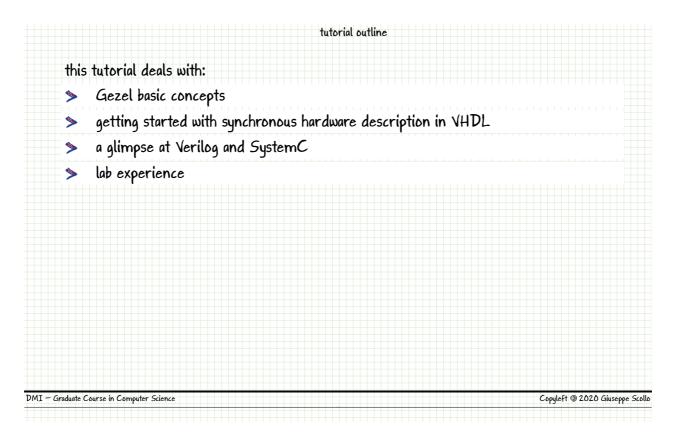
Hardware description languages: Gezel, VHDL, Verilog, SystemC

Tutorial 03 on Dedicated systems

Teacher: Giuseppe Scollo

University of Catania Department of Mathematics and Computer Science Graduate Course in Computer Science, 2019-20

DMI - Graduate Course in Computer Science


Copyleft @ 2020 Giuseppe Scollo

1 di 8

Table of Contents

- 1. Hardware description languages: Gezel, VHDL, Verilog, SystemC
- 2. tutorial outline
- 3. Gezel: basic concepts
- 4. getting started with VHDL
- 5. a glimpse at Verilog and SystemC
- 6. lab experience
- 7. references

DMI — Graduate Course in Computer Science

3 di 8

Gezel: basic concepts

essentially, two sorts of variables: signals and registers

- > one or more bit-wide, of type ns or to ecc.
- registers are initialized to zero, signals have no memory
- datapath inputs and outputs are always signals
- a register output gets the register input value at the clock active edge, therefore the (discrete time) semantics of register assignment is different from the (instantaneous) semantics of signal assignment

assigment order is irrelevant

hardware is inherently parallel

assignment right-hand-side expressions are constructed by operators that have a direct interpretation as hardware components, see Schaumont Table 5.1 and Sect. 5.1.3

datapath encapsulation and structural hierarchy, with module reuse and cloning, see Schaumont Sect. 5.2

DMI - Graduate Course in Computer Science

getting started with VHDL

abstraction level: discrete events; semantics: queue of future events specification units:

- entity: interface specification (ports: names, types and directions of I/O signals) may have parameters, by generic declarations
- > architecture: specification of the entity internals

more than one architecture may be associated to a given entity, following different specification styles:

- functional: in terms of sequential processes, activated by change of given signals (sensitivity list)
- > behavioral: in terms of concurrent assignments (signal relations)
- > structural: in terms of components and port connections between instances thereof

encapsulation and hierarchy:

- components: entity-like encapsulation, structural hierarchy
- > processes: encapsulate functionality, yet process nesting is not allowed

see Zwoliński Ch. 3-4 for a primer on syntax of VHDL constructs and simple examples

DMI - Graduate Course in Computer Science

Copyleft @ 2020 Giuseppe Scollo

5 di 8

a glimpse at Verilog and SystemC

abstraction level: discrete events (same as VHDL)

Verilog, a few features:

- similar to VHDL for description of schematics as connected entities
- more features for transistor-level description
- less flexible for top-down system specification System Verilog designed to this purpose, but less supported by automated synthesis tools
- see Zwoliński, App. B for a primer on Verilog syntax and simple examples

SystemC, a few features:

- C++ class library with functions required for hardware description
- concurrent processes controlled by sensitivity list (cf. VHDL)
- layered language architecture, with channels for communication, for models of computation, and methology-specific channels
- see Marwedel sect. 2.7 for a more informative introduction to SystemC

DMI — Graduate Course in Computer Science

lab experience

the VHDL translation produced by the Gezel code generator sometimes yields an unexpected outcome...

- create the source file delay_collatz.fdl containing the second version of the Gezel example shown in the second lecture (the file is available in the lab reserved area, in the 3x+1 folder)
- y run from the command line: fdlvhd delay_collatz.fdl
- launch Quartus and in this system create a new project named delay_collatz
- > copy the .vhd files produced by step 2 into the project directory and open file delay_collatz.vhd in the Quartus editor
- assign the aforementioned files to the project, compile and visualize the resulting error messages, then, by double-click on the first error message, find out the VHDL source line causing the error
- analyse the error in delay_collatz.vhd under the light of Zwoliński, Sect. 4.1.2 and p. 63 of 4.2.3
- find a suitable modification of the Gezel source that would fix the error in its VHDL translation, then produce its delay_collatz_rev.fdl revision and the delay_collatz_rev.vhd VHDL translation, and assign the latter as topentity to a project revision
- recompile and check that no error messages show up
- set the clock to a frequency that warrants a positive value for the worst-case slack (see clock fine tuning tips from the first lab lab experience)
- compare usage of resources (n. of LEs and registers) and worst-case slack with those obtained from compilation and timing analysis completed in the second lab experience
- copy and modify the test waveform from the second lab experience (if necessary, adjust the clock according to the frequency established above)
- yrun the functional simulation and check the correspondence of the outcome to expectations

DMI - Graduate Course in Computer Science

Copyleft @ 2020 Giuseppe Scollo

7 di 8

references

recommended readings:

Schaumont, Ch. 5, Sect. 5.1-5.2

Zwoliński, Ch. 3, Sect. 3.1-3-7; Ch. 4, Sect. 4.1-4.3

other sources for consultation:

Brandolese, Fornaciari, App. B

Zwoliński, App. B

Marwedel, Ch. 2, Sect. 2.7

Nahid, Digital Design, Ch. 9, Hardware Description Languages (PDF slides)

Smith, VHDL & Verilog Compared & Contrasted

DMI — Graduate Course in Computer Science