Program design and analysis for dedicated systems

Lecture 07 on Dedicated systams
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Groaduate Course in Computer Science, 2017-18

DMI — Graduate Course in Computer Science

Table of Contents

1. Program design and analysis for dedicated systems
2. lecture topics
3. microprocessors, toolchain
4. from C to (ARM) assembly: an example
5. object code analysis
0. data type representation
7. ariables in the memory hierarchy
B. function calls: an example
4. stack frame construction
10. program layout in memory
11. references

Copyleft ® 2018 Giuseppe Scollo

1dil2

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

2di12

lecture topics

outline:

VvV ¥V V VvV V VY

motivation for using dedicated micropocessors
program development toolchain

tools for object code analysis

doata type representation

variables in the memory hierarchy

compilation of function calls

memory layout of executable programs

C and ARM assembly examples

DMI — Graduate Course in Computer Science

microprocessors, toolchain

microprocessor: most successful programmable
component over the post decades... why?

>

>

separation of software from hardware through
definition of an instruction set

wide availability of software tools to support
program development, also in high-level languages

highly efficient options of reuse of components
and of interoperability with other components,
both hardware (standard bus) and software
(libraries)

high scalability, e.q. 4-bit up to O4-bit word
length, use of a microprocessor as coordination
component in a complex SoC architecture, etc.

Copyleft ® 2018 Giuseppe Scollo

Source Assembly
Code (C) Code (s)
[Compiler] [Assembler]

— Object Object
Library Code Code

l

Executable
Format
Binary
Format

ononao nononao

=

ooono ooonx

Memory Processor

onoon
Ooooo

ooon

|=p=gugsj

Schaumont, Figure 7.1 - Standard design flow of
software source code to processor instruction

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

3dil2

4dil2

from C to (ARM) assembly: an example

int gcd(int a[5], int b[5]) { gcd:
o . str I, [sp, #-4]1!
inti, T ln, max; oV It #0
max = 0; mov ip, Ir
for (i=0; i<5; i++) { .L13:
m = afil; 1dr r3, [r0, ip, asl #2]
= biil: 1dr r2, [rl, ip, asl #2]
n = ol cmp r3, 12
while (m !=n){ beq .L17
if(m>n)m=m-n; .L11: -
=n-m: cmp r3, T
eles M iT rshgt 3,12, 13
} rshle 12, 13, 12
if (max < m) max = m; cmp r3, 12
) bne L11
. L17:
return max; add ip, ip, #1
} cmp Ir, r3
int a[] = {26, 3,33,56,11}; movlt 11@ 124
) 1 | cmp ip,
!m bf] = {87,12,23,4517}; movgt r0, Ir
int main() { 1drgt pc, [spl, #4
return gcd(a, b); b .L13
a:
Schaumont, Listing 7.1 = C program to find maximum GCD b -word 26,3, 33,56, 11
label instruction . -word 87,12, 23,45,17
e L/ &~ mnemonic main:
Ean z str Ir, [sp, #-4]!
Bty fap: Feall 1dr r0, .L19
1dr rl, .L19+4
ldr Ir, [spl, #4
b ged
.align 2
R .L19:
9: \assembler -word a
«word a directive .word b
Schaumont, Figure 7.2 - Elements of an assembly program produced by gcc Schumont, Listing 7 121= AR ssembly dump-oF Listing 741
DMI — Graduate Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

5dil2

object code analysis

the example just seen is developped with the GNU cross-compiler arm-linux-gcc, available as a
Debian package from the Gezefreposi’torg:

rijndael.ece.vt.edu/gezel2repo/pool/main/a/arm-linux-gcc

the symbolic assembly code is obtained from the C source by the command:
/usr/local/arm/bin/arm-linux-gcc -c -S -O2 gcd.c -0 gcd.s

the command to generate the ARM ELF executable is:
/usr/local/arm/bin/arm-linux-gcc -O2 gcd.c -o gcd

it is also possible to obtain the symbolic code from the ELF executable by means of a
disassembler, in this example with the following command:

/usr/local/arm/bin/arm-linux-objdump -d gcd

the disassembler output also shows the binary code of each symbolic instruction and the address
value of each label

the use of this tool, as well as of other utilities which come along with compilers, for
executable code analysis will be further explored in lab tutorials

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

6dil2

dota type representation

efficient hardware/software codesign requires a simultaneous understanding of both system architecture and software

data type representation is a good starting point, compilers are aware of differences in:

4 memory size
% low-level implementation of operations

table 7.1 shows how C maps to the native data types supported by 32-bit processors

32 bit physical
memory organization
e o e i

0x8000
logical 0x8004 [
memory 0x8008 |_nonAalIgned
oxsooc [|

0x8010

—aligned

Schaumont, Figure 7.7 (a) - Alignment of data types

word-based memory organization requires alignment to
word boundaries, to perform a word transfer by a single
memory access

the compiler generates directives to this purpose

C data type

char B-bit

short signed 10-bit
int signed 52 -bit
long signed 52 -bit
long long signed b4-bit

Schaumont, Table 7.1 - Compiler data types

MSB LSB

[owe [6 [ot [ove

Word Value

Little Endian

0x8003 0x8002 O0xBOD1 0x8000 Storage Order

Big Endian

0x8000 OxB001 0x8002 O0x8003 Storage Order

Schaumont, Figure 7.7 (b) - Little-endian and Big-endian storage order

byte ordering, in some cases even the bit-ordering, is
relevant to hardware/software codesign

in the transition of software o hardware and back

Copyleft ® 2018 Giuseppe Scollo

DMI — Graduate Course in Computer Science

7dil2

variables in the memory hierarchy

another relevant aspect of data representation is the kind of physical memory they are assigned to

Controlled by
instruction type
(compiler)

Controlled by
architecture
(cache miss)

memory hierarchy is transparent to high-level programs,
e.g. written in C, yet the low-level control affects

RISC Pipeline .
performance; here is an example:
; : void accumulate(int *c, int a[10]) {
Mz‘::ry <—> Cache fe—3) Regil'seler int i;
*¢=0;
for (i=0; i<10; i++) *c += a[i];

Schaumont, Figure 7.8 - Memory hierarchy

in the example, the alue of the accumulator variable
travels up and down in the memory hierarchy

lusr/local/arm/bin/arm-linux-gcc -O2 -¢ -S accumulate.c

generates the following code in accumulate.s :
in C a limited control is available through use

pradd g ig, #0] of storage class specifiers and type qualifiers
mov ip, r3
.L6: Storage specifier Type qualifier
1dr r2, [rl, ip, asl #2] ; 12 < afi]
1dr r3, [r0, #0] ; T3 « *c (memory) .
add ip, ip, #1 ; increment loop ctr register const
add r3, r3, r2 static volatile
cmp ip, #9 extern
str r3, [r0, #0] ; r3 = *c (memory)
movgt pc, Ir
b .L6

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

8dil2

function calls: an example

function calls are the fundamental structure of behavioural

hierarchy of programs; here is an example of their translation

to machine language

int accumulate(int a[10]) {
inti;
intc=0;
for (i=0; i<10; i++)
c +=afil;
return c;
}
int a[10];
intone = 1;
int main() {
return one + accumulate(a);

}

Schaumont, Listing 7.4 - Sample program

compiling this program without optimization shows the creation

of the activation frame within the stack, that is dynamically

associated to the function execution to host local variables and

register saving

in this case, the function parameter and return value are
passed in register rO; when several parameters are to be

Passed, then the activation frame is made use of

the use of the frame pointer (FP) register enables call nesting

and recursion

accumulate:
mov
stmfd
sub
sub
str
mov
str
mov
str
L2:
1dr
cmp
ble
b
.L5:
1dr
mov
1dr
add
1dr
1dr
add
str
1dr
add
str
b
.L3:
1dr
mov
ldmea

ip, sp

sp!, {fp, ip, Ir, pc}
fp, ip, #4

sp, sp, #12

r0, [fp, #-16]

r3, #0

r3, [fp, #-24] ;C
r3, #0

r3, [fp, #-20] ;i

; base address a

r3, [fp, #-20]
r3, #9

L5

L3

r3, [fp, #-20]
r2, r3, asl #2
r3, [fp, #-16]
r3, r2, r3

r2, [fp, #-24]
r3, [r3, #0]
r3, r2, r3

r3, [fp, #-24]
r3, [fp, #-20]
r3, r3, #1
r3, [fp, #-20]

;¥a+4%*i

;¢ =c + ali]
; update c

;i=i+1

r3, [fp, #-24]
r0, r3
fp, {fp, sp, pc}

; return arg

Schaumont, Lisﬁng 7.0 - #ccumulate without compiler opﬁmiznﬁons

DMTI — Graduate Course in Computer Science

stack frame construction

figure 7.9 shows the construction of the activation frame in the stack

the SP register points to the full top of the stack, which grows downwards; these conventions are
reflected in the fd (full, descending) sutfix of the multiple transfer instruction stmfd, saving

registers in the stack frame

Before Calling Accumulate

High|

old fp —»

sp —>

Stack Frame Construction

Stack Frame Return

tp, (£

Copyleft ® 2018 Giuseppe Scollo

9dil2

During Execution of Accumulate

High
1z, pec)

¢ newip =1 odip |

)

4 -4 old sp
-8 | retum address
-12 pc
-16 base adra
-20 i

sp, pcl Low L s

Schaumont, Figure 7.9 - Stack frame construction

the restoring of the saved registers and return take place by just one multiple transfer instruction
in this case the converse suffix ea (empty ascending) applies, noting that FP, rather than SP, is the

base register for the transter start address

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

10di12

program layout in memory

For the phgsical representation of the program and its data structures in the memory hierarchy, a
distinction is to be made between:

& static program layout : organization of the compiler+linker output in an ELF file (or ROM)
% dynamic program layout : memory organization of an executable program during execution

C Source ELF Object Memory
Code File Layout
Heade:
Bkttt SRAM DDR RAM
& N g R
b S B EpH T e T
Compile Loader addrd ™ pes (0)
+ Link F—— ~ J
other addrd)
sections e
addrs)
Debug heap
Information
o

Schaumont, Figure 7.10 - Static and dynamic program layout
& the loader may assign different sections of the ELF program to different kinds of storage

& in the dynamic layout, sections appear that are not present in the ELF file, for the storage of
dynamic data (stack, heap etc.)

DMI — Graduate Course in Computer Science

references

recommended readings:

Schaumont, Ch. 7, Sect. 7.1, 7.5

for experimentation:

installation of the arm-linux-gcc cross-compiler

for further consultation:

Schaumont, Ch. 7, Sect. 7.2

Introduction to the ARM® Frocessor Using Intel FPGA Toolchain - For Quartus
Prime 16.1, Intel Corp. = FPGA University Program, November 2016

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

Copyleft ® 2018 Giuseppe Scollo

11di12

12.di12

