1.1) Convert the following binary numbers to decimal: 011010101 011101 010000000000001 1101.10101 1.2) Convert the following decimal numbers to binary: 234 4567 513 2.75 1.1 1.3) Convert the following hexadecimal numbers to binary: 1AB2 3CF8 90D4 576E 3BBD 69FC 1.4) Convert the binary numbers in problem 1.1 to hex. 1.5) Convert the hex numbers in problem 1.3 to decimal. 1.6) In your head convert the following hexadecimal numbers to decimal: 59 66 7A AB FF 82 BC D3 9C C9 D5 E7 1.7) Add the following binary numbers: 0010101 00111000111 0011111111 011 0011101 00010101010 0011111111 001 ------- ----------- ---------- 010 011 010 011 011 ---- 1.8) Subtract the following binary numbers. Use the borrow technique. 001001001 0100000000 010101010101 001000111 0000000001 001111111111 --------- ---------- ------------ 1.9) Add the following hex numbers: 0ABDEF 0AAAA 72ABCDEF BEEF BAD 012345 09999 123EEEEE BEEF BAD ------- ----- -------- ---- ---- 1.10) Subtract the hex numbers in problem 1.9. Use the borrow technique. 1.11) Take the two's complement of the following binary numbers. Give your answers in hex. Assume a 16 bit word size. 0101010101010101 1111111111111111 0011001100110011 1.12) Redo problem 1.8 by adding the two's complement of the lower number in each subtraction. 1.13) Reasoning analogously from your knowledge of two's complement numbers, figure out how to determine the 16's complement of a hex number. Redo problem 1.10 by adding the 16's complement of the lower number in each subtraction. 1.14) What is the ten's complement of 24.690? Assume a 5 digit word size. 1.15) What is 8K in decimal? What is 4M in decimal? 1.16) Is 1440K equal to 1.44M? Explain. 1.17) One disadvantage of sign-magnitude representation is that it requires sign analysis. What is another disadvantage? Hint: how is zero represented? 1.18) Prove that when two signed numbers with different signs are added, overflow never occurs. 1.28) Convert the following octal (base 8) numbers to decimal: 274 5555 651000 4000 40000 1.29) Convert the following octal (base 8) numbers to decimal: 1234 7777 111111 5555 10 1.30) Add the following octal (base 8) numbers: 1234 7777 4444 1111 7777 1234 1111 4443 1111 7777 ----- ----- ----- ----- ----- 1.31) Convert the following decimal numbers to octal (base 8): 999 2361 8 2000 4096 1.32) Convert the following octal (base 8) numbers to binary: 351 777 15741555634277554 1.33) What is the range of 32-bit signed binary numbers? 1.35) Prove that extending to the left a negative two's complement number with ones never changes its value.