Program analysis tools and examples of their use

Tuterizl on Dedicatad systanms
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Graduate Course in Computer Science, 2018-149

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

1dil2

Table of Contents

1. Program analysis tools and examples of their use
2. tutorial outline
2. GNU cross-compilers and binutils
4, examples for VisUAL ARM emulator
5. \isUAL emulation of an example
o. execution with debugger for ARM Cortex-A4 processor
7. execution with debugger for Nios 1T processor
8. low~level analysis of ARM executables
q. low-level analysis of Nios 1T executables

10. lab experience

11. references

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

2di12

tutorial outline

this tutorial deals with:

% GNU cross-compilers and utilities for low-level program analysis
o examples of use of such tools for various processors and program development systems:

for ARM emulator VisUAL v. 1.27 with GCC 3.2 cross-compiler, GNU
Binutils 2.13%, and ad-hoc scrip’r

execution with debugger on ARM Cortex-#A4 processor (DE1-SoC HPS)
execution with debugger on Nios I processor (DE1-SoC FPGA)

for ARM Cortex-A4 processor with GCC 4.8.1 cross-compiler and GNU
Binutils 2.23
% for Nios II processor with GCC 5.3.0 cross-compiler and GNU Binutils 2.25
> lab experience: reproduction of the execution of the examrles and analysis of the
problem that was mentioned near the end of the previous lecture

C sources and scripts for the execution of the lab experience are awailable in
the classroom.tgz archive, which can be found in folder crosstools/e08 of the
reserved lab area

vV vy ¥

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

3dil2

GNU cross~compilers and binutils

program development for dedicated systems often takes place on machines that are based
on a different processor than the target one, viz. that which is meant for their execution

 a cross-compiler is a compiler which produces assembly code and executable
programs for a different architecture than that on which it is executed
> just like ordinary compilers, cross-compilers are often equipped with a collection of

utilities for low-level program analysis

the cross-compilers and utilities here considered are GNU free software, that typically have
names <target>-gcc for the compiler, where <target> indicates the target architecture,
and <target>-<util> for the utility <util>, such as for example

% size: list of sizes of sections and total size of an object module or of an executable
> objdump: contents of an object module or of an executable

% nm: list of symbols of an object module or of an executable

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

4diil2

examples for NisUAL ARM emulator

a first example showcases the use of the NisUAL v. 1.27 ARM emulator, for the simulation of the execution of a
program for GCD computation with Euclid's algorithm (Listing 7.11 in Schaumont, with modified main because of
the different simulation target)
a second example, illustrated b? the next figure, presents a software implementation of the Collatz delay
calculation, similar in functionality to the hardware implementations produced in the previous lab experiences

here the emulation gets a lexical problem with the (pre-UAL) code produced by the cross-compiler
the program seen at the end of the previous lecture (Listing 7.4 in Schaumont), with an initialization of the array
contents, forms the third example

compilation without optimization produces a more serious kind of troubles in this case
the emulator accepts an ARM source assembly program coded in a subset of the instruction set defined by the
UAL (Unitied #ssembly Language) syntax
in these examples, the assembly program is obtained from the C source by means of the arm-linux-gcc cross-
compiler, for ISA ARMv4, implemented in the StrongARM processor

the Debian package installation provides both this cross=compiler and its binary utilities
however, the assembly program so obtained does not meet the restrictions Posed by the emulator, e.g. it contains
assembler directives and other syntactic sugar that are not accepted by VisUAL

this obstacle is mosﬂ? overcome by an ad-hoc script, that edits a copy of the previous assembly source to produce a

version of it that is almost conforming to \isUAL restrictions
folder arm _visual in the provided archive contains the C sources of the three examples, together with the c2visual
script for the cross=compilation and aforementioned editing of the produced assembly code (script cO2visual only
differs in the compilation without optimization, for the analysis of the problem mentioned in the previous lecture

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

5dil2

\isUAL emulation of an example

3 08 B 8 N O (DS 08 08 £ £
Re: Je ode

pset to © inue editi
t . i RO 121 Dec Bin Hex
w n]
mov , #0
add » T, 1, lsr#31
bic Lo e ox3 Dec Bin Hex
rsh b b
, #
g o=
11 add , 10, #
'3 add i oxe Dec Bin Hex
: = 4 o o]
mle oo T
= - [ne |
; =
7 — , [o |
= mli
2 add , 10, #52
21 mov E R11 ox0 Dec Bin Hex
® 22 bl delay_collatz
24 and E , #4
and , 70, #8
o0 o 02, i 8x58 Dec Bin Hex
eor A 5 , lsr #3
ol neo
eor , ¥, 12, lsr#5
mov s 4, lsr#1
mov ,
- A , ™1, 3, 181 #15
® 54 bl delay_collatz
° = e . 15 ® Clock Cycles Current Instruction: 1 Total: 1121
' L SRR
: - 1:1:1-1)
. .
a snapshot of isUAL emulation of the delay_collatz.s ARM assembly program
DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

6dil2

execution with debugger for ARM Cortex-#9 processor

the figure shows an execution snapshot of program delay collatz.c on the DE1-SoC ARM processor

cross-compilation, loading and execution take place by means of the altera-monitor-program, under
control of tts GNU debugger GDB

the system allows the loading of a C or assembly source,

through the monitor program itself

File Edt Actions Windows Help

[ide] il

O G P4l 2ol NG
Project Files — x =K
& delay_collatz v 7 =
x Goto instruction | Address (hex) o symbol name:|_start 8o]
R~ =
W int main() { (=
nain:
5&src Ox000002FC push {ri1, 1r}
() dela| oxooo030e add rll, sp, #4
0x00000304 sp, sp, #24
unsigned int seed = 01234,
0x00000308 move 13, #4660 ; Bx1234
0x0000030C 13,1, £-12]
unsigned int taps, €
= seed
0x00000310 Wr 3, (1, #-121 2
0x00000314 str 3, [, 8]
intx =t
000000318 r 3, [, 8]
0x0000G31C str 3, [r11, #-16]
int d = delay_coliatz(x);
000000320 Ur o, [r11, s-16]
®0x00000324 bl 254 <delay_collatzs
8000000328 str 1o, [rl, #-20] ; Oxffffffec
taps = (¢ & Oxl) ~ ({c & Oxd} »> 2) ((c & OxB) >> 3) ~ ({c & 6x20) 5> 5)
‘mmumzzc ldr r3, [rl1, £-8] =4
a I 1s]| Edtor, Disassembly / Breakpoints / Memory / Watches | Trace
Terminal - x| Info &Errors
I I
Info & Errors | GDB Server | Variables

whereby cross—compilaﬁon is done

execution snapshot of an ARM program under control of the GDB debugger within the Monitor Program

DMI — Graduate Course in Computer Science

execution with debugger for Nios 11 processor

Copyleft @ 2014 Giuseppe Scollo

7dil2

the same C source from the previous example may be cross-compiled and executed bya Nios 11

softcore on the FPGA of the DE1-50C system

File Edit Actions Windows Help
G e PLL 20k 20
Project Files - X | Disassembly - X | Registers
& delay_collatz | Goto Instnl(h'on‘Addfess (hex) or symbol nsme:[sa }\ Go|[d| _Reg |
1 |pc
0x000801A8 stu r2, -4(fp) | jzero
c = (taps << 15) | (c >> 1) r
0x0B0B01AC v r2, -4(fp) r2
0x00000180 slli r3, r2, Of =
0x0B000184 Tdv r2, -20(fp) 4
0x00000188 srli r2, r2, o 5
0Ox0800018C or r2, r3, r2
0x000001C0 st r2, -20(fp) -
d = delay_collatz(x) 7
0x0B0001C4 e rd, [|8
|| moxcacecics call On0OOCOOOOC (0x0B0B0G30: delay collaf || (M9
|| moxcoce1ce stw r2, -8(fp} rio
¢ = seed ril
int x = ¢ ri2
int d = delay_collatz(x) ri3
taps = (c & Gx1) ~ ((c & 0xd) >> 2) ~ ((c & 0f |4
¢ = (taps << 15) | (¢ > 1); s
while (¢ 1= seed) { il [r16
0x08080100 ldv r3, -20(fp) =} 17
N B |lhe
Editor , Disassembly | Breakpoints / Memory / Watches | Trace | rig 0x00000000 |+
Terminal - X | Info & Errors -
JTAG UART link established using cable *DE-SoC [2-1.2]", device 2, ||| 1=
instance 0x00
I
| d
[i s D

Info & Errors | GDB Server / Variables |

execution snapshot of a Nios 1T program under control of the GDB debugger within the Monitor Program

DMI — Graduate Course in Computer Science

Copyleft @ 2014 Giuseppe Scollo

8dil2

low-level analysis of ARM executables

execution of the delay collatz example on the ARM processor by means of the monitor
program produces two files in the projec‘r directorg that are relevant to low-level analgsis:

% delay collatz.axf: the ELF executable

% delay collatz.axf.objdump: its disassembly produced by the objdump utility

in order to carry out low-level analysis even further, it helps one to know where the binary
utilities are located, for the gcc cross-compiler used by the monitor program

in the installation directory of the Quartus Prime software, the cross-compiler and
the binutils are located in directory

University Program/Monitor Program/arm tools/baremetal/bin

N.B. actually, the monitor program makes use of specialized versions of some of these
tools, that are placed elsewhere; however, for general use, independent of any execution in
the contest of the monitor program, the aforementioned tool collection is the proper one

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

9dil12

low-level analysis of Nios IT executables

processing the C sources by the monitor program for execution on the Nios I1 processor
produces the .elf executable in the project directory, but not its disassembly

in the installation directory of the Quartus Prime software, the cross-compiler and the

binutils are found in directory

nios2eds/bin/gnu/H-x86 64-pc-linux-gnu/bin
hre is a simple example of use of the size utility: comparing the sizes of the executables
produced by the three cross-compilers of interest here, for the C sources of two of the
examples proposed and with the same compilation options; in particular, optimization level 02

the scripts to this purpose are available in the sizes folder of the provided archive
the following table presents the outcome of this exercise

C source cross-compiler text data bss total

gcd arm-linux 820 260 4 1084
arm-altera-eabi 492 16 28 536
nios2-elf 1056 1068 0 2124

delay collatz arm-linux 864 260 4 1128
arm-altera-eabi 628 16 28 672
nios2-elf 1196 1068 0 2264

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

10di 12

lab experience

run the examples provided with this tutorial and produce documentation of any difficulties met and of
the solutions found to overcome them

in particular, the NisUAL emulation of example accumulate requires further editing of the code

produced by the compilation + editing script, both with and without optimization, in order to solve the

following problems:

@ with optimization (script c2visual): it seems that NisUAL only admits one occurrence of the
DCD directive; furthermore, it makes use of instruction ADR (unknown in ARMv4) to load
an address to a register, whereas the code produced by the script makes use of instruction
LDR with a source location that holds the subject address

« without optimization (scrifr c02visual): besides the aforementioned problems, the multiple
transfer instructions produced by the script violate some of the restrictions posed by \isUAL,
according to similar prescriptions introduced in ARM IS4 versions higher than v4

with respect to the last mentioned problem, it is proposed to:
4 solve it, to the purpose of emulation, by using instruction LDMFD sp! ... instead of LDMEA
fp ... to restore saved registers and return, with consistent modifications to handling of the
activation frame and of registers fp and sp
4 explain why the handling of the stack and of the activation frame made by the ARMv4 code
produced by the cross-assembler is correct, unlike figure 7.4, which is aimed at illustrating it
DMI — Graduate Course in Computer Science Copyleft ® 2014 Giuseppe Scollo

11di12

references

recommended readings:

Schaumont, Ch. 7, Sect. 7.4

readings for further consultation:

Schaumont, Ch. 7, Sect. 7.5, 7.0
The ARM Instruction Set, tutorial, ARM University Program, V1.0
NisUAL - A highly visual ARM emulator

tutorials from source Intel® FPGA University Program (November 2016):
Introduction to the ARM® Frocessor Using Intel FPGA Toolchain - For Quartus Prime 16.1
Introduction to the the Intel Nios II Soft Processor - For Quartus Prime 16.1
Intel FPGA Monitor Frogram Tutorial for ARM - For Quartus Frime 16.1
Intel FPGA Monitor Frogram Tutorial for Nios 11 - For Quartus Frime 16.1

useful materials for the proposed lab experience:
ARM Architecture Reference Manual, ARMV7-4 and ARMv7-R Edition, ARM DDI 0406C.c (2014)
GCC, the GNU Compiler Collection
GNU Binary Utilities

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

12di 12

