Sequential network examples in VHDL, hardware implementaﬁon of dataflow models

Tuterizal 05 on Dedcatad systanms

Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Graduate Course in Computer Science, 2019-20

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

1dil2

Table of Contents

1. Sequential network examples in VHDL, hardware implementation of dataflow models
2. tutorial outline
3, latches, flip-Flops, registers
4, counters, serial inpu’r registers
S. single-rate SDF graph to hardware
o. example: Euclid's GCD algorithm, SDF graph analysis
7. hardware implementation of Euclid's GC D algorithm
8. hardware pipelining
q. pipelining in SDF graphs with loops

10. lab experience

11. references

DMI — Graduate Course in Computer Science CopyleFt ® 2020 Giuseppe Scollo

2di12

this tutorial deals with:

tutorial outline

& sequential components:
latches, Flip—Flops, registers

counters, serial inpu’r registers

% hardware implementation of single-rate dataflow models
example, Euclid's GCD olgorithm:

SDF graph analysis

hardware implemen’raﬁon

s hardware pipelining:

’rhroughpu’r enhancement

warning about pipelining of SDF graphs with cycles

% lab experience

har dware implemen’raﬁon of a dataflow model

DMI — Graduate Course in Computer Science

latches, flip-flops, registers

% latch: level-sensitive one-bit memory

% flip-flop: edge-triggered one-bit memory

% (parallel) register: bank of flip-flops

library ieee;
use ieee.std_logic_1164.all;
entity latch is
port (
d:in std_logic;
en :instd_logic;
q: out std_logic

);
end entity latch;

architecture beh of latch is
begin
process (d, en) is
begin

if (en =’1") then

q<=d;

end if;
end process;
end architecture beh;

library ieee;
use ieee.std_logic_1164.all;
entity dff is
port (
d: in std_logic;
clk : in std_logic;
q : out std_logic

);
end entity dff;

architecture simple of dff is
begin
process (clk) is
begin
if rising_edge(clk) then
q<=d;
end if;
end process;
end architecture simple;

D—1D

Enable c1

D latch symbol

library ieee;
use ieee.std_logic_1164.all;
entity register is
generic (n : natural ;=8);
port (

Copyleft @ 2020 Giuseppe Scollo

D 1D

Clock Cc1

D type Flip-Flop

d :in std_logic_vector(n—1 downto 0);

clk : in std_logic;
nrst : in std_logic;
load : in std_logic;

q : out std_logic_vector(n—1 downto 0)

en’d entity register;

architecture beh of register is
begin
process (clk, nrst) is
begin
if (nrst ='0’) then
q <= (others =>'0’);

Reset —QR
D—iD

Clock

c1

Set—s

D-type Flip-flop with
asgndmfnous%et aﬁd reset

elsif (rising_edge(clk) and (load = 1)) then

q<= d'
end if;
end process;
end architecture beh;

3dil2

DMI — Graduate Course in Computer Science

Copyleft @ 2020 Giuseppe Scollo

4diil2

counters, serial input registers

4 counters: registers counting specified clock edges

also used to implement timers i
% serial input registers: partly similar to counters i |
used for data input from serial lines, output is parallel 1 ‘
the use of wriables easies the VHDL description in behavioural style

library ieee; library ieee; binary counter

use ieee.std_logic_1164.all; use ieee.std_logic_1164.all;
use ieee.numeric_std.all; entity shift_register is

entity counter is generic (n :integer :=4);
generic (n :integer :=4); port (
port (clk : in std_logic;
clk : in std_logic; rst : in std_logic;
rst : in std_logic; din : in std_logic;
output : out std_logic_vector(n—1 downto 0) q : out std_logic_vector(n—1 downto 0)
) ;
end; end entity;
architecture simple of counter is architecture simple of shift_register is
begin begin

process(clk, rst)

variable count : unsigned(n-1 downto 0);

process(clk, rst)
variable shift_reg : std_logic_vector(n-1 downto 0);

begin begin
if rst ="0" then if rst ="0" then
count := (others =>'0’); shift_reg := (others =>"0");
elsif rising_edge(clk) then elsif rising_edge(clk) then
count := count + 1; shift_reg := shift_reg(n-2 downto 0) & din;

end if; end if;
output <= std_logic_vector(count); q <= shift_reg;
end process; end process;
end; end architecture simple;

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

5dil2

single-rate SDF 9raph to hardware

hardware implemen’(aﬁon assump’rion:

single-rate SDF graphs, all actors operate at the same clock frequency

three implementation rules:
1. all actors are implemented as combinational circuits

2. all communication queues are implemen’red as wires (without storage)

3. each initial token on a communication queue is replaced by a register

two definitions:
S combinational path in the SDF graph: cycle-free path with no initial tokens on it
S critical path in the SDF graph: combinational path that has maximum latency

maximum clock frequency for the circuit: reciprocal of latency through critical path

DMI — Graduate Course in Computer Science Copyleft ® 2020 Giuseppe Scollo

6dil2

example: Euclid's GCD algorithm, SDF graph analysis

algorithm: at each step (a, b) is replaced by (la-bl, min(a,b))
the pair converges to (GC D(a,b), GCD(a,b))

initial token
value =a

sort

outi=(a>b)?a:b;
out2=(a>hb)?b:a;

diff
outl =(al=b)?a-b:a;
out2=b;

initial token
value=b

Schaumont, Figure .10 - Euclid’s greatest common divisor as an SDF graph

PASS analysis:
+1 —1] ¢ edge(sort,dif)
41 <1 | « edge(sort,dif f) 1
G- . L =
~1 +1 | « edge(dif f,sort) rank(&) = 1 sy |
—1 +1] < edge(diff,sort)
DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

7dil2

hardware implemem‘aﬁon of Euclid's GCD algorithm
by the aforementioned three rules for a hardware implementation of the SDF model:
% two combinational circuits implemen’r the actors
S aregister is placed on each of the two connections from diff to sort
implementing the actors is a simple matter, by means of a few commonly used modules
(multiplexers, comparators and a subtractor)

N.B. the HW diagram requires a bit of imagination and a correction
SORT DIFF
\
REGISTER
Schaumont, Figure 3.11 - Hardware implementation of Euclid’s algorithm
DMI — Graduate Course in Compufer Science CbpgleH 3 2020 Giuseppe Seollo

8dil2

hardware pipelining

example of throughput enhancement by pipelining:

digital filter to Produce a weighted sum: x0°c2+x1*c1+x2°cO

x2 x1 x0

Schaumont, Figure 5.12 Schaumont, Figure 3.1% Schaumont, Figure 5.14
SDF graph of a simple moving-average Pipelining the moving-average filter by Pipelining the moving-average filter by
application inserting additional tokens (1) inserting additional tokens (2)
Schaumont, Figure 3.15
Har dware implementation of the
moving-average filter
remarks:

% initial tokens here play the role of delay buffers in the definition of the pipelining transformation
% the SDF graph is cycle-free... (see next)

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

9dil12

Pipelining in SDF graphs with loops

by introducing new tokens, pipelining may change the behaviour of an SDF graph

in particular, this may happen if additional tokens are introduced inside a loop, as
this example shows:

accumulator double-accumulator

for odd/even samples

Schaumont, Figure .16 - Loops in SDF graphs cannot be pipelined

in order to apply pipelining without changing the functional behaviour of an SDF graph with
cycles, the aﬂ)iﬁonal tokens should be placed outside of any loop in the graph

for instance, on the input or output lines

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

10di 12

lab experience

the circuit depicted in figure 3.11 implements the computational core of Euclid's GCD algorithm, yet it does not contain elements
apt to signal the start and the end of the computation nor to distinguish inputs and output; the aims of this experience are: to
extend that circuit to this purpose, to produce a VHDL description of it, to simulate it, and to implement it on the DE1-SoC FPGA
1. extend the schematic of the circuit in figure 3.11 with three input signals and two output signals:
a, b: the input data, 5-bit wide each
start: 1-bit input, to signal availability of the input data
ged: the 5-bit output result
done: 1-bit output, to signal the end of computation and awailability of the output result
and with additional elements (Flip-flop, multiplexers, maybe a comparator) useful to the stated purpose
2. produce a VHDL description of the designed circuit, either directly or through a Gezel description to be translated to VHDL by
means of the fdlvhd program
3. create a Quartus project Euclid, assign it the produced .vhd files, compile, and simulate the behaviour of the circuit with a few
input data pairs
4. create a new Quortus project Euclid_on_DE1SoC, assign it the previous .vhd files together with the 7-segment display decoder
employed in lab tutoriol 4 and a new top-level VHDL entity, composing the former one with an instance of the aforementioned
decoder, while mapping the I/0 signals to FPGA pins as follows:
a, b: SW9-5, SW4-0
start: not KEY1
RST: not KEYO
CLK: CLOCK 50 (50 MHz system clock)
done: LEDRO
gcd: LEDR1, HEXO
5. import the DE1-50C pin assignments, compile, program the FPGA with the resulting .sof file, and test the functioning of the
implementation with a few input data pairs
DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

11di12

references

recommended readings:

Zwolinski, Ch. b, Sect. £.1-6.9.1
Schaumont, Ch. 3, Sect 3.2

readings for further consultation:

Schaumont, Ch. 3, Sect. 3.5
useful materials for the proposed lab experience
(source: Intel Corp. - FPGA University Program, 2010)

Debugging of VHDL Hardware Designs on Intel's DE-Series Boards - For Quartus Prime 16.1,
Sect. 4.1, 0-8

VHDL sources:

examples in this presenta’rion

examples in Zwolifski's book
DMI — Graduate Course in Computer Science Copyleft ® 2020 Giuseppe Scollo

12di 12

