Lecture 12 on Dedicated systanms
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Groaduate Course in Computer Science, 2018-149

Design and implementaﬁon of a memorg—mapped multicore Coprocessor

DMI — Graduate Course in Computer Science

et e T e S)
SHBARLDL =1

L MBE R ABD AR B AR)

Table of Contents

Design and implementation of a memory-mapped multicore coprocessor
lecture topics

design space

codesign evolution of the delay computation

structure of a multicore coprocessor

hardware interface constraints

project workflow

hardware design of the multicore coprocessor

coprocessor hardware interface

coprocessor register map

Nios IT system with coprocessor and Performance Counter
software driver

test and performance measurement programs
performance measurement outcomes

references

Copyleft ® 2014 Giuseppe Scollo

DMI — Graduate Course in Computer Science

Copyleft @ 2019 Giuseppe Scollo

1dil6

2di16

lecture topics

outline:
> codesign evolution for computations on Collatz trajectories
> ewlution of the delay computation

> performance enhancement

2 domain extension
> project development

> hardware design of the multicore coprocessor
coprocessor hardware interface
coprocessor register map

Vv ¥V ¥V

Nios II system with coprocessor and Performance Counter
> software driver

> test and performance measurement with the Monitor Program
> test with no status register read

> test with status register read
DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

3dil6

design space

possible evolutions of the codesign implemented in the previous lab tutorial may be conceived along
two orthogonal development directions:
@ performance enhancement
& functional extensions
an example of orthogonal combination of both directions is given by the following objectives for a
first project that here is going to be dealt with:
% o definite performance enhancement may be delivered by parallel replication of the
hardware unit in charge of the delay computation
% on the other hand, a minimal functional extension of definite interest is the widening of the
input width, to make the delag computation applicable to a wider domain of trajectories
more significant functional extensions may be identified from consideration of functions, defined
over Collatz trajectories, other than the delay but whose computation requires trajectory generation
anywa
i ’?he challenge here would be the design of multifunction hardware units as well as of a more

complex HW/SW interface, apt to selection of the functions of interest and to the related
data transfer

DMI — Graduate Course in Computer Science Copyleft @ 2019 Giuseppe Scollo

4dil6

codesign evolution of the delay computation

a first design alternative to be considered about the replicaﬁon of the hardware unit for the delay
compufaﬁon is:

% multiple instances of the computational component on the Avalon bus, or

@ construction of a more complex component, embedding multiple copies of the individual
computational component

the latter option is preferable in view of possible further extensions that would require access by the

different instances to shared dato, e.q. defined as configuration parameters
bus transactions for this purpose are avoided in this way, moreover a control hierarchy is
implemented whereby the coprocessor is assigned local control functions

other design decisions relate to the number of parallel instances of the computational component,
henceforth termed cores, and the size of the coprocessor 1/0 data

@ toking it into account that the Nios 1T processor may transfer at most 32 bits in a single bus
transaction, and that it may be useful to have a status register in the coprocessor, with one bit
per core, it proves convenient to set the limit on the number of cores at 52

% the data available in the website on the 5x+1 problem by Eric Roosendaal, e.q. in the Class

Records Table, indicate a b4-bit minimum size for input data of actual interest, while a 16-
bit data size sutfices for the deloy output

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

5di16

structure of a multicore coprocessor

the b4-bit extension of the single core input is easily obtained by a straightforward modification of
the Gezel source from the previous lab tutorial, with the same correction to the VHDL output of the
fdlvhd translator

the structural description of the multicore coprocessor in VHDL is eased by the iterative
construct for <identifier> in <range> generate, whose usage is exemplitied in Zwolifiski,
4.5.2, that in our case allows the generation of the 2" = 52 core instances, with n = 5

the multicore coprocessor then ought to have circuits for the correct dispa’rching of I/0 data between
the interface and a core selected by the processor:

@« o multiplexer with n-bit selection input and 16-bit data ports for the core delay output

4 0 demulﬁplexar with n-bit selection input and b4-bit data ports for the core initial data input,
as well as a similar one but with 1-bit data ports for the core start signal input

descripﬁon in VHDL of mulﬁplexing is simple if the core outputs are chained in a 2"x16-bit vector, as
it is enough to use a selection operator on the vector

the more complex description in VHDL of demultiplexing is feasible by means of a logical shift
operator, as it is exemplitied for a generic decoder in Zwoliriski, 4.2.%

DMI — Graduate Course in Computer Science Copyleft @ 2019 Giuseppe Scollo

6di16

hardware interface constraints

signal exchange at the multicore coprocessor 1/0 ports is 1o be adap’red to the available signals of the
Avalon-MM interface, taking a few constraints on these into account, such as:

% the data transfer signals, writedata and readdata, must have the same width

% signal address identifies an I/0 register in the memory address space assigned to the
coprocessor, starting from O and with word-addressing by default

since the Nios IT processor may transter at most 32 bits in a single bus transaction, it is convened
that this be the coprocessor word width at the Avalon interface, that is to say the width of the
writedata and readdata signals

this entails that the delay output is to be zero-extended, whereas the ’rmjec’rorg inpuf data is
to be acquired in two bus cycles

the register address space of the coprocessor is thus the interval [0, 5x2"], taking one address for
the status register into account, hence address is (n+2)-bit wide
a suitable management of register addresses allows a quick identification of the core (or
status register) from the value of the address input, for example:
decode(address[n,1]) if address[n+1] = 0
decode(address[n-1,0]) if address[n+1,n] = 10
status register if address[n+1,n] =11

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

7dil6

project workflow

developmen’r main phases:
> VHDL description and simulation of the multicore coprocessor

> VHDL description and simulation of the multicore coprocessor with Avalon MM
interface

s @sys construction of a Nios II system with coprocessor and performance counter,
system mapping to FPGA, and compilation

> production of the software driver and of TCL script for its generation in HAL

s production of the software application for testing and performance measurement,
in two versions:
sequential : execution with no read of the coprocessor status register
status-tested : execution with read of the coprocessor status register

s compilation and execution of the application under the Monitor Program, for two

variants of each version: one with defaut value of the opﬁmizaﬁon level, the other
with level 0%

% save of perFormance reports and projec’r archiving

DMI — Graduate Course in Computer Science Copyleft @ 2019 Giuseppe Scollo

8di 16

hardware design of the multicore coprocessor

two-step production of the VHDL description of the multicore coprocessor:
% 1-core coprocessor with 64-bit input

> 2M-core coprocessor with 2"-bit status output

the respective sources delay collatz.vhd and multicore delay collatz.vhd are available in folder vhdl
of the attached archive
the 1-core coprocessor is obtained in a similar way as that of the previous lab tutorial, with
straightforward modification of the Gezel source and similar correction of the output
produced by the fdivhd translator
the coprocessor is endowed with the core select n-bit input, that encodes the core which the /0
operation is addressed to, while the done outputs of the individual cores are exposed as global status

in a 2"-bit parallel output port

the x0 and delay data ports of the individual cores are deployed on internal 64*2"-bit and

16%*2"-bit parallel signals, respectively, wherein the decoding of core select selects the
relevant part for the I/0 operation
folders delay collatz, mc_delay collatz, and mc_interface are meant to host compilation and
simulation projects for the two mentioned sources and the next one; folders with the same names
under tests provide respective input files for simulation
DM — Graduate Course in Computer Science Copyleft ® 2014 Giuseppe Scollo

9di 16

coprocessor hardware interface

an instance of the multicore coprocessor component is embedded in the Avalon memory-mapped
interface described by multicore delay collatz avalon interface.vhd and accesses the following
fvalon bus signals:

clock, resetn, read, write, chipselect, address, waitrequest, writedata, readdata
& address has an (n+2)-bit width and encodes the coprocess register address (see next page)
% the writedata, readdata signals have a 52 -bit width each, for a single-cycle data transfer

with the Nios II processor

the gathering of the b4-bit input for the coprocessor thus takes two bus cycles, therefore the
interface must store the first-cycle data and later concatenate it with the second-cycle dato; this
leads to the classical two-process structure of the descripﬁon:
& one for the first-cycle data register update,
% the other one for the combinational network
on the other hand, the 22-bit output of a 10-bit data produced by a coprocessor core requires a
zero-extension of the latter, that is done by the interface
consultation of multicore delay collatz interface.vhd shows the relationships between the 1/0
signals of the computational component and the Avalon interface signals

DMI — Graduate Course in Computer Science Copyleft @ 2019 Giuseppe Scollo

10di 16

coprocessor register map

the @sys construction of a Nios I system with the coprocessor component, similar to that of the
previous lab tutorial, assigns the coprocessor a base address and, starting at it, a memory area for its
170 registers
memory is byte-addressable and 1/0 register addresses are word-aligned, with 4-byte words,
yet the programming model of the software driver of a component on the Avalon bus, b
default, prescribes register identification by a word index, termed register offset, that coincides
with the address input of its Aualon interface
the following register map also shows the coprocessor component signals determined by the

corresponding register offsets, indexed by the value of core select in parentheses, where & = 27 is the
number of parallel cores, and with legenda:

ro: register offset

ao: memory address offset (with respect to the base address)

ro signal ao ro signal ao
0 x0(0)[31..0] 0 2k delay(0) 8k
1 x0(0)[63..32] 4
3k-1 delay(k-1) 12k-4
2(k-1) x0(k-1)[31..0] 8(k-1) 3k status 12k
2k-1 x0(k-1)[63..32] 8k-4
DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

11di 16

Nios IT system with coprocessor and Performance Counter

the subsequent developmen’r phases are similar 1o those of the previous lab tutorial:

s construction of the coprocessor Q@sys component
s Nios IT system construction with coprocessor and Performance Counter
% mapping to FPGA and compilation

the @sys construction of the Nios 1T system goes quicker if performed as a modification
of the @sys system out of the previous lab tutorial, by removing the

delay collatz_avalon_interface component and adding an instance of the

multicore delay collatz avalon interface componen’r

beware : pay attention to save the modified system in the current project diredorg rather than in
the project direc’rorg of the system to be modified

DMI — Graduate Course in Computer Science Copyleft @ 2019 Giuseppe Scollo

12.di 16

software driver

the TCL scripts for the generation of the software driver in the project BSP, provided in
folder codesign/ip/multicore delay collatz avalon interface of the attached archive, are
similar to those of the previous lab tutorial

the C sources of the software driver, provided in folder HAL under the same path, differ
from those of the previous lab tutorial in the following aspects:

% definition of constant MDC N CORES = 32, the number of cores in the
COPVOCGSSOF

o for the start of a core computation on a trajectory of given start point the function
mdc_start is available, that performs two bus write operations (because of the
double word length of the start point), unlike the macro that performs only one bus
write in the previous case

> besides the function delay, to read the computation result out of a given core,
function status is available, to read the coprocessor status register

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

13 di 16

test and performance measurement programs

the test and performance measurement programs provided in folders codesign/amp* of
the attached archive compute the delay for ZM initial points, starting with X BASE =
1128784494896128

N.B.: X BASE+14 is the class record of class 1740

in both versions of the test, the program assigns core j the delay computation for the initial
points in the congruence class j mod MDC N_CORES, thus for 2M/%2 = 04K trajectories
(on the average in the second version); the difference between the versions in
codesign/amp_s* and those in codesign/amp t* is as follows:

o in the former case, termed sequential, 64X iterations of a loop are executed, where
each of 32 core reads is followed by the core restart, with no status register read
(the processor thus waits after any request to read a not yet awailable result)

% in the latter case, termed status-tested, the processor reads the status register and
processes its content bit by bit, while requesting results from only those cores which
are done with their computation

projec’r creation parameters for the Monitor Program are summarized in the attached file
MonitorNotes.txt

DMI — Graduate Course in Computer Science Copyleft @ 2019 Giuseppe Scollo

14 di 16

perFormance measurement outcomes

compilation, loading on the FPG#A and execution of program
sequential multicore_delay collatz timing.c, in the two projects codesign/amp s and
codesign/amp_s_03, produces the Performance Counter Reports in the figure

as in the prewous lab tutorial, the more significant reduction of the execution time of the delay read
operahor\s in the second variant may be explamed by the function inlining under compllahon 0%

Terminal - Terminal -

--Performance Counter Report-- --Performance Counter Report--

Total Time: 10.5684 seconds (528420451 clock- cyc'les) Total Time: 9.39399 seconds (469699747 clock- cycles)

--------------- e e e T e TR e e S e LT T

| Section | % | Time (sec)l Time (clucks)|0ccurrences| | Section | % | Time (sec)l Time (c'lucks)lOccurrencesI

L R T TP e e ST T T + oo e EREEEEEEEE ERREEEEEEE TR SRREEEE TR +

Iouter loop | 100| 10. 56834| 528416826| l| |0uter ~_loop | 100]| 9. 39393| 469696577| 1|
i e e R I RN e ST e ShETE TR
| Iread _delays | 40.6| 3. 81682| 190840832| 2097152|
e P T b e e TP ettt LT P TP e et EEREETEEEE +

the next Performance Counter Reports come out of the execution of program
statustest_multicore_delay collatz_timing, in the two projects codesign/amp _t and
codesign/amp_t 03

Terminal - Terminal =

--Performance Counter Report-- --Performance Counter Report--

Total Time: 12.0294 seconds (601467952 clock- cycles) Total Time: 11.1297 seconds (556485961 clock- cycles)
e e e e TP +
| Section | %] Time (sec) | Time (c'locks)lOccurrencesl
e e T e e +
|0uter ~_loop | 100] 11. 12966| 556482791| 1|

et T R SRR R LR e R e e ek e
|read _delays | 37.4| IS 49599| 224799527] 2154772| Iread _delays | 35] 3. 88987| 194493464| 2164781|
--------------- B S e R ST B
DMT — Graduate Course in Computer Science Copyleft ® 2014 Giuseppe Scollo

15di 16

references

useful materials for the proposed lab experience:

archive with source files for project reproduction
Intel Corp. documents referred 1o in the previous lab tutorial
Zwolinski, Ch. 4, Sect. 4.2.3, 4.5.2

DMI — Graduate Course in Computer Science Copyleft @ 2019 Giuseppe Scollo

16 di 16

