FPGA implementation of a memory-mapped coprocessor

Tutorial 11l on Dadicated systanms

Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Graduate Course in Computer Science, 2018-14

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo
1di18
Table of Contents
1. FPGA implementation of a memory-mapped coprocessor
2. tutorial outline
3. design decisions for a hardware acceleration case study
4. fvwalon interface and programming model for the case study
5. project workflow
b. coprocessor hardware interface
7. coprocessor as a @sys component (1)
B. coprocessor as a @sys component (2)
4. coprocessor as a @sys component (3)
10. Nios II system with coprocessor and Performance Counter
11. mapping to FPGA and compilation
12. software driver
1%, test and performance measurement programs (1)
14. test and performance measurement programs (2)
15. test with blocking acceleration
1b. test with nonblocking acceleration
17. references
DMI — Graduste Course in Computer Science Copyleft ® 2014 Giuseppe Scollo

2di18

tutorial outline

this tutorial deals with a hardware acceleration case s’rudg

% design and FPGA implementation of a computation accelerator of the
Collatz delag

problem statement and design decisions
coprocessor hardware interface

coprocessor as a Qsys component

VvV VvV Vv V¥V

Nios II system with coprocessor and Performance Counter
% software driver

% test and performance measurement with the Monitor Program
> test with blocking acceleration

% test with nonblocking acceleration

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

3dil8

example: design decisions for a hardware acceleration case s’rudg

the previous lab tutorial presen’red a software implementa’rion of the delay computation
of a Collatz trajectory with given start point

hardware implementations of the same function were the subject of previous lab
experiences
e.qg. the third lab experience produces a VHDL description of it

the perFormance measurements carried out on the software implementaﬁon show that
it consumes almost all of the program execution time

prob[em: accelerate the program execution by using the hardware
implemen’raﬁon of the aforementioned function

a first alternative to evaluate: to integrate the hardware function as a custom
instruction or as a memory-mapped coprocessor?
the second option seems better, for at least two reasons:
> the first option is blocking
% the data transfer size in each interaction is very small

other design decisions depend on this first decision, as follows

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

4di18

Avalon interface and programming model for the case study

the VHDL description of the circuit which computes the function is to be embedded into a
component equipped with Avalon interfaces for the Clock, Reset, and Avalon MM Slave signals,
so as to receive the initial data by a write operation and to return the result by a reply to a read
operation

mulﬁcycle data transfers are possible thanks to the Avalon signal waitrequest, set by the
slave to defer the response to a read or write request by an arbitrary number of cycles

addressing of the coprocessor: since the (initial data) write and (final result) read operations take
place at different times and have the same data size, a single address suffices
for the sake of simplicity, it is convenient to use the 52-bit Avalon signals writedata,

readdata in the hardware interface for this address, with internal conversion to 16-bit
for the corresponding internal I/0 ports of the circuit which computes the function

software driver : two macros and a function may be defined for the bus access software
interface: DC RESET(d), DC_START(d,x0), unsigned int delay(d), where d is the address assigned to
the coprocessor

these projec’r ideas will be developed with a few opﬁons according to the Following
workflow

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

5dil8

project workflow

developmen’r main phases:

VHDL description of the coprocessor with Avalon MM interface

@sys construction of a Nios 1T system with coprocessor and performance counter
system mapping to FPGA and compilation

TCL script production for HAL software driver generation

VVVvVYY

production of the software application for testing and performance measurement,
in two versions:

sequenﬁalz blocking execution of the coprocessor compu’raﬁon
pipelined : nonbloaking execution of the COprocessor compufa’rion

% compilation and execution of the application under the Monitor Program, for two

variants of each version: one with defaut value of the optimization level, the other
with level 0%

% save of performance reports and project archiving

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

6di18

coprocessor hardware interface

two VHDL sources implemen’r the memorg—mapped coprocessor:

% delay collatz.vhd, modified version of the output by the fdlvhd translation
of the Gezel source presen‘red in the second lecture, according to the third
lab experience

% delay collatz interface.vhd, which contains an instance of the computational

component and accesses the following fvalon bus signals: clock, resetn,
read, write, chipselect, waitrequest, writedata, readdata

both files are awailable in the vhdl folder of the attached archive, which is also
located in the Nios II folder of the reserved lab area

the folder also contains std logic_arithext.vhd, which is needed to compile the
compufaﬁor\al component, and delay collatz codesign.vhd, which is explained next

consultation of the delay collatz interface.vhd source shows the relationships
between the 1/0 signals of the compu’raﬁonal component and the Avalon interface
signals

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

7dil8

coprocessor as a @sys component (1)

folder codesign in the attached archive is preset to host the project development

after having copied the *.vhd files from folder vhdl into it, the @sys custom
component construction goes much like in the tutorial seen in lab tutorial 10, with
due differences for the present case

after creation of project delay collatz codesign, with top-level entity having the same
name, the construction of the custom component delay collatz interface may proceed

in particular, the Conduit fAvalon interface is not needed by the present
component, since it makes no use of peripherals outside the FPGA

the new component type definition is shown in the figure
File Templates Beta View

ComponentType 2% | Block Symbol &2 | Files &2 | Parameters £ | Signals & Interfaces

» About Component Type

Name: [delay_collatz_avalon_interface
Display name: |delay_collatz_component
Version [16.1

Group [Dedicated Systems IP Cores

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

8dil8

coprocessor as a @sys component (2)

the next step is the assignment of VHDL files that describe the component and their
analysis, as shown in the figure

N.B. for this project, it is not necessary to copy files for simulation

File Templates Beta View
ComponentType &2 | Block Symbol &2 | Files 22| Parameters 3| Signals & Interfaces

» AboutFiles
Synthesis Files
These files describe this component's implementation, and will be created when a Quartus Prime synt

The parameters and signals found in the top-level module will be used for this component's paramete
Output Path

Source File Type

\VHDL

delay_collatz_avalon_interface.vhd
delay_collatz.vhd
std_logic_arithext.vhd

delay_collatz_avalon_interface.vhd
delay_collatzvhd
std_logic_arithext.vhd

\VHDL
\VHDL

AddFile... || 7=

Top-level Module: |delay_collatz_avaIon_imerface Ivl

ve File H Analyze Synthesis Files H eate Synthesis File f

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

9dil8

coprocessor as a @sys component (3)

finally, the new component definition ends with the definition of its Avalon interfaces and
placement of its signals under the appropriate interfaces, as shown in the figure

File Templates Beta View

ComponentType 22 | BlockSymbol 2 | Files 2| Parameters 3 | Signals & Interfaces &%
+ About Signals
= 4
ame b — — w e
Name |avalon_slave_0
»=avalon_slave 0 -~ 7 ed S/ = = - | Rosumentton |
- chipsslect [1] Type {Avalon Memory Mapped Siave [vJ
D-read [1] =a 2
a1 readdata [32] rez Associated Clock Iclock_smk {v‘
-a waitrequest [1] wairequest Associated Reset:lclock_reset lv‘
D-wite[{fjwrite L e
D= writedata [32] witedats Assignments | Edit
»=clock_reset “coce 4
- resetn [1] resal | y‘"
<add signal>> Address units WORDS |+
= clock_sink C/o0k avalon_slave_0 -
- clock [1] ¢k Associated clock ‘M
R b Associated reset [cock_reset
oy Bits per symbol [
wite Burstcount units: [WORDS s
chipselect I [
waitrequest WPRER J0dress Span |0000000000
wiitedata -
st [Tk

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

10di 18

Nios IT system with coprocessor and Performance Counter

Connections Name
B ck_0

o4 ckin

O ek in_reset

—— ek

—— chk_reset

ck
reset_n
data_master
instruction_master
d_irg
jtag_debug_modul
tag_debug_module
custom_mstruction.
B onchip_memory2_0
ekt
st
reset!
B delay_collatz_avalo...
clock_raset
avalon_slave_0

—_—t

—t
—
—

clock_sink
B performance_count...

ck

reset

control_slave
B jtag_uart_0

ck

reset

avalon_jtag_slave
*r— ra

System Contents

2 | [T Address Map &2

Description Export
Clock Source
Clock Input clk
Reset Input resetn
Clock Output
Reset Output

| & nios2_gsys 0 INios Il (Classic) Processor

Clock Input

Reset Input

Avalon Memary Mapped Master
Avalon Memory Mapped Master
Interrupt Receiver

Reset Output

Avalon Memary Mapped Stave
Custom Instruction Master
'On-Chip Memory (RAM or ROM)
Clock Input

Avalon Memory Mapped Slave
Reset Input
delay_collatz_component
Reset Input

Avalon Memory Mapped Slave
Clock Input

Performance Counter Unit
Clock Input

Reset Input

Avalon Memory Mapped Slave
JTAG UART

Clock Input

Reset Input

Avalon Memary Mapped Slave
Interrupt Sender

Interconnect Requirements

2

Clock

exported

clk_0

ck_0
[
[ch
(e
(e
[ch]
(e

ick_0
(k1]
fck1)

[clock_sink]
[clock_sink]
ck_0

ck_0
(e
(e

ck_0
[ci
(e
[

Base

0x0004_0200

0x0002_0000

0x0004_1048

0x0004_1000

0x0004_1040

IRQ 31—

0x0004_0f

0x0003_ffFf

0x0004_104b

0x0004_103f

0x0004_1047

unsaved Path: nios2_gsys_0

nios2_qsys_0.data_master

\ nios2_qsys_0.instruction_master

nios2_qsys_0.jtag_debug_module |0x0004 0800 -

0x0004_offf

0x0004_0800 - 0x0004 Offf

onchip_memory2_0.s1

0x0002 0000 -

0x0003_ffff

0x0002_0000 - 0x0003 ffff

delay_collatz_avalon_interface_0.... |0x0004 1048 -

0x0004_104b

performance_counter_0.control_sl...|0x0004 1000 -

0x0004_103f

tag_uart_0.avalon_jtag_slave

0x0004_1040 - 0x0004_1047

DMI — Graduate Course in Computer Science

mapping to FPGA and compilation

Copyleft @ 2014 Giuseppe Scollo

11di18

for the construction of the Nios 11 system shown in the previous figures it may be useful
to consult the @sys introduction tutorial

with a few differences, such as: memory size is 128 KB in the present case, all

base addresses are assigned by th system, etc.

the final steps to map the system to the FPGA are as follows:

in @sys:
o
-

exit Qsys, then in Quartus:
-

and delay collatz_timing.sdc

5

archive
File > Save Project

5
5

compile delay collatz_

codesign.vhd

save the system with name embedded system by File > Save As...
generate the VHDL code for it by Generate > Generate HDL...

assign the project files embedded system.qip (in embedded system/synthesis)

import assignments from file DE1_SoC.qgsf in folder delsoc of the attached

DMI — Graduate Course in Computer Science

Copyleft @ 2014 Giuseppe Scollo

12di 18

software driver

folder script in the attached archive contains two TCL scripts for the generation of the software driver in the BSP
for the project

the two scripts differ for a single command, present in one of them, that prescribes optimization level 03
rather than the default level O1
these two scripts are to be copied in folder codesign/ip/delay collatz_avalon_interface

in the same folder, respectively under HAL/inc and HAL/src, copy is to be made of the C sources
delay collatz avalon interface.h and delay collatz avalon interface.c of the software driver, that are
available in folder src of the attached archive

the TCL scripts were written by analogy with the TCL script for the software driver of the Performance Counter,
available in the Quartus Prime Lite 16.1 distribution under path
$SOPC KIT NIOSZ2/../ip/altera/sopc_builder ip/altera avalon performance counter

similarly, the C sources of the software driver were written by (more limited) analogy with the C sources of
the software driver of the same IP Core, in folder HAL under the aforementioned ?ath

the motivation for this, perhaps unorthodox, way of producing the software driver lies in the twofold fact that

the Awlon interface of the custom component does not fit into any of the HAL generic device model
classes defined in Chapter 7 of the Nios II Classic Software Developer's Handbook

<, neither does the Performance Counter Unit IP Core fit therein ...
together with a somewhat reasonable level of operational analogy between the two components

skimming through Chapter 7 of the handbook is recommended nonetheless, to get a better understanding
of the software driver structure and contents

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

13di 18

test and performance measurement programs (1)

folder src in the attached archive contains the subject programs, which are to be copied in
the provided folders for the creation of test and performance measurement projects
under the Monitor Program, as follows:
% delay collatz sequential timing.c in codesign/amp s and in codesign/amp s 03
% delay collatz pipelined timing.c in codesign/amp p and in codesign/amp p 03
project creation parameters are summarized in the attached file MonitorNotes.txt
the DE1-50C needs to be powered-up and connected to the PC, to program the FPGA at
the end of each project creation
main differences between the source of lab tutorial 10 and the present sequentiol version:
@ #include and #define directives relating to the custom component
@« replacement of the input from the switches device with a constant

% replacement of the body of function delay collatz with two instructions from the
software driver of the custom component

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

14 di 18

test and performance measurement programs (2)

the pipelined version of the program exhibits much stronger differences with respect
to the program of lab tutorial 10:
the interaction with the custom hardware is made nonblocking by replacing the
delay collatz function call with an inlining of its body, yet where the software
computation of the next trajectory start point is placed in between the two
inlined instructions, respectively to start the hardware computation and to read
its result

the synchronization mechanism is very simple, thanks to properties of the custom

component and of the waitrequest signal of the fvalon MM protocol:

> for trajectories faster than the software computation, the custom component
keeps the result in its internal register while waiting the read command

> for trajectories slower than the software computation, the read command is
kept waiting by the Avalon interface by means of the waitrequest signal

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

test with blocking acceleration

compilation, loading on the FPGA and execution of program
delay collatz sequential timing.c, in the two prg'ec'ts codesign/amp s and
codesign/amp s 03, produces the Performance Counter Reports in the figure

the remarkable reduction of the execution time of section delay collatz in the second
variant moay be explained by the function inlining under compilation 0%

Terminal Terminal

--Performance Counter Report-- --Performance Counter Report--

Total Time: 0.499495 seconds (24974733 clock- cycles) Total Time: 0.346551 seconds (17327539 clock- cycles)

B R R R R e T + e R e +
| Section | % | Time (sec)l Time (c10cks)|0ccurrences| | Section | % | Time (sec)l Time (clocks)lOccurrencesl
B Rt Hem EEREEEERERE e E EREEEEEEEE . oo R ERREEEEEEEE e EREEEEEEE +
Itra]ect start | 38| 0. 19005| 9502720| 65536| Itra]ect start | 49.5]| 0. 17170| 8585216| 65536|
............... e mm e e e e e e e e
Idelay_collatz | 44. 4| 0. 22162| 11081057| 65536| Idelay collatz | 35.7| 0. 12373| 6186326| 65536|
--------------- B e S e B e e e o

a speed-up by an order of magnitude, w.r.t. the software computation in lab tutorial 10,
results from the performance data in that case, with the same optimization levels

15di 18

Terminal Terminal

--Perfo_rmance Counter Report-- --Performance Counter Report--

Total Time: 7.52118 seconds (376058945 clock- cycles) Total Time: 4.55965 seconds (227982443 clock- cycles)

Fommmmmmmeee e it St Sttt Sttt + e e R +----- e bt +

| Section | % I Time (sec)l Time (clocks)I0ccurrenceSI | Section | % | Time (sec)l Time (clocks)lOccurrencesl

R R T +o---- R S Fommmm e +----- R s et ettt s oL LTRSS +

ltra]ect start | 2.53| 0. 19005I 9502720I 65536| Itra]ect start | 3. 77| 0. 17170| 8585216| 65536|

--------------- e S e S N N e .

[delay collatz | 96.3| 7.24331] 362165262| 65536] Idelay collatz | 95. 1| 4, 33682| 216841223| 65536|

--------------- it e Seeteeeteets Sttt 2 D e e o
DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

16 di 18

test with nonblocking acceleration

it is sensible to expect a further perFormance gain out of the nonblocking
execution of the computation by the custom hardware

the comparison of the following Performance Counter Reports with the
corresponding data for the lmplemen’rahon with all computation done in software,
gtelds a 21x speed-up with default optimization O1 and a 1ox speed-up with
optimization O3; the corresponding speed-up values with blocking acceleration are
15x with 01 and 1%x with 0%

N.B the speed-up is computed on the total time; section data are less significant
with nonbloaking acceleration because the execution threads of the two sections
overlap in time

Terminal Terminal
--Performance Counter Report-- --Performance Counter Report--

Total Time: 0.359145 seconds (17957243 clock-cycles) Total Time: 0.285762 seconds (14288114 clock-cycles)

Vsection 17 T Tine (sec)| Tine (clocks)|occurrences| Vsection 17 1 Tine (se0)| Time (clocks)|Occurrences|

Ttraject start | 2.0 oasces) w0270l | ess3| Ttraject start 1 6011 oanze P R —

[ééiéi'ééiiééé essl ooaees 1sss2367] 65536l | ééiéi'ééii;ié' Veoal Tossen P —

DMI — Graduate Course in Compufer Science Cbpgleﬁ ® 20149 Giuseppe Seollo
17 di 18
references
useful materials for the proposed lab experience:
archive with source files for project reproduction
#Awlon® Interface Specifications, Ch. 1-5
MNL-AVABUSREF, Intel Corp., 2018.049.20
Ma/(l'ng 4)5_4/5 Componem‘s - for Quartus Prime 16.1
Intel Corp. - FPGA University Program, November 2016
Performance Counter Unit Core, Ch. 50 in: Embedded Feripherals IP
User Guide, Intel Corp. - UG-01085 | 2018.04.24
Nios IT Classic Software Dew:[oper's Handbook, Ch. 7
NIISVZ, Altera Corp., 2015.05.14
Intel FPGA Monitor Program Tutorial for Nios 11 - For Quartus Frime 16.1
Intel Corp. - FPGA University Program, November 2016
DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

18 di 18

