Hardware interfaces

Lecture 1l on Dadicatad systenms
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Graduate Course in Computer Science, 2017-18

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

1dil0

Table of Contents

Hardware interfaces

lecture ’roPics

functions, layout and design of hardware interfaces

Proammmer's model
address map

instruction set

exam?le: design decisions for a hardware acceleration case

fvalon interface and Programming model for the sample case

OO NS W NWD e

references

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

2di10

lecture fopics

outline:

the coprocessor hardware interface
typical functions of hardware interfaces
layout of a coprocessor hardware interface
data addressing
multiplexing
masking
control design
hierarchical control
programmer’s model
S address map
% instruction set
example: a hardware acceleration case
% design decisions
S Awalon interface and programming model
DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

VVVVVVVVY

\'4

3dil0

functions, layout and design of hardware interfaces

seminar by Salvatore Mameli (PDF, in Italion)

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

4di10

Programmer's model
programmer’s model = control design + dota design

the programmer’s model, that is the software view of a hardware module, includes:
% a collection of the memory locations used by the custom hardware
module, and

% a definition of the commands (or instructions) understood by the module

a few considerations follow about the impact that these two kinds of design
decisions have on the design of the software driver of the custom hardware
module

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

5di10

address map

the address map reflects the organization of software-readable and software-
writable storage elements of the hardware module; its design should consider the
viewpoint of the software designer rather than the hardware designer, thus:

% 0 given memory-mapped address should always affect the same hardware
register, regardless ot whether the oPeraﬁon on it is a read or a write

% by default all memory-mapped registers should be read/write; in some
cases, read-only registers are justified, such as for example to implement
registers that reflect hardware status information or sampled-data signals;
however, there are very few cases that justify a write-only register

% the address map should respect the processor’s alignment; e.q., extracting
bits 5—12 out of a 52-bit word is more complicated than extracting the
second byte of the same word

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

6di10

instruction set

the design of a good instruction set is a hard problem, that requires the codesigner to make a
roper trade-off between flexibility and efficiency
it strongly depends on the function of the custom-hardware module
here are a few generic design guidelines:

% one can distinguish three classes of instructions: one-time commands, on-off
commands, and configurations; their mix affects the general behavior of the hardware
module, it should be aimed at minimizing the control interaction between the software
driver and the hardware module

% design the synchronization between software and hardware at multiple levels of
abstraction, that is, not just at the data transfer level but also at the algorithmic level

another synchronization problem occurs when mulﬁrle software users share a single
hardware module; this may be solved either by serializing coprocessor usage or by
implemenﬁng a context switch in the hardware module

o finally reset design must be carefully considered; an example of flawed reset design is
when a hardware module can only be initialized by means of full system reset—it makes
sense 10 define one or several instructions for the hardware module to handle module
initialization and reset

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

7di10

example: design decisions for a hardware acceleration case

a recent lab tutorial presented a software implementation of the delay computation of
a Collatz ‘rrajec’rorg with given start poin‘r

hardware implementations of the same function were the subject of previous lab
experiences
e.qg. the third lab experience produces a VHDL description of it

the performance measurements carried out on the software implementation show that
it consumes almost all of the program execution time

roblem : accelerate the rogram execution bg using the hardware
implemenfaﬁon of the aforemenﬁoned function

a first alternative to evaluate: to integrate the hardware function as a custom
instruction or as a memorg—mapped coprocessor?
the second option seems better, for at least two reasons:
> the first option is blocking
% the data transfer size in each interaction is very small

other design decisions depend on this first decision, as follows
DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

8di 10

Avalon interface and programming model for the sample case

the VHDL description of the circuit which computes the function is to be embedded into a
component equipped with Avalon interfaces for the Clock, Reset, and Avalon MM Slave signals,
so as to receive the initial data by a write operation and to return the result by a reply to a read
operation

mulﬁcycle data transfers are possible thanks to the Avalon signal waitrequest, set by the
slave to defer the response to a read or write request by an arbitrary number of cycles

addressing of the coprocessor: since the (initial data) write and (final result) read operations take
place at different times and have the same data size, a single address suffices

for the sake of simplici’rg, it is convenient to use the 52-bit Avalon signals writedata,
readdata in the hardware interface for this address, with internal conversion to 16-bit
for the corresponding internal I/0 ports of the circuit which computes the function

software driver : two macros and a function moay be defined for the bus access software
interface: DC RESET(d), DC_START(d,x0), unsigned int delay(d), where d is the address assigned to
the coprocessor

these projed ideas will be deveIOpped in the next lab tutorial

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

9di 10

references

recommended readings:

Schaumont, Ch. 12, Sect. 12.1-12.32.1, 12.4

for further consultation:

Schaumont, Ch. 12, Sect. 12.%.2

fvalon® Interface Specifications, Ch. 1-3, MNL-AVABUSREF, Intel
Corp., 2017.05.08

DMI — Graduate Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

10di 10

