Synchronous systems as finite state machines with datapath (FSMD)

Lecture 05 on Dadicatad systams

Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Groaduate Course in Computer Science, 2018-19

DMI — Graduate Course in Computer Science

[I
AL [[O

A REMBE R ABD AR B AR)

Table of Contents

Synchronous systems as finite state machines with datapath (FSMD)
lecture topics

finite state machines (FSM)

example: a pattern recognizer FSM

equivalent Moore FSM of a given Mealy FSM
FSM con datapath (FSMD)

example: FSMD model of an up-down counter
example: Euclid's GCD algorithm

FSMD model as two stacked FSMs

datapath representation of FSMD: controller
complete datapath representation of FSMD
proper FSMD

references

Copyleft ® 2014 Giuseppe Scollo

DMI — Graduate Course in Computer Science

Copyleft @ 2019 Giuseppe Scollo

1dil4

2di14

lecture topics

outline:

>

VvV ¥V VvV VYV VY

control models: finite state machines (FSM)

Mealy FSM, Moore FSM

conversion between the two types of FSM
dataflow control models: FSM with datapath (FSMD)
example: FSMD model of up-down counter
example: FSMD model of Euclid's GCD algorithm
FSMD model as two-stacked FSM
datapath representation of FSMD
proper FSMD formation rules

DMI — Graduate Course in Computer Science Copyleft ® 2014 Giuseppe Scollo

3di14
finite state machines (FSM)
FSM, a common control model for hardware description (and more):
> o set of states, with a distinguished initial state
> aset of inputs and a set of outputs
% a state transition function
% an output function
a few variations:
% with acceptor states, a distinguished subset of the set of states
% with an output function that depends
% on current state and input: Mealy FSM
% on the current state only: Moore FSM
FSM models are often presented as labelled transition graphs
DT — Graduate Course in Comprter Science Copeft @ 2014 Guseppe Seollo

4dil14

example: a pattern recognizer FSM

here is an example of Mealg FSM that recognizes a binary pattern

input output

T v ou

11100011010100000101100011 00010000100000000000010000

Schaumont, Figure 5.5 - Mealy FSM of a recognizer for the pattern ‘110’

the output 1 signals the recognition of an occurrence of the pattern in the binarg inpuf stream

% recognition takes place through an incremental process: recognition of initial, longer and
longer prefixes of the pattern

states are the (finite) memory of an FSM
it is possible to build an equivalent Moore FSM, by a general method

DMI — Graduate Course in Computer Science Copyleft ® 2014 Giuseppe Scollo

5di 14

equivalent Moore FSM of a given Mealy FSM

a simple procedure to convert a Mealy FSM into an equivalent Moore FSM:

% Moore states: bijection with the distinct pairs (s, 0) where s is a Mealg state and there
exists a transition to s labelled with output o

S for each (s, 0) < S assign output o to Moore state S

% for each Mealy transition s — s' labelled i/o define a transition labelled i to Moore state
S' < (s', 0) from Moore states S « (s, x), for all outputs x

S resolve any possible ambiguity about the choice of the initial state for the Moore FSM

this procedure, together with the correspondence (s0,0) - sa, (s0,1) = SB, (s1,0) = SC, (s2,0) < SD,

yields an equivalent Moore FSM for the recognizer of the pattern '110', presented in the figure:

T in ‘L out

Schaumont, Figure 5.6 = Moore FSM of a recognizer for the pattern 110’
DMI — Graduate Course in Computer Science Copyleft @ 2019 Giuseppe Scollo

6di14

FSM con dotapath (FSMD)

the FSMD model combines dataflow processing with control over it, described by an FsMm

to this purpose, instructions are defined in a datapath description, that are executed under

FSM control

in Gezel, sfg (signal flow graph) blocks represent such instructions

% similar to the always block, but hold expressions that are executed only if so

prescribed by the FsMm

% instructions, represented by sfg names, are the outputs from the FSM to the

dafapa‘th

> more precisely, at every clock cycle the FSM may prescribe the (concurrent)

execution of a set of the da’rapa’rh instructions

an FSM controller is defined for a specific datapath:
% it acquires the instruction names as its output vocabulary

s its state transitions may be conditioned by expressions over the values of datapath

registers

DMI — Graduate Course in Computer Science

example: FSMD model of an up-down counter

the counter, here described in Gezel, is initialized o O, then it alternates

a sequence of increments up to a maximum threshold, with

a sequence of decrements down to a minimum threshold

dp updown(out ¢ :ns(3)) { fsm ctl_updown(updown) {

reg a: ns(3); initial sO;

always {c=a;} state s1, s2;

sfginc{a=a+ 1;}// instruction inc @s0 (clr) -> s1;

sfg dec {a =a - 1; }// instruction dec @s1 if (a < 3) then (inc) -> s1;

sfg clr { @ = 0; } // instruction clr else (dec) -> s2;
} @s2 if (a > 0) then (dec) -> s2;

else (inc) -> s1;
Schaumont, Listing 5.12 - Datapath for an up-

down counter with three instructions

}
Schaumont, Listing 5.1 - Controller for the

up-down counter

the next table shows what happens at every clock cycle, for the first ten
eycles

Cycle

DONSTWURWNPN PO

FSM
curr
/next

s0/s1
s1/s1
s1/s1
s1/s1
s1/s2
s2/s2
s2/s2
s2/s1
s1/s1
s1/s1

Copyleft ® 2014 Giuseppe Scollo

Dr
instr

clr
inc
inc
inc
dec
dec
dec
inc
inc
inc

Dr
expr

u
o

=at+l
=a+l
=a+l
=a-1
=a-1
=a-1
= o+l
=oa+l
=a+l

S ® ® 9 ® D ® D B O
I

a curr
/next

0/0
0/1
172
2/%
3/2
2/1
1/0
0/1
1/2
2/%

7 di 14

in Listing 5.1

Schaumont, Table 5.4 - Behavior of the FSMD

DMI — Graduate Course in Computer Science

Copyleft @ 2019 Giuseppe Scollo

8dil4

example: Euclid's GCD algorithm

the algorithm is slightly different from that seen in the previous lab tutorial:

termination with one of the two variables equal to zero

dp euclid(in m_in, n_in : ns(16);
out gcd : ns(16)) {
reg m, n: ns(16);
reg done : ns(1);
sfg init { m = m_in;
n=n_in;
done = 0;
ged =0;}
sfgreduce{ m=(mM>=n)?m-n:m;
n=MN>m)?n-m:n;}
sfg outidle { gcd = 0;
done = ((m==0) | (n==0)); }
sfg complete{ gcd = (M >n) ? m: n);
$display(“ged =7, ged); }

Schaumont, Listing 9.14 - Euclid's GCD as an FSMD

fsm euclid_ctl(euclid) {
initial sO;
state s1, s2;
@s0 (init) -> s1;
@s1 if (done) then (complete) -> s2;
else (reduce, outidle) -> s1;
@s2 (outidle) -> s2;
}

control elements introduced with the
FSM: almost all those proposed in the
previous lab experience

N.B.: the execution of reduce and
outidle fired by the FSM in state s1 is
concurrent

DMTI — Graduate Course in Computer Science

Copyleft ® 2014 Giuseppe Scollo

9di 14

FSMD model as two stacked FSMs

a dataflow model may be viewed as an FSM as well, with state space defined by its registers

FSM controller
i 1
I Control 1 .
Logic
A
2.

Conditions Instructions
10, e S I A
'
Inputs ! 5 .

Schaumont, Figure 5.7 - An FSMD consists of two stacked FSMs

E Outputs
3 Datapath H
! Logic E
] i
; i

FSM activities through each clock cycle:

both FSMs: state update (registers)

controller FSM: choice of next state and
of instructions for the datapath FSM,
determined by current state and by
conditions on datapath state

datapath FSM: choice of next state and

output determined by current state and by
instructions selected by the controller

FsM

in pracﬁce it is convenient to describe onlg the controller FSM by state transitions

not 16 incur in the notorious space state explosion

DMI — Graduate Course in Computer Science

Copyleft @ 2019 Giuseppe Scollo

datapath representation of FSMD: controller

if a datapath, which can be viewed as an FSM, may be described by expressions, this should be possible for the
controller FSM as well

actually in some cases there is some gain with this approach, but generally it has several shortcomings:

dp updown_ctl(in a_sm_3, a_gt_0: ns(1); a comparison with the example descripﬁor\ in Listing 5.1%
out instruction : ns(2)) { shows:
reg state_reg : ns(2);
// state encoding: s0=0,s1=1,s2=2
[instruction encoding: clr = 0, inc = 1, dec = 2

4 o greater descripﬁve complexifg, and

the need to introduce a numerical encoding of states
rather than a symbolic one

always {
state_reg = (state_reg ==0) ? 1: on the other hand, separate descriptions of controller and
((state_reg == 1) &a_sm_3) ? 1: datapath by expressions may be combined into a single
((state_reg == 1) & "a_sm_3) ? 2 description, whereby some performance enhancement may be
((state_reg==2)&a gt 0)?2:1; gained
instruction = (state_reg==0)?0:
((state_reg == 1) & a_sm_3) 7 1 : o for example,‘lafencg may oF:h,Tn decre?s.e by one
((state_reg == 1) & "a_sm_3) 22 clock cycle, since state tranlsmon fondmons, which
(state_reg ==2) &a_gt 0)?2: 1: need fo. be e\{aluated on .reglsfers in the FSMD
} model, in a single description may be generated and
} evaluated within the same clock cycle
Schaumont, Listing 5.15 - FSM controller for updown counter using > however, as we are 9°in9 to see, besides this
expressions advantage other shortcomings show up
DMI — Graduate Course in Computer Science Copyleft ® 2014 Giuseppe Scollo
11 di 14
complete datapath representation of FSMD
dp updown_ctl(out ¢ : ns(3)) { the comparison of the two-part FSMD description given in Listings
reg a: ns(3); 5.12 and 5.15 with this monolithic description shows that in the
reg state : ns(2); latter:
siga_sm_3: ns(1); % the mingling of data processing aspects with scheduling,
siga_gt 0:ns(1); sequencing and control aspects complicates the
/] state encoding: s0=0,s1=1,82=2 undersfandabﬂl'f_y of the overall desigr\
always { % the monolithic integration of these aspects also makes it
state = (state ==0) ? 1 : harder the reusability of parts of the description
((state == 1) & a_sm 3)? 1: for example, reuse of the datapath under a
((state == 1) & "a_sm _3)? 2: different scheduling
((state==2) &a_gt 0)?2:1; on the other hand, single descripﬂon offers more opﬁmizaﬁon
a_sm 3=(a<3) opportunities:
agt 0=(a>0); % of state assignments, whereas they are automatically
a=(state==0)?0: generated by synthesis tools in the other case
((state==1)&a_sm_3)?a+1: % of aEPlicaﬁons where control has a little influence, whereas
((state == 1) &"a_sm_3)?a-1: much greater is the influence of high-throughput
((state==2) &a gt 0)?a+1:a-1; requirements
c=a for complex, highly structured applications, FSMD description with
}} separate FSM and datapath descriptions seems to be preferable
Schaumont, Listing 5.16 - updown counter using expressions
DMI — Graduate Course in Computer Science Copyleft @ 2019 Giuseppe Scollo

12 .di 14

4.

proper FSMD

a proper FSMD is one which has deterministic behaviour
a desirable property, also enjoyed by SDF graphs, as already seen

for a hardware FSMD implementation, deterministic behaviour means that the hardware is
race-free

race conditions are a typical problem with concurrent systems, and hardware is
inherently concurrent

an FSMD model is proper if it satisifies the following properties:

neither registers nor signals are assigned more than once during a clock cycle

no circular definition exists between signals (wires)

if a signal is used as an operand of an expression, it must have a known value in the same
clock cycle

all datapath outputs must be defined (assigned) during all clock cycles

DMI — Graduate Course in Computer Science

references

recommended readings:

Schaumont, Ch. 9, Sect. 9.3-5.4.3, 5.0

for further consultation:

Schaumont, Ch. 9, Sect. 5.7

Copyleft ® 2014 Giuseppe Scollo

13 di 14

DMI — Graduate Course in Computer Science

Copyleft @ 2019 Giuseppe Scollo

14 di 14

