Dimostrazione del teorema: PA |- S(0)+S(S(0))=S(S(S(0))) (by G.Valenti) {per_ogni}xy.(x+S(y)=S(x+y)) Assioma PA.4 {per_ogni}x.a --> a[t/x] SPEC a, a-->b |- b MP 1. 0+S(0)=S(0+0) (As.PA.4(0,0), SPEC, SPEC, MP) 2. 0+0=0 (As.3(0), SPEC, SPEC, MP) 3. 0+S(0)=S(0) (1,2) (sistema formale con uguaglianza) 4. S(0)+S(S(0))=S(S(0)+S(0)) (As.PA.4(S(0),S(0)), SPEC, SPEC, MP) 5. S(0)+S(0)=S(0+S(0)) (As.PA.4(S(0),0), SPEC, SPEC, MP) 6. S(0)+S(S(0))=S(S(0+S(0))) (4,5) 7. S(0)+S(S(0))=S(S(S(0))) (3,6) =================================== Una dimostrazione alternativa e' la seguente: (FB) 1. S(0)+S(S(0)) = S(S(0)+S(0)) (As.PA.4,SPEC, SPEC, MP) 2. S(0)+S(0)= S(S(0)+0) (As.PA.4, SPEC, SPEC, MP) 3. S(0)+S(S(0)) = S(S(0)+0) (1,2) (Assiomi per l'uguaglianza) 4. S(0)+0 = S(0) (As.PA.3, SPEC) 5. S(0)+S(S(0)) = S(S(S(0))) (3,4) (Assiomi per l'uguaglianza)