- Disegnare lo schema logico che realizza la funzione OR utilizzando solo porte logiche NAND. Mostrare i passi logici (utilizzando le proprieta` dell'algebra di Boole) che dimostrano la correttezza di tale schema. SOLUZIONE: Una porta NAND produce come out not(AB). Basterà negare il risultato utilizzando una porta NAND con gli ingressi uniti ottenendo: not(not(AB)) = AB
========================================================================================== - Disegnare lo schema logico che realizza la funzione AND utilizzando solo porte logiche NAND. SOLUZIONE: A + B => (per la pr. involutiva) = not(not(A + B) => (Applicando De Morgan) = = not(not(A) not(B)) In base a questa relazione il circuito si puo' realizzare come in figura:
========================================================================================== - Sia F una funzione di 4 variabili definita da F= not{A} not{B} C not{D} + A not{B} not{C} not{D} + A not{B} C D + A not{B} C not{D} e tale per cui sappiamo che le configurazioni di input not{A} not{B} not{C} not{D} e A not{B} not{C} D non si presentano mai. Minimizzare l'espressione di F tramite mappa di Karnaugh. (Suggerimento: utilizzare valori ``don't care'' per le configurazioni di input indicate.) SOLUZIONE: La mappa di Karnough e' quella della figura Da essa si ottiene: F = not(B) not(D) + A C not(D)