x)bc)MN

→ (λc.(λxy.x)Mc)N
→ (λxy.x)MN

→ (λy.M)N
→ M

as we would wish.

Exercise 3.1
Complete a similar evaluation of cond ff MN

A little thought should convince you that other logical operators such as conjunction and dis-
junction can be defined in terms of these three notions, so we have constructed three combinators
that form the basis of a representation of booleans in the λ-calculus.

Exercise 3.2
Using logical equivalences like

x and y = if x then y else false

define combinators and, or and not representing logical conjunction, disjunction and negation.

3.3 Church Numerals

One way of representing the natural numbers in the λ-calculus is as Church numerals. They
have a similar flavour to Peano arithmetic where the natural numbers are defined inductively
as follows:

• zero is a natural number;

• if n is a natural number, then succ(n) is also a natural number.

So for example
3 = succ(succ(succ(zero)))

The Church numerals c0, c1, c2, c3, . . . are rather similarly defined:

c0 = λsz.z

c1 = λsz.sz

c2 = λsz.s(sz)
c3 = λsz.s(s(sz))
. . .

We have used s and z as suggestive names for the bound variables, but of course they are quite
arbitrary. The idea is that cn takes two arguments s and z (for successor and zero) and applies s,

3 LAMBDA CALCULUS AS A MODEL OF COMPUTATION 10

n times to z. Once again, we are not so interested in representation but rather in the interaction
with the combinators representing primitive operations on numbers, such as succ, addition and
so on.

A successor function on Church numerals needs to take the cn term apart to get the body, add
another s application, then rewrap it in the binders:

succ = λn.λsz.s(nsz)

For example:

succ c2 = (λn.λsz.s(nsz))(λab.a(ab))
→ λsz.s((λab.a(ab))sz)
→ λsz.s((λb.s(sb))z)
→ λsz.s(s(sz))
= c3

Addition can be performed by a term plus that takes two Church numerals, m and n, and yields
another Church numeral (i.e. a function) that accepts arguments s and z, applies s iterated n
times to z (by passing arguments s and z to n), and then applies s iterated m more times to
the result:

plus = λm.λn.λsz.ms(nsz)

Exercise 3.3
Convince yourself that this definition is correct by evaluating plus c2 c3. Do it by hand and try
some examples using the workbench.

Exercise 3.4
Define combinators for multiplying and exponentiating Church numerals. A natural approach
to defining multiplication is to use the plus combinator, but you may also find another way.
Inventing subtraction and predecessor combinators may be too challenging, but they are among
the predefined combinators that come with the λ-calculus workbench. Look at their definitions
and try to understand and describe how they work.

Example 3.5
Here is an example reduction to normal form, with redexes in red (the function) and blue (the
argument) and their residuals in green, with the substitutions of the argument still in blue.

3 LAMBDA CALCULUS AS A MODEL OF COMPUTATION 11

The expression is cond tt (succ c2) c0:

(λbxy.bxy)(λtf.t)((λnfx.f(nfx))(λsz.s(sz)))(λsz.z)
→ (λxy.(λtf.t)xy)((λnfx.f(nfx))(λsz.s(sz)))(λsz.z)

(λxy.(λtf.t)xy)((λnfx.f(nfx))(λsz.s(sz)))(λsz.z)
→ (λy.(λtf.t)((λnfx.f(nfx))(λsz.s(sz)))y)(λsz.z)

(λy.(λtf.t)((λnfx.f(nfx))(λsz.s(sz)))y)(λsz.z)
→ (λtf.t)((λnfx.f(nfx))(λsz.s(sz)))(λsz.z)

(λtf.t)((λnfx.f(nfx))(λsz.s(sz)))(λsz.z)
→ (λf.(λnfx.f(nfx))(λsz.s(sz)))(λsz.z)

(λf.(λnfx.f(nfx))(λsz.s(sz)))(λsz.z)
→ (λnfx.f(nfx))(λsz.s(sz))

(λnfx.f(nfx))(λsz.s(sz))
→ λfx.f((λsz.s(sz))fx)

λfx.f((λsz.s(sz))fx)
→ λfx.f((λz.f(fz))x)

λfx.f((λz.f(fz))x)
→ λfx.f(f(fx))

Which is c3, as expected.

Another class of operators on numbers are the relational operators, bringing the representation of
booleans and numbers together. Consider testing whether a Church numeral is zero. To achieve
this we must find some appropriate pair of arguments that will give us back this information.
Specifically we want to apply our numeral to a pair of terms ss and zz (so ss is substituted
for s and zz is substituted for z) such that applying ss to zz one or more times yields ff while
not applying it at all yields tt. The constant function λx.ff serves as ss (always discarding its
argument and returning ff) and tt as zz, leading to:

iszero = λm.m(λx.ff)tt

For example

iszero c2 = (λm.m(λx.ff)tt)c2

→ c2(λx.ff)tt

= (λsz.s(sz))(λx.ff)tt

→ (λz.(λx.ff)((λx.ff)z))tt

→ (λx.ff)((λx.ff)tt)
→ ff

and

iszero c0 = (λm.m(λx.ff)tt)c0

→ c0(λx.ff)tt

= (λsz.z)(λx.ff)tt

→ (λz.z)tt

→ tt

3 LAMBDA CALCULUS AS A MODEL OF COMPUTATION 12

3.4 Combinators

In the two sample evaluations above, we worked with a mixture of combinators and pure terms,
expanding the combinators as necessary before performing β reduction. This was important
because our intention was to informally verify that our choice of combinators to represent the
various functions and values was correct. However, taking a more abstract approach, we can
work simply with “higher-level” rules dealing directly with the combinators. For example, the
following rules can be derived from their definitions as lambda terms:

iszero c0 = tt

iszero cn = ff for all n 6= 0
succ cn = cn+1

plus cm cn = cm+n

and so on. This kind of conceptual abstraction is very familiar to computer scientists. For
example, even when coding in assembler language we think in terms of data values passing
between registers and memory locations, rather than the bit pattern of the instruction and
the micro-code running on the processor. Taking that idea one step further, notice that the
lambda term for plus only behaves as addition under a particular interpretation involved with
Church numerals — in another context it’s just another lambda term. The same idea of different
interpretation of the same data object is familiar in computer science: the same bit pattern may
represent a character, a number, an instruction and so on.

3.5 Recursion

Every reasonable model of computation must allow for some form of repetition, but so far we
have only talked about simple values and primitive operations. If we consider the definition of
the factorial function mentioned in section 2.1:

fact n = if n == 0 then 1 else n× fact(n− 1)

We have combinators for most components of this definition, e.g.

fact = λn. cond (iszero n) c1 (mul n (fact(pred n)))

but the function name persists within its own definition. To complete the job we want to find
a lambda term that (anonymously) represents the fact function. At the moment we still rely
on naming the function and giving an equation for which we have learned a way to interpret
computationally. As mentioned in section 2.1 we will look at this in more depth in a later section
of the course.

Recall that a term that cannot take a step under the evaluation relation is called a normal
form. It is interesting that some terms do not have a normal form, for example the divergent
combinator:

omega = (λx.xx)(λx.xx)

contains exactly one redex (the whole term) and reducing it yields exactly the same term omega
again.

3 LAMBDA CALCULUS AS A MODEL OF COMPUTATION 13

There are various combinators, related to omega, known as fixpoint operators. A well-known
one is the Y combinator:

Y = λf.(λx.f(xx))(λx.f(xx))

Just looking at the term isn’t very helpful, but notice this important fact:

Yf = f(Yf) = f(f(Yf)) = f(f(f(Yf))) = . . .

To get some better intuition of the behaviour of the Y combinator we will explore a specific
example. When we write recursive function definitions like

f = 〈 body containingf 〉
the intention is that the definition should be “unfolded” inside the body. For example, the
intuition about the factorial function definition in section 2.1 is an infinite unfolding:

if n == 0 then 1
else n * (if n-1 == 0 then 1

else (n-1) * (if n-2 == 0 then 1
else (n-2) * (if n-3 == 0 then 1

else (n-3) * ...

Or, using Church numerals:

cond (iszero n) c1

(mul n (cond (iszero (pred n)) c1

(mul (pred n) (cond (iszero (pred(pred n)) c1

(mul (pred(pred n)) (cond (iszero (pred(pred(pred n)))) c1

(mul (pred(pred(pred n)))) . . .

The Y combinator can give us this unfolding effect. First we define:

g = λh.〈 body containing h 〉
and then:

f = Y g

Doing this to the factorial function gives:

g = λf . λn. cond (iszero n) c1 (mul n (f (pred n)))
fact = Y g

or simply:
fact = Y(λf . λn. cond (iszero n) c1 (mul n (f (pred n))))

Let’s see what happens as we begin evaluating (fact c3). Rather than writing out the whole
term in λ-notation, we will leave in the combinator names, expanding them as necessary.

fact c3 = (Y g) c3

= ((λf.(λx.f(xx))(λx.f(xx))) g) c3

→ (λx.g(xx))(λx.g(xx)) c3

→ g ((λx.g(xx))(λx.g(xx))) c3

4 THE TYPED LAMBDA CALCULUS 14

Notice that the first argument to g (the subterm in blue) is just (Y g). Observe that fact has
a “self-replicating” aspect, so that when it is applied to an argument (say n), it also supplies
itself to g. Let’s continue, expanding g to the term it names:

g ((λx.g(xx))(λx.g(xx))) c3

= g (Y g) c3

= (λf . λn. cond (iszero n) c1 (mul n (f (pred n)))) (Y g) c3

→ (λn. cond (iszero n) c1 (mul n ((Y g) (pred n)))) c3

→ cond (iszero c3) c1 (mul c3 ((Y g) (pred c3)))
→ cond ff c1 (mul c3 ((Y g) c2))
→ mul c3 ((Y g) c2)

Now notice that the subterm redex (Y g) c2 is just (fact c2), so we have calculated that

fact c3 = mul c3 (fact c2)

which is what we were aiming for.

Exercise 3.6
Complete the calculation of (fact c3), both by hand and on the lambda calculus workbench.

We will talk more about fixpoints later in the Fixpoint Theory of Recursive Function Definitions
component of the course. For now just be convinced that we can cope with repetition or recursion
in the λ-calculus.

4 The Typed Lambda Calculus

In Mathematics and Computer Science, especially in programming languages, we usually find it
helpful to classify values and expressions according to some notion of having a particular type.

The pure λ-calculus as we have seen it so far could be considered to have a degenerate type
system where every term has the same type, say D, and we could write

M : D

Alone that isn’t very interesting, but considering that since every term is a function (and hence
every argument and result is too) we can also write

M : D → D

to indicate M ’s functional characteristic. An immediate consequence is that D and (D → D)
need to be equal (or at least isomorphic), but unfortunately they can’t be — they don’t even
have the same cardinality. This caused some concern: what could a model of the λ-calculus be
and in particular is there a “function space” model? The affirmative answer was provided by
Dana Scott who took (D → D) to be the continuous functions from D to D.

4 THE TYPED LAMBDA CALCULUS 15

4.1 Extending the Typed Lambda Calculus

Let’s begin by attempting to classify the boolean values as having type Bool. In the previous
section we represented the boolean value false as the combinator ff = λxy.y. It is tempting to
say ff has type Bool but that just doesn’t work: we may be able to interpret the behaviour of
ff as being like false in certain contexts, but in another context the same term is the Church
numeral c0 which we would like to classify as being of type Int. Furthermore, in general λxy.y
is just a function that takes two arguments and returns the second. A similar point can be made
regarding all the combinators we introduced in our discussion of the pure λ-calculus as a model
of computation.

Instead of trying to classify the combinators, what we will do is to introduce a type Bool and
new values to the calculus:

true, false : Bool

We will also need to add (at least) a primitive conditional operation as the cond combinator no
longer serves that purpose. Similarly we can introduce a type Int along with primitive values
and operators to further extend the λ-calculus.

0, 1, 2, 3, . . . : Int

4.2 The Typing Relation

We know the type of the primitive Bool and Int values, but our aim is to construct a type
system for the λ-calculus syntactic categories (variable, abstraction and application) that is
well-behaved: for example, if M : t and M reduces to N then N : t. The system should also not
be too conservative, in the sense that most useful terms will have a type.2

Consider how to go about assigning a type to λx.M . We want it to have a function type which
we will write as

λx.M : t1 → t2

where t2 is the result type and t1 is the argument type. The result type is therefore the type
assigned to M , but to work out that type, there is a dependency on the type assumed for the
binder x. An obvious example is the identity function:

λx.x : t→ t

In general, the collection of type assumptions for all the free variables is needed as part of the
type assignment process. The typing relation is thus a triple:

Γ `M : t

where M is a term, t is the type being assigned to M and Γ is a collection of type assumptions
(or type bindings) of the form x : t. We call Γ a context or an environment. For simplicity we
will gloss over details and require that a context contains at most one binding for any variable.
We will write Γ, x : t to indicate a context containing the binding x : t.

2We could completely evaluate a term and then classify its result, but typing is intended to be a static analysis
— we want to classify their behaviour prior to evaluation.

4 THE TYPED LAMBDA CALCULUS 16

The type assignment system is as follows:

Γ, x : t ` x : t (Var)

Γ, x : t1 ` M : t2
Γ ` λx.M : t1 → t2

(Abstr)

Γ ` M : t1 → t2 Γ ` N : t1
Γ ` MN : t2

(App)

The Var rule says that the type of a free variable x is determined by the corresponding context
assumption. It is important to keep in mind that in an abstraction λx.M the bound occurrences
of the binder x are the free occurrences of x in term M . The Var rule is an axiom and the other
two are inference rules. As in your earlier studies of natural deduction, the components above
the line are premises and below the line is the consequence. In other words, if we can deduce
the premises then the rule allows us to deduce the consequence. As with natural deduction we
can present type assignments as derivation trees.

The Abstr rule can be read as follows: if, under the assumption that x has type t1 we can
determine the type of M to be t2, then the abstraction λx.M has functional type t1 → t2.
Notice that the assumption about the type of x is expressed by the context Γ, x : t1.

The App rule says that if we can determine that M has a functional type t1 → t2 and that
N ’s type agrees with the argument type of M then the the application MN has type t2, as
given by the result type of function M . Explicit in this rule is a requirement that type of the
argument provided agrees with the type the function is expecting. If not, we may reject the
term as invalid. Essentially, this is the point of static typing. Another thing to notice about the
App rule is that the contexts for typing M and N are both the same Γ. If that were not the
case we would be able to have different type assumptions for the same free variable. If that were
permitted — for example x : t in M and x : t′ in N , what should be the type assumption for x in
the context for MN? This is an interesting question which goes beyond the aims of this course.
Our focus is on the simply typed λ-calculus so we make the straightforward, conservative choice
of requiring the contexts to be the same.

As an example of the system in action, here is a derivation of the type of (λx.x)true:

x : Bool ` x : Bool
Abs` λx.x : Bool→ Bool ` true : Bool

App` (λx.x) true : Bool

As another example, here is a derivation of a type for λxy.x:

x : Bool, y : Int ` x : Bool
Abs

x : Bool ` λy.x : Int→ Bool
Abs` λxy.x : Bool→ (Int→ Bool)

You may be wondering why we chose Bool and Int as the types for x and y. It’s a good question
and one we will consider later.

There are well known algorithms for carrying out these type assignments (credited to Roger
Hindley and Robin Milner) which underly the type checking phases of typed functional languages
such as ML and Haskell, but we don’t have time to go into that here.

4 THE TYPED LAMBDA CALCULUS 17

4.3 The Curry-Howard Correspondence

As an interesting aside, there is a noteworthy correspondence between simple types and propo-
sitional logic. A sequent-style presentation of natural deduction would include rules like:

Γ, P ` P (Ass)

Γ, P ` Q

Γ ` P ⊃ Q (⊃-I)

Γ ` P Γ ` P ⊃ Q
Γ ` Q

(⊃-E)

By mapping ⊃ to →, (and eliding the λ-terms) the correspondence with the typing rules is
striking: the Ass and Var rules are the same, as are ⊃-I and Abs, and ⊃-E and App respectively.
If we also had product and sum types, they would correspond to conjunction and disjunction
respectively, and so on.

Furthermore, in constructive logics, a proof of a proposition P will consist of positive evidence
for P . In constructive logics proof by contradiction, or the law of excluded middle — that Q∨¬Q
is axiomatic — do not hold, so for example, a proof of P ⊃ Q is a “mechanical procedure” that,
given a proof of P , constructs a proof of Q. In that case, as well as types corresponding to
propositions, we may consider λ-terms to correspond to proofs.

The relationship often called the Curry-Howard Isomorphism goes even further, with β-reduction
corresponding to proof normalisation. These observations (and others) are usually attributed to
William Howard, Haskell Curry and William Tait.

4.4 Conditional Expressions

We observered in section 4.1 that when adding primitive values and types to the λ-calculus we
also need to add some primitive operations on those values — at least a conditional on the
booleans and a successor on the numbers. Typing the successor function is obvious:

∅ ` succ : Int→ Int

Typing conditional expressions is a little more interesting. We will add a new syntactic form
if then else with evaluation rules:

if true then M else N → M

if false then M else N → N

P → Q

if P then M else N → if Q then M else N

The third rule puts in place an evaluation strategy that is strict in the boolean expression and
non-strict in the two result arms of the conditional. The corresponding typing rule is

Γ ` B : Bool Γ ` M : t Γ ` N : t
Γ ` if B then M else N : t

(If)

4 THE TYPED LAMBDA CALCULUS 18

The first component B obviously must be a Bool, but also notice that both the then and else
parts M and N must have the same type. This may seem unduly conservative — it is clear that
the expression

if true then 42 else id

always returns an Int so it always has that type. But by the If rule, the expression cannot be
typed because 42 : Int and id : t→ t which must be different types. On the other hand, consider
a similar term:

if 〈complicated expression〉 then 42 else id

Now it may be that the complicated expression always evaluates to true or always to false,
but as suggested in section 4.2 we want type assignment to be a static analysis, not involving
evaluation. In that case typing conditional expressions is necessarily conservative, ensuring
consistency by requiring both arms of the conditional expression to have the same type.3

Exercise 4.1
As a simple exploration of how we might deal with data structures, consider adding pairs to
the λ-calculus. Use a simple notation like (M,N) and, following Haskell as usual, use the same
notation for the types: (t1, t2). You will need rules to type pairs and you will also need projection
functions like fst and snd.

4.5 Type Variables and Polymorphism

In one of the examples in section 4.2 where we deduced the type of (λx.x)true to be Bool, one
of the intermediate stages was to assign type Bool→ Bool to the identity function. But there
is nothing about the identity function itself which restricts its argument and result types to be
Bool — intuitively, id will work for arguments of any type. This is the fundamental idea behind
parametric polymorphism, a concept which you should find familiar from Haskell.

In Haskell, we would assign the identity function the type a→ a where a is a type variable with
the natural interpretation that any type may be substituted for the variable. The information
contained in this type is therefore that id’s argument and result are of the same (arbitrary) type.

Being more precise, we can define the syntax of type expressions as follows:

t ::= a | Bool | Int | t1 → t2 | (t)

where a is a type variable, Bool and Int are two primitive types (we could add others in a
similar fashion) and t1 → t2 is a function type, indicating an argument of type t1 and a result
of type t2. Parentheses are minimised by (→) associating to the right.

In another example in section 4.2 we derived a type Bool→ (Int→ Bool) for the term λxy.x.
Clearly, this function need not be restricted to those argument types — here is another type
assignment for λxy.x with type variables instead of Bool and Int:

x : a, y : b ` x : a
Abs

x : a ` λy.x : b→ a
Abs` λxy.x : a→ (b→ a)

3More esoteric type systems, such as intersection types allow us a little more flexibility than the simple system
we are exploring.

4 THE TYPED LAMBDA CALCULUS 19

To treat parametric polymorphism properly we would need to embark on a more detailed dis-
cussion, beginning with type substitution and probably going as far as the second-order (poly-
morphic) λ-calculus, where the type system itself has abstraction and application, parallel to
the term language. We don’t have time for that but to give you an idea of the issues involved,
suppose we define a function

cond = λxyz. if x then y else z

which could be assigned the type

cond : Bool→ a→ a→ a

and then elsewhere use it in an expression

cond true 42 0

for which we would obviously like to derive type Int. To do so would require variable a to be
instantiated to Int, so a suitable mechanism must be provided. This path would lead us into
extending the term language with let-bindings and notions of type instantiation and generalisa-
tion. If you’re interested in exploring this further, Benjamin Pierce’s Types and Programming
Languages is an excellent starting point.

4.6 Recursion

To wrap up our discussion of the λ-calculus we will revisit the implementation of recursion, but
this time in the context of the simply-typed λ-calculus.

Unfortunately, the fixpoint combinator Y that we introduced in section 3.5

Y = λf.(λx.f(xx))(λx.f(xx))

does not exist in the simply-typed λ-calculus because it cannot be assigned a type. Why not?
Somewhere in the derivation we would need to deal with the self-application sub-term (xx) with
the (App) rule:

Γ ` x : t1 → t2 Γ ` x : t1
App

Γ ` xx : t2
Since x is a variable, and all three judgements have the same context Γ, it it clear that x can
only have one type, so

t1 = (t1 → t2)

which only has an infinite solution:

t1 = t1 → t2 = (t1 → t2)→ t2 = ((t1 → t2)→ t2)→ t2 = . . .

and is thus outside our simple type language. In fact no fixpoint combinator can be typed. The
upshot is that we need to add a primitive fixpoint operator in much the same fashion as we did
with boolean and integer operators. Without a more thorough treatment of polymorphism it is
better to do this by adding a new syntactic form, as we did with if then else in section 4.4.
The form will be fix M with evaluation rules

fix (λx.M) → M [x := fix (λx.M)]

P → Q

fix P → fix Q

4 THE TYPED LAMBDA CALCULUS 20

Notice the similarities in the behaviours of Y and fix.4

The typing rule is
Γ ` M : t→ t

Γ ` fix M : t
(Fix)

This may be easier to grasp with an example, so we will revisit the factorial function. The
recursive definition we begin with is

fact = λn. if n == 0 then 1 else n× fact(n− 1)

which we rewrite as before to

g = λf .λn. if n == 0 then 1 else n× f (n− 1)
fact = fix g

Observe the types g : (Int→ Int)→ (Int→ Int) and fix g : Int→ Int.

Exercise 4.2
Check that these types are correct by building the derivation trees for their type assignments.

The evaluation of (fact 3) proceeds as follows:

fact 3 = (fix g) 3
= fix (λf .λn. if n == 0 then 1 else n× f (n− 1)) 3
→ (λn. if n == 0 then 1 else n× (fix g)(n− 1)) 3
→ if 3 == 0 then 1 else 3× (fix g)(3− 1))
= 3× (fix g) 2

and so on. Note once again that we have left in the function names fact and g for readability
only. The whole process could be written without naming any terms. Effectively, applying the
fix operator to g is self-replicating in just the same way as the application of combinator Y in
section 3.5.

Finally, it is worth noting that if we had gone through the full details of polymorphism and
let-bindings we would be able to define fix as an operator with type fix : (a→ a)→ a.

Exercise 4.3
We can define a recursive function to test whether natural numbers are even as follows:

even = λn.if (n == 0) then true

else if (n == 1) then false

else even (n− 2)

Express this function using fix and evaluate an expression such as (even 3).

4A variant on this form that occurs in some of the literature is µx.M which is equivalent to fix(λx.M).

