SoC development on FPGA with application profiling

Tuterial 10 on Decicatad systams

Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Graduate Course in Computer Science, 2018-14

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

1dil2

Table of Contents

1. SoC development on FPGA with application profiling
Z. tutorial outline
2. system integration in SoC development
4, tools for software application profiling
5. construction of a Nios 1T system with performance counter
0. a simple, well-known example
7. use of the performance counter in the software application
8. BSP generation and HW/SW integration
q. debugging and execution

10. lab experience

12, references

DMI — Graduste Course in Computer Science Copyleft ® 2014 Giuseppe Scollo

2di12

tutorial outline

this tutorial deals with:

@« system integration of hardware components for SoC development with @sys

« tools for software application profiling

% design of a Nios II system equipped with a performance counter

@ use of the performance counter API in a well-known example: delay computation
on a sequence of Collatz trajectories, with user input of the sequence length

@« HW/SW integration through BSP generation in the Monitor Program, compilation,
loading on FPGA, debugging, and execution

@ lab experience:

design and implemen‘raﬁon of a HW/SW system with similar structure and
features as those of the example presented in this tutorial, using the same
develoPmen’r and proFiling tools, but for a different applicaﬁon

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

3dil2

system integration in SoC development

development of a SoC with applications is a typical HW/SW codesign activity

it consists of design and develofmen’r of components of both kinds, as well as
their integration to form a single system

the Quartus tool utilized in this lab tutorial for the integration of hardware
components in 50C development is @sys

it is advised to consult the introduction to @sys and to run the therein
provided example on the DE1-50C, to get familiar with using the tool

a slightly more complex example is the subject of the present tutorial:

& development of a SoC similar to the aforementioned one, but equipped with a
component that enables accurate profiling of software applications (see next)

& development of a software implementation of the delay computation of
Collatz trajectories, and of a software application to measure its execution
time

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

4diil2

tools for software application profiling

profiling a program: measuring the time sIen’r in different parts of the program, to identify
those which are critical 16 execution spee

useful in HW/SW codesign to figure out which program parts may deserve possible
hardware acceleration, thence to estimate the achievable speedup

'l'hree 1'0015 Considet’ed in (-Fairly da‘ted) doCumen-t Proﬁ'["ng N"os le Edit System Generate View Tools Help
11 5_ysfem$: ™ |p Catalog 5% =

GNU gprof : software measurement, high software overload, Xl

Library

high measure distortion T et
. i o~ Bridges and Adaptors
. ©- Clocks; PLI Reset:
Interwal Timer : hardware measurement, minimal resource T CbdsPlsandResats
overload, limited distortion & On Chip Memory
4 ¢ Simulation; Debug and Verification
Performance Counter Unit: hardware measurement, e o sources & Frobes
significant hardware overload, minimal distortion, upperbound 5 Aara SignaiTap | Logkc Anayzr

® Altera Virtual JTAG
Performance Counter Unit
SLD Hub Controller

SLD Hub Controller System
System ID Peripheral
Trace System

(7) on no. of measurable program sections

the third method is utilized here, since it yields the best
accuracy and the easiest use within the program, while the USB Debug Link

aforementioned upperbound is no problem for the application at - simutation

Stake ©- Verification
DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

5dil2

construction of a Nios I system with performance counter

the figure shows the @sys contents of the Nios 1T system with Performance Counter Unit

the scheme is similar to that of the example in the introduction to Qsys, except
for the absence of the LEDs P10 and the presence of the profiling component

Connections Name Description Export Clock Base End IRQ
B8 ck_0 IClock Source
o= cli_in Clock Input clk exported
(=] clk_in_reset Reset input reset
_— clk Clock Output ck_D
e e — clk_reset Res
B nios2_gsys_0 Nios Il (Classic) Processor
clk Clock Input ck_0
reset_n Reset Input {0
Em m— data_master Avalon Memory Mapped Master {=15]
—t— instruction_master |Avalon Memory Mapped Master 120
—— da_irg Interrupt Receiver i IRQ 0 IRQ 31—
—< jtag_debug_modul.. |Reset Output ek
ftag_debug_module Avalon Memory Mapped Siave {=15] 0x0002_0800 0x0002_0fff
custom_instruction... |Custom Instruction Master
B onchip_memory2_0 |On-Chip Memory (RAM or ROM)
clkt Clock Input ck_0
s1 Avalon Memory Mapped Slave k1] & ©0x0000_0000 exo0e1_ffff
reset! Reset input k1]
B performance_count... Performance Counter Unit
clk Clock Input ck_0
raset Reset input 120
control_slave Avalon Memory Mapped Slave Tcik) 0x0002_1000 0x0062_163f
B jtag_uart_0 JTAG UART
clk Clock Input ck_0
reset Reset Input {=10)
avalon_jtag_slave |Avalon Memory Mapped Slave ik 0x0002_1050 0x0062_1657
i Interrupt Sender el —
B switches PIO (Parallel ¥O)
clk Clock Input ck_0
reset Reset Input {0
o s1 Avalon Memory Mapped Siave {=14] 0x0002_1040 0x0002_104f
< external_connection |Conduit switches
DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

6dil2

a simple, well-known example

the C function in the figure is a software implementation of the delay computation of
a Collatz trajectory with given start point
the preprocessing directives, except the fourth one, relate to the hardware
plattorm previously built with @sys, see next

delay_collatz_timing.c + *

1 avalon_performance_counter.h"

2

3 tile unsigned int *) SWITCHES_BA!
4 gned 1 onst) 8

5 \NCE_COUNTER_O_BASE

[}

7 |unsigned int delay_collatz(unsigned int x0) {

g int d = 0;

9 int x = x0;

10 int hx;
11 while (x > 1) {

12 d++;
13 hx = x »> 1;
14 if ((x % 2) >0 {
15 d++;
16 X += hx + 1;
17 }
18 else
19 x = hx;
20 }
21 return d;
22 |}
DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

7dil2

use of the perFormance counter in the software applicaﬁor\

unlike the previous lab experiences relating to hardware implementations of the subject function,
the user input here determines the length of the sequence of ’rrajec’tories to be generated in the
main program, that is the number of function invocations

the switches input is multiplied by a scale factor, to get a reasonable test duration

delay_collatz_timing.c + *

24 |int main() {

25 unsigned int i, n, taps, ¢, x, d;

26 n = *switches << N_FACTOR;

27 alt_u32 cpu_freq = alt_get_cpu_freq();
28 unsigned int seed = 0x1234;

29 ¢ = seed;

30 PERF_RESET (pca) ;

31 | PERF_START_MEASURING(pca);

32 for (1 =0; 1 <n; i++) {

33 | PERF_BEGIN(pca, 1);

34 X =C;
35 taps = (c & Ox1) ~ ((c & Ox4) >> 2) ~ ({c & Ox8) >> 3) ~ ((c & 0x20) >> 5);
36 ¢ = (taps << 15) | (¢ >> 1);

37 PERF_END(pca, 1);

38 PERF_BEGIN(pca, 2);

39 d = delay_collatz(x);
40 PERF_END(pca, 2);

41 }

42 PERF_STOP_MEASURING(pca) ;

43 perf_print_formatted_report(
44 pca,

45 cpu_freq,

46 2,

47 "traject_start",
48 "delay_collatz");
49 return 0;

50 |}

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

8dil2

BSP generation and HW/SW integration

the preproaessing directives, previously shown, enable the use of the performance counter
API as well as of other symbols (SWITCHES BASE in this case) defined in the software
interface of the system built with Qsys

. . . File Settings | System Settings Program Type‘ Program Settings | Connection Settings |

the interface is prowded by the BSP, e VY g g g g
' . Specify a program type
whose construction here is automated R
Program Type: |Program with Device Driver Support
‘]
bH the Monlfor Progrﬂm, Fbllbwmg fhe Lets you specify a program written in the C, C++, and/or assembly languages, with support for device
. drivers. Such a program makes use of the Nios Il software build tools to generate a board support
1 ackage (BSP) for the currently-selected system, and a series of makefiles that are then used to

ChOlce OF ?rogram ‘type Program WIth Eompilge the program. The Inte'IyFPGA Monit?r Program automates this whole process, but allows the

user to specify a custom Tcl script if advanced customization is required.

Device Driver Support

other aspects of the BSP (e.q. compiler or linker options) may be speciﬁed by providing a
custom Tl script

in parﬁcular, while the default optimization level fixed by the Monitor Program is
-01, a different level, e.g. ~0%, may be obtained by creating a one-line script
(with extension .tcD):

set_setting hal.make.bsp cflags optimization -O3

and Pt’b‘liding its Pafh in the inpu’r box BSP settings Tcl script (optional) within the
Program Settings tab

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

9dil12

debugging and execution

C source-level debugging is also available in the Monitor Program (visualization of values of variables)
this requires compilaﬁon with oPﬁmizaﬁon level -00

the program disassemblg remains accessible anyway, where 1o set breakpoinfs and 1o examine its
execution status at critical points for correctness verification

for example, with breakpoints as in the figure, one may check the correctness of the
computed no. of iterations and of the clock frequency, resp. in r18 and r19

unsigned int i, n,’ , %, d rg g
s << r
0x0000024C r1o 0
0x00000250 ri1 0
0x00000254 r12 0
0x00000258 r13 0
cpu_freq() ri4 0
$0x0000025C 00C00: alt_get_cpu_fregq) 15 0
@0x00000260 "6 0
unsigned int seed = n7 0
¢ = seed; rig 65536
PERF_RESET (pca) ; E
0x00000264 orhi r2, zero, 0x2 —il[re 59000009
" Terminal
QAF‘ter removal O‘F all break?olnfs, Sﬂstem JTA(tE UARTolcljgk established using cable "DE-SoC [2-1.2]", device 2,
instance Ox
. i
--Performance Counter Report--
reset ﬂnd execu.hon res.tar.t) .the PrOFlllng Total Time: 7.52118 seconds (376058945 clock-cycles)
B et e R S TR REEEE R +
module genet"afes the Pet"{:ormance re?bt"f | Section | % | Time (sec)| Time (clocks)|Occurrences|
4 ' . e S ommmeneeee EREEE TR ommmnneenee +
dlsplaged lh 't‘he Flgure |traject_start | 2.53| 0.19005| 9502720| 65536
Hommmmmenmneea e SRR e S EREEEE TR LT ommmnneeeee +
|delay_collatz | 96.3]| 7.24331| 362165262| 65536
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S
DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

10di 12

lab experience

the proposal aims at the design and implementation of a HW/SW system with
similar structure and features as those of the example presented in this tutorial,
using the same development and profiling tools, but for a different application;
precisely, the work goes about:

% building a Nios II system on FPGA, equipped with a performance counter
component for application profiling

% software develoPmen’r of a coprimality test program, using a GCD
computation function while processing a sequence of number pairs

% HW/5SW integration of system and application, with: application profiling
using the API of the aforementioned component, BSP generation,
compilation, loading and execution on the FPGA, with debugging if needed

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

11di12

references

recommended readings:

Introduction to the GPsys System Integration Tool - For Quartus Prime 16.1,
Intel Corp. - FPGA University Program, November 2016

readings for further consultation:

Profiling Nios 11 Systems, AN-291-3.0, Altera Corp., July 2011

useful materials for the proposed lab experience:

Performance Counter Unit Core, Ch. 31 in: Embedded Feripherals IP User
Guide, Intel Corp., UG-01085 | 2017.11.00

Intel FPGA Monitor Frogram Tutorial for Nios I1 - for Quartus Prime 16.1,
Intel® FPGA University Program (Nevember 2016)

source files for running the lab experience (in the lab reserved area)

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

12di 12

