FPGA implementation of a memory-mapped multicore coprocessor

Tuterial 12 on Dedicatzd systaenms
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Groaduate Course in Computer Science, 2014-20

DMI — Graduate Course in Computer Science Copyleft ® 2020 Giuseppe Scollo

1dil2

Table of Contents

FPGA implementation of a memory-mapped multicore coprocessor
tutorial outline

project workflow

multicore coprocessor design

coprocessor hardware interface

coprocessor register map

Nios IT system with coprocessor and Performance Counter
software driver

L MBE R ABD AR B AR)

test and perFormance measurement programs

10. performance measurement outcomes
11. references
DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

2di12

tutorial outline

this tutorial deals with:
> FPGA implementation of the first project idea proposed in lecture 12

% multicore Coprocessor design
Coprocessor hardware interface

COprocessor regis’rer map

Vv VvV V¥V

Nios IT system with coprocessor and Performance Counter

% software driver

% test and perFormance measurement with the Monitor Program

% test with no status register read

> test with status register read

DMI — Graduate Course in Computer Science

project workflow

developmen’r main phases:

>

VY VvV

v

VHDL description of the multicore coprocessor
VHDL description of the multicore coprocessor with fvalon MM interface

Q@sys construction of a Nios IT system with coprocessor and performance counter, system
mapping to FPGA, and compilation
production of the software driver and of TCL script for its generation in HAL

production of the software application for testing and performance measurement, in two
versions:

sequential : execution with no read of the coprocessor status register
status—tested : execution with read of the coprocessor status register

compilation and execution of the application under the Monitor Program, for two variants of
each version: one with defaut value of the optimization level, the other with level 0%

save of performance reports and project archiving

Copyleft @ 2020 Giuseppe Scollo

DMI — Graduate Course in Computer Science

Copyleft @ 2020 Giuseppe Scollo

3dil2

4di12

multicore coprocessor design

two-step producﬁon of the VHDL descripﬁon of the multicore Coprocessor:
% 1-core coprocessor with 04-bit input
> 2M-core coprocessor with 2"-bit status output

the respective sources delay collatz.vhd and multicore delay collatz.vhd are available in folder vhdl
of the attached archive, as well as in the VHDL/code/e12 folder of the reserved lab area
the 1-core coprocessor is derived from that of the previous lab tutorial, by a straightforward
modification of the Gezel source and consequent variation of the VHDL output produced by
the fdlvhd translator
the coprocessor is endowed with the core select n-bit input, that encodes the core which the 1/ 0
operation is addressed to, while the done outputs of the individual cores are exposed as global status in

a 2"-bit parallel output port

the x0 and delay data ports of the individual cores are deployed on internal £4%*2"-bit and
16*2"-bit parallel signals, respectively, wherein the decoding of core select selects the
relevant part for the I/0 operation

empty folders delay collatz, mc_delay collatz, and mc_interface are meant to host compilation and

simulation projects for the two mentioned sources and the next one; folders with the same names
under tests provide respective input files for simulation

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

5dil2

coprocessor hardware interface

an instance of the multicore coprocessor component is embedded in the Avalon memory-mapped

interface described by multicore delay collatz avalon interface.vhd and accesses the following

Avalon bus signals:

clock, resetn, read, write, chipselect, address, waitrequest, writedata, readdata

& address has an (n+2)-bit width and encodes the coprocessor register offset (see next
page)
the writedata, readdata signals have a 52-bit width each, for a single-cycle data transfer
with the Nios II processor

the gathering of the G4-bit input for the coprocessor thus takes two bus cgcles, therefore the

interface must store the first-cycle data and later concatenate it with the second-cgcle data; this

leads to the classical two-process structure of the description:

% one for the first-cycle data register update,

% the other one for its concatenation with the next input data by the combinational network

on the other hand, the 32 -bit output of a 10-bit data produced by a coprocessor core requires a
zero-extension of the latter, that is done by the interface

consultation of multicore delay collatz avalon_interface.vhd shows the relationships between the
1/0 signals of the computational component and the fAwalon interface signals

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

6dil2

coprocessor register map

the @sys construction of a Nios I system with the coprocessor component, similar to that of the
previous lab tutorial, assigns the coprocessor a base address and, starting at it, a memory area for its
1/0 registers
memory is byte-addressable and 1/0 register addresses are word-aligned, with 4-byte words,
yet the programming model of the software driver of a component on the Avalon bus, b
default, prescribes register identification by a word index, termed register offset, that coincides
with the address input of its Aualon interface
the following register map also shows the coprocessor component signals determined by the

corresponding register offsets, indexed by the value of core_select in parentheses, where & = 2" (s the
number of pamllel cores, and with legenda:

ro: register offset

ao: memory address offset (with respect to the base address)

ro signal ao ro signal ao
0 x0(0)[31..0] 0 2k delay(0) 8k
1 x0(0)[63..32] 4
3k-1 delay(k-1) 12k-4
2(k-1) x0(k-1)[31..0] 8(k-1) 3k status 12k
2k-1 x0(k-1)[63..32] 8k-4
DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

7dil2

Nios IT system with coprocessor and Performance Counter

the subsequent developmen’r phases are similar 1o those of the previous lab tutorial:

$ construction of the coprocessor Qsys component
s Nios IT system construction with coprocessor and Performance Counter
% mapping to FPGA and compilation

the @sys construction of the Nios 11 system goes quicker if performed as a modification
of the @sys system out of the previous lab tutorial, by removing the

delay collatz_avalon_interface component and adding an instance of the

multicore delay collatz avalon interface componen’r

beware : pay attention to save the modified system in the current project diredorg rather than in
the project direc’rorg of the system to be modified

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

8dil2

software driver

the TCL scripts for the generation of the software driver in the project BSP, provided in
folder codesign/ip/multicore delay collatz avalon interface of the attached archive, are
similar to those of the previous lab tutorial

the C sources of the software driver, provided in folder HAL under the same path, differ
from those of the previous lab tutorial in the following aspects:

% definition of constant MDC N CORES = 32, the number of cores in the
COPVOCGSSOF

o for the start of a core computation on a trajectory of given start point the function
mdc_start is available, that performs two bus write operations (because of the
double word length of the start point), unlike the macro that performs only one bus
write in the previous case

> besides the function delay, to read the computation result out of a given core,
function status is available, to read the coprocessor status register

DMTI — Graduate Course in Computer Science Copyleft ® 2020 Giuseppe Scollo

9dil2

test and performance measurement programs

the test and performance measurement programs provided in folders codesign/amp* of
the attached archive compute the delay for ZM initial points, starting with X BASE =
1128784494896128

N..: X BASE+14 is the class record of class 1740

in both versions of the test, the program assigns core j the delay computation for the initial
points x0 in the congruence class j = x0 mod MDC N _CORES, thus for 2M/32 = 64K
trajectories (on the average in the second version); the difference between the versions in
codesign/amp_s* and those in codesign/amp_t* is as follows:

o in the former case, termed sequential, 64X iterations of a loop are executed, where
each of 32 core reads is followed by the core restart, with no status register read
(the processor thus waits after any request to read a not yet awailable result)

% in the latter case, termed status-tested, the processor reads the status register and
processes its content bit by bit, while requesting results from only those cores which
are done with their computation

projec’r creation parameters for the Monitor Program are summarized in the attached file
MulticoreMonitorNotes.txt

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

10di12

perFormance measurement outcomes

compilation, loading on the FPGA and execution of program
sequential multicore delay collatz timing.c, in the two projects codesign/amp s and
codesign/amp_s_03, produces the Performance Counter Reports in the figure

as in the previous lab tutorial, the more significant reduction of the execution time of the delay read
operations in the second variant may be explair\ed by the function inlining under com?ilaﬁon 0%

Terminal - Terminal
--Performance Counter Report-- --Performance Counter Report--
Total Time: 12.4375 seconds (621876238 clock-cycles) Total Time: 11.8503 seconds (592516551 clock-cycles)

the next Performance Counter Reports come out of the execution of program

statustest_multicore_delay collatz_timing, in the two projects codesign/amp t and
codesign/amp_t o3

Terminal Terminal

--Performance Counter Report-- --Performance Counter Report--

Total Time: 12.7676 seconds (638378241 clock-cycles) Total Time: 11.8715 seconds (593573152 clock-cycles)
 EEEEEEEEEEP e E EEREEEEEEE R ET R SRREEEEEEEE + R TR TP e EREEEEEEE ettt SRREEEEEEEE +
| Section | % | Time (sec)| Time (clocks)|Occurrences| | Section | % | Time (sec)| Time (clocks)|Occurrences|
R ERREEE LT T e SRR TR S eeEE LR P S EEREEE R + R EESEEEE LT P e SRR TR S eeEEEEP TP TR EERREEEEEEE +
|outer_loop | 100] 12.76748| 638373915| 1| |outer_loop | 100]| 11.87138| 593568840 | 1|
R EREEEEEEEE T it SEEEP TP om e S RREEEEEEEE + + + em e R EEREEEEEETE +
| read_delays | 37.2| 4.74522| 237260953 2163959 | read_delays | 32.4] 3.84634| 192317173| 2164575|
dommmmmmmeeeaa 4 dmmm e dmmmmmmmmmeeaan e +

e E T e R LR Aemmemenaen +

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

11di12

references

useful materials for the proposed lab experience:

archive with source files for project reproduction

Intel Corp. documents referred to in the previous lab tutorial
M. Zwolinski, Ch. 4, Sect. 4.2.%, 4.5.2

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

12.di12

