MicroProcessor interfaces

Lecture 10 on Dedicatad systanms
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Graduate Course in Computer Science, 2018-149

DMI — Graduate Course in Computer Science

Table of Contents

integration in the memory hierarchy

example: the Nios-II custom-instruction interface
register files for Nios-II custom instructions

1. Microprocessor interfaces
2. lecture topics
3. memory-mapped register
4,
5. mailbox
o. FIFO queue
7. shared memory
B. coprocessor interfaces
4. custom instruction interfaces
10. ASIP design flow
11.
12.
1%, references

Copyleft @ 2014 Giuseppe Scollo

DMI — Graduate Course in Computer Science

Copyleft @ 2014 Giuseppe Scollo

1di14

2di14

lecture topics

outline:

> memory-mapped interfaces
memory-mapped register
mailbox

FIFO queue

handshake protocols

¥V ¥V ¥V VYV

shared memory

® coprocessor interfaces

% ASIP design flow

% custom-instruction interfaces

example: the Nios—II custom-instruction interface

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

3dil4

memoq—mapped register

memory-mapped interfaces are the most general type of HW/SW interface
in programming they are supported through the use of pointers, e.q.:
volatile unsigned int *MMRegister = (unsigned int *) 0x8000;
// write the value ‘'OxFF’ into the register
*MMRegister = 0xFF;
/l read the register
int value = *MMRegister;

[Custom-HW Module]

HW Data Data

Write from to
HW HW
Microprocessor
—
software =
application 1

Memory
Mapped
q Resolution

Microprocessor
Interface sw SW Read

Write
Address
Pigl
I

Decoder
Data_out

Address + Command

: ' Data_in

S;haumont, Figure 11.1 - A memory-mapped register

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

4di14

integration in the memory hierarchy

whg must the poin’rer be a volatile pointer.?

4 generally the value stored at an int * can appear in three different locations in the memory
hierarchy: in main memory, in the cache memory, and in a processor register

@ by defining the pointer as a volatile int *, the compiler will avoid maintaining a copy of the
memory-mapped register in the processor registers

volatile int *p = (int *) 0x8000; "7
int *p = (int *) 0x4000;

however, defining a memory-map ed
register with a volatile pointer will not

‘ e prevent that memory address from
Microprocessor { non-chacheable being cached!
\ address !
- two approaches to deal with this
\ Memory B
/ v Mapped problem.
/ Memory Register

Register File

% allocation into a non-cacheable

/ memory areq, if the processor
]

has a configurable cache (e.q.

osA000.: a Microblaze)
@ iE OXAFFF iEOxaooo s use of sPeciﬁc wche_bgpass

instructions of the processor
Schaumont, Figure 11.2 - Integrating a memory-mapped register in a memory hierarchy (3.9. a Nios-1I1)

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

5dil4

mailbox

simple extension of a memorg-mapped register with a handshake mechanism, whereby the
communicating parties signal the register state to each other

Software Hardware

Mailbox

volatile int *reg -
{int *} ADDR1;

volatile i
{int *) ADDR2;

velatile int *dat =
{int *) ADDR3;

dat

void send({i

(FBEEE T

Schaumont, Figure 11.% - A mailbox register between hardware and software

the protocol shown in the figure has two synchronization points, viz. just after req and ack taking the
same value

this means that it should be quite easy to double the throughput of this protocol... how?
two main disadvantages of this protocol:
@ tight coupling, because of interlocked write/read operations

4 high overhead in terms of bus transfers, to check the mailbox status
DMI — Graduate Course in Computer Science

Copyleft @ 2014 Giuseppe Scollo

6di 14

FIFO queue

the use of a FIFO queue compensates temporary imbalances between the read and write throughputs

a FIFO may be built by chaining multiple FIFO sections, each
acting as a slave on input and as a master on output

FIFO
il —3 —> d
WPTR RPTR
wack <—f je— rr
o s o B D |:_| [i
dp f : ns(8);
: ns(l);
: ns(l);
ns(8);
: ns(l);
ns(l))
sig read, wr : ns(l);
reg rptr, wptr : ns(3);
use dualport mem(di, wptr, write, write port
i read port
always |

read = (

Schaumont, Figure 11.4 - A FIFO with handshakes on the read and
write ports

di

do

rf =3
ai <

le— ao
> ro

condition

ai, ro, w

Schaumont, Figure 11.5 - 4 one-place FIFO with a slave input handshake and a master output

handshake

DMI — Graduate Course in Computer Science

shared memory

Copyleft @ 2014 Giuseppe Scollo

instead of confrolling access 16 a single register, a single handshake can also be used to control access

to a region of memory

Software

volatile int *reg =
{int *) ADDR

volatile int

(int *) ADDRZ;

void sendiint a

Hardware

Shared Memary

ack req

B =

Region 2

Region 1

req
ack=0,
read region 2

ack=1
read region 1

U

{

Schaumont, Figure 11.6 - 4 double-buffered shared memory with a memory-mapped request/acknowledge handshake

in one phase of the protocol in Figure, changes are allowed to region 1 of the memory, while in the
other phase of the profocol, changes are allowed in region 2 of the memory

this scheme implements the pipelining of read/write operations, which, for applications that
require data-reorganization in between processing stages, may lead to substantial performance

improvemen’rs

DMI — Graduate Course in Computer Science

Copyleft @ 2014 Giuseppe Scollo

7 di 14

8di 14

coprocessor interfaces

when high data- ’rhroughput between the software and
the custom hardware is needed, a dedicated processor
interface ou’rperForms memory- mapped interfaces

Coprocess
Interface

a coprocessor interface does not make use of
ii SRerE the on-chip bus, it uses a dedicated port on the
processor, driven by coprocessor instructions

Schaumont, Figure 11.7 - Coprocessor interface

both the coprocessor instruction set and the specific coprocessor interface depend on the

type of processor—not all processors have a coprocessor interface
the decision of using a specific coprocessor interface locks the custom hardware
module into a particular processor, thus it limits the reusability of that custom
hardware module to systems that also use the same processor

main adwantages of a coprocessor interface over an on-chip bus:

> higher throughput : because not constrained by the wordlength of the bus on chip,
nor by the load/store transfer mechanism

> fixed latency: a coprocessor bus is a dedicated, point-to-point connection with
stable, predictable timing

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

custom instruction interfaces

the integration of hardware and software can be considerably accelerated as follows:
1. vreserve a porﬁon of the opcodes from a microprocessor for new instructions
2. in’regrafe the custom-hardware modules direcﬂg into the micro-architecture of the

micro—processor

3. control the custom-hardware modules using new instructions derived from the
reserved opcodes

the resulting design is called an Application-Specific Instruction-set Frocessor (ASIP)
while a coprocessor instruction set is part of a microprocessor, an ASIP instruction
set is defined by the applicaﬁon

ASIP design automates some of the more difficult aspects of HW/SW codesign:

% the instruction-fetch and dispatch mechanism in the micro-processor ensures that
custom-hardware and software remain synchronized

% design of an ASIP proceeds in an incremental fashion, that helps the designer to
avoid drastic changes to the system architecture while exploring different options

9di14

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

10 di 14

ASIP design flow

Describe
ASIP SW and HW
¥

| Stimuli l | C Program

Processor
Descnptlon

[ASIP Compiler }—[ASIP GeneratorJ

ASIP Simulator (ISS)
Evaluate Performance
cycles/area/clock period

Schaumont, Figure 11.12 - ASIP design flow

HW Synthesis

Customized

Memo -
v Processor

sequential ASIP design does not generally deliver better performance than SoC design
based on custom hardware modules, yet it does deliver less error-prone results
significant progress has been made on design tools that support the ASIP design

flow—all of the shaded boxes in the figure can be obtained as commercial tools
DMI — Graduate Course in Computer Science Copyleft @ 2019 Giuseppe Scollo

11di14

example: the Nios-II custom-instruction interface

the Nios-II softcore processor has a coprocessor interface uoherebg custom instructions may be
defined and hardware modules may be attached to

Q 2} 3]
[clk_en / _
accerl]eia?;ut)or i == / . \ |
‘dataa‘ datab, n ////X _operand X/////

accelerator | [_—\
oo L st I i YO

Schaumont, Figure 11.15 - Nios-II custom-instruction interface timing

the interface supports variable-length execution of custom instructions through a two-way handshake
the clk_en input is used to mask off the clock to the custom hardware when the instruction is inactive
in software, the custom instruction is executed through the instruction custom, e.q.:
custom 0x5, r2, r3, r5
assigns the value 0x5 to n and associates the dataa, datab, result ports with registers r2, r3, r5,
respectively—use of n: to multiplex different custom instructions in the hardware module
DMI — Graduate Course in Computer Science Copyleft ® 2014 Giuseppe Scollo

12 di 14

register files for Nios-II custom instructions

the use of a local register file in the custom hardware module is also supported

Nios-ll Custom Hardware

: a custom instruction may take operands from
5 wRa either register file: registers prefixed with r are
fasmmenama N located in the processor, while registers prefixed
with c are located in the custom hardware

result

Register File | ,
instructions that use both are allowed,
Schaumont, Figure 11.16a - Nios-ITI custom-instruction integration
with processor register file SUCh as custom 0xb5, c2, c3, rb
Nios-II Custom Hardware figure 11.16b shows the case for the first inpu’r
Li | .
Register File operand onlg: the control Slgnal reada selects
Processor a ﬂ etther the processor's or the local register file
Register File
datas % in the former case, the operand is
provided through the dataa port, that is

associated with a processor's regis’rer

& in the latter case, the input a selects the

Schaumont, Figure 11.16b - Nios-II custom-instruction integration local regis'l‘er to use as OPerand
with local register file

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

13 di 14

references

recommended readings:

Schaumont (2012) Ch. 11, Sect. 11.1.1-11.1.5, 11.2.0, 11.2.0-11.2.1,
11.32.%

for Further consultation:

Schaumont (2012) Ch. 11, Sect. 11.1.0, 11.2.1-11.2.2, 11.32.2, 11.%.4

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

14 di 14

