FPGA implementation of a memory-mapped coprocessor

Tutorizl 11 on Dadcatad systams

Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Graduate Course in Computer Science, 2017-18

DMI — Graduate Course in Computer Science

U S G G U
SR = 1O

15.

PHIPHFES AR R

Table of Contents

FPGA implementation of a memory-mapped coprocessor
tutorial outline

project workflow

coprocessor hardware interface

coprocessor as a @sys component (1)

coprocessor as a @sys component (2)

coprocessor as a @sys component (3)

Nios II system with coprocessor and Performance Counter

mapping to FPGA and compilation

software driver

test and performance measurement programs (1)
test and performance measurement programs (2)
test with blocking acceleration

test with nonblocking acceleration

references

Copyleft @ 2018 Giuseppe Scollo

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

1dil6

2di16

tutorial outline

this tutorial deals with:
> FPGA implementation of the project idea proposed in lecture 11

% coprocessor hardware interface
> coprocessor as a Qsys component
% Nios II system with COprocessor and Performance Counter

% software driver

% test and perFormance measurement with the Monitor Program

> test with blocking acceleration

> test with nonblocking acceleration

DMI — Graduate Course in Computer Science

project workflow

develoPmenf main phascs:

VVVVY

>

VHDL description of the coprocessor with Avalon MM interface

Q@sys construction of a Nios IT system with coprocessor and performance counter
system mapping to FPGA and compilation

TCL script production for HAL software driver generation

production of the software application for testing and performance measurement,
in two versions:

sequenﬁal: blocking execution of the coprocessor compufaﬁon
pipelined : nonblocking execution of the coprocessor compufaﬁon

compilation and execution of the application under the Monitor Program, for two
variants of each version: one with defaut value of the optimization level, the other

with level 0%

save of per{?ormance reports and projecf archiving

Copyleft @ 2018 Giuseppe Scollo

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

3dil6

4dil6

coprocessor hardware interface

two VHDL sources implement the memory-mapped coprocessor:

& delay collatz.vhd, modified version of the output by the fdivhd translation of the
Gezel source presen’red in the second lecture, according to the third lab
experience

% delay collatz interface.vhd, which contains an instance of the computational
componenf and accesses the Following Avalon bus signals: clock, resetn, read,
write, chipselect, waitrequest, writedata, readdata

both files are avaulable in the vhdl folder of the attached archive, as well as in the

VHDL/code/el1 folder of the reserved lab area
the folder also contains std logic_arithext.vhd, which is needed to compile the
computational component, delay collatz codesign.vhd, which will be explained next, and
delay collatz.diff, the latter for documentation only, to show the changes made to the
translation produced by fdlvhd

consultation of the delay collatz interface.vhd source shows the relationships between

the I/0 signals of the computational component and the Awalon interface signals

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

5di16

coprocessor as a Qsys component (1)

folder codesign in the attached archive is preset to host the project development
after having copied the *.vhd files from folder vhdl into it, the Qsys custom
component construction goes much like in the tutorial seen in lab tutorial 10, with
due differences for the present case

after creation of project delay collatz codesign, with top-level entity having the same
name, the construction of the custom component delay collatz interface may proceed

in particular, the Conduit Avalon interface is not needed by the present
component, since it makes no use of peripherals outside the FPGA

the new component type definition is shown in the figure
File Templates Beta View

ComponentType 2% | BlockSymbol 22 | Files &2 | Parameters &2 | Signals & Interfaces

» About Component Type

Name: [delay_collatz_avalon_interface
Display name: |delay_collatz_component
Version: [16.1
Group: Dedicated Systems IP Cores
DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

6di16

coprocessor as a @sys component (2)

the next step is the assignment of VHDL files that describe the component and their
analysis, as shown in the figure

N.B. for this project, it is not necessary to copy files for simulation

File Templates Beta View

ComponentType 22 | Block Symbol £2 | Files %2 | Parameters 32 Signals & Interfaces
» AboutFiles

Synthesis Files
These files describe this component's implementation, and will be created when a Quartus Prime syni

The parameters and signals found in the top-level module will be used for this component's paramete

Output Path Source File Type
delay_collatz_avalon_interface.vhd |delay_collatz_avalon_interface vhd [VHDL
delay_collatz.vhd delay_collatzvhd \VHDL
std_logic_arithext.vhd std_logic_arithextvhd VHDL

Add File... H Remove File H Analyze Synthesis Files H Create Synthesis File f

Top-level Module: ldeIay_collatz_avalon_inlerface lv]

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

7dil6

coprocessor as a Qsys component (%)

finally, the new component definition ends with the definition of its Avalon interfaces and
placement of its signals under the appropriate interfaces, as shown in the figure

File Templates Beta View

ComponentType $2 | BlackSymbol 22| Files 22| Parameters 22 | Signals & Inferfaces &3
+ About Signals
4
Name " Name |avalon_slave_D D
| =avalon_slave_0 <= e M o y
B- chipsslect [1] se Type !A\'al(m Memory Mapped Slave ‘v |
B-read [1] =a T 1
= readdata [32] readdiaz Associated Clock ,clock_smk [v\
-a waitrequest [1] watrequest » Jock "]
) ke Associated Reset: |clock_ress! v
= writedata [32] witedats Assignments. | Edit.
= clock_reset ~=s21 /ot e e
- resetn [1] resal_ | Block Diagram I |v{ E
<add signal>> Address units WORDS J
|®=clock_sink C /0% avalon_slave 0 [ETes——
- clock [1] ¢/ Associated clock ,M
add interface avalon_slave_0| Associated reset |clock reset
Bits per symbol |8
Burstcount units: [worps [+
Explicit address span [oooooooooa
~ Timing
DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

8di 16

Nios IT system with coprocessor and Performance Counter

Connections Name Description Export Clock Base End | IRQ !
B ck_0 |Clock Source
(=2 clk_in [Clock Input ok exported
O clk_in_reset |Reset Input resetn
p— ck |Clock Output clk_0
ek reset _|Reset Output
|B nios2_gsys_0 INios Il (Classic) Processor | | | | |
ok Clock Input ck_0
reset_n |Reset Input e
—_— data_master Avalon Memory Mapped Mastsr (e
—— instruction_master |Avalon Memory Mapped Master (e
P d_irg |Interrupt Receiver e IRQ O IRQ 31—
»——| jtag_debug_modul.. [ResetOutput [
| jtag_debug_module |Avalon Memary Mapped Slave (e 0x0004_0800 0x0004_0f ff
custom_instruction... [Custom Instruction Master
B onchip_memory2_0 |On-Chip Memory (RAM or ROM)
okl |Clock input ck_0
s1 Avalon Memory Mapped Slave [chk1] 0x0002_0000 ox0003_ffff
reset! |Reset Input [chk1)
B delay_collatz_avalo... |delay_collatz_component
clock_reset |Reset Input [clock_sink]
avalon_slave_0 |Avalon Memory Mapped Slave (clock_sink] 0x0004_1048 0x0004_104b
clock_sink Clock Input cik_0
B performance_coumt... Performance Counter Unit
ck |Clock Input ck_0
reset |Reset Input (e
control_slave Avalon Memary Mapped Slave (e 0x0004_1000 0x0004_103f
B jtag_uart_0 JTAG UART
| ck Clock Input ichk_0
reset |Reset Input e
avalon_jtag_slave |Avalon Memory Mapped Slave (e 0x0004_1040 0x0004_1047
—— interruot Sender e —H

System Contents &2 | [T% Address Map 22 | Interconnect Requirements &2

Y unsaved Path: nios2_qgsys_0

nios2_gsys_0.data_master nios2_qsys_0.instruction_master
nios2_qsys_0.jtag_debug_module |0x0004 0800 - 0x0004 Offf 0x0004 0800 - 0x0004 Offf
onchip_memory2_0.s1 0x0002 0000 - 0x0003 ffff 0x0002 0000 - 0x0003 ffff

delay_collatz_avalon_interface_0.... [0x0004_1048 - 0x0004 104b
performance_counter_0.control_sl..[0x0004_1000 - 0x0004 103f
jtag_uart_0.avalon_jtag_slave 0x0004 1040 - 0x0004 1047

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

mapping to FPGA and compilation

for the construction of the Nios 11 system shown in the previous figures it may be useful

to consult the @sys introduction tutorial
with a few differences, such as: memory size is 128 K in the present case, all
base addresses are assigned by th system, etc.

the final steps to map the system to the FPGA are as follows:

in (Psys:

% save the system with name embedded system by File > Save As...

% generate the VHDL code for it by Generate > Generate HDL...

exit Qsys, then in Quartus:

% ossign the embedded_system.qip file (in embedded system/synthesis) to the
project

% import assignments from file DE1 SoC.qgsf in folder delsoc of the attached
archive

“ File > Save Project

% compile delay collatz codesign.vhd

DMI — Graduate Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

9di 16

10di 16

software driver

folder script in the attached archive contains two TCL scripts for the generation of the software driver in the BSP
for the project
the two scripts differ for a single command, present in one of them, that prescribes optimization level 0%
rather than the default level 01
these two scripts are to be copied in folder codesign/ip/delay collatz avalon_interface

in the same folder, respectively under HAL/inc and HAL/src, copy is to be made of the C sources
delay collatz avalon interface.h and delay collatz avalon interface.c of the software driver, that are
available in folder src of the attached archive

the TCL scripts were written by analogy with the TCL script for the software driver of the Performance Counter,
available in the Quartus Prime Lite 16.1 distribution under path
$SOPC KIT NIOSZ2/../ip/altera/sopc builder ip/altera avalon performance counter

similarly, the C sources of the software driver were written by (more limited) analogy with the C sources of
the software driver of the same IP Core, in folder HAL under the aforementioned path

the motivation for this, perhaps unorthodox, way of producing the software driver lies in the twofold fact that

the fAwalon interface of the custom component does not fit into any of the HAL generic device model
classes defined in Chap’rer 7 of the Nios II Classic Software Developer's Handbook

@, neither does the Performance Counter Unit IP Core fit therein ...
together with a somewhat reasonable level of operational analogy between the two components

skimming through Chapter 7 of the handbook is recommended nonetheless, to get a better understanding
of the software driver structure and contents

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

11di 16

test and performance measurement programs (1)

folder src in the attached archive contains the subject programs, which are to be copied in
the provided folders for the creation of test and performance measurement projects
under the Monitor Program, as follows:

% delay collatz sequential timing.c in codesign/amp s and in codesign/amp s 03
% delay collatz pipelined timing.c in codesign/amp p and in codesign/amp p 03
project creation parameters are summarized in the attached file MonitorNotes. txt

the DE1-50C needs to be powered-up and connected to the PC, to program the FPGA at
the end of each project creation

main differences between the source of lab tutorial 04 and the present sequential version:
% #include and #define directives relaﬁng to the custom component
o replacement of the input from the switches device with a constant

o replacement of the body of function delay collatz with two instructions from the
software driver of the custom component

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

12di 16

test and performance measurement programs (2)

the pipelined version of the program exhibits much stronger differences with respect

to the program of lab tutorial 04:

the interaction with the custom hardware is made nonblocking by replacing the
delay collatz function call with an inlining of its body, yet where the software
computation of the next trajectory start point is placed in between the two

inlined instructions, respectively to start the hardware computation and to read

its result

the synchronization mechanism is very snmple thanks to properties of the custom

component and of the waitrequest signal of the Avalon MM protocol:

> for trajectories faster than the software computation, the custom component
keeps the result in its internal register while waiting the read command

> for trajectories slower than the software computation, the read command is
kept waiting by the Avalon interface by means of the waitrequest signal

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

test with blocking acceleration

compilation, loading on the FPGA and execution of program
delay collatz sequential timing.c, in the two projects codesign/amp s and
codesign/amp s 03, produces the Performance Counter Reports in the figure

the remarkable reduction of the execution time of section delay collatz in the second
variant may be explained by the function inlining under compilation 0%

Terminal

--Performance Counter Report--
Total Time: 0.499495 seconds (24974733 clock- cycles)

B R TR +o---- R e e +
| Section | % | Time (sec)l Time (clocks)|0ccurrences|
e R R R Feme- e R R R R RS L L
|tra]ect start | 38| 0. 19005| 9502720| 65536|
--------------- R e e S e
Idelay collatz | 44.4| 0.22162| 11081057| 65536
--------------- B e e

Terminal

--Performance Counter Report--
Total Time: 0.346551 seconds (17327539 clock- cycles)

Fommmm e +----- R et +
| Section | % | Time (sec)l Time (clocks)|0ccurrences|
Fommeeeeeeeas e e
Itra]ect start | 49.5]| 0. 17170| 8585216| 65536
--------------- R e e
Idelay collatz | 35.7| 0.12373| 6186326 65536
--------------- B e e e

a speed—up by an order of magnitude, w.r.t. the software computation in lab tutorial 04,
results from the perFormance data in that case, with the same optimization levels

Terminal

--Performance Counter Report--
Total Time: 7.52118 seconds (3760589AS clock- cycles)

Terminal

--Performance Counter Report--
Total Time: 4.55965 seconds (227982443 clock- cycles)

R b +----- Sttt st tiiots sttt + e R LT S s atd SO IiIt Ly c i L entnan i ety XL DL LD L, +
| Section | % | Time (SEC)I Time (cIocks)IOccurrencesI | Section | % | Time (sec)l Time (clocks)lOccurrences
L R LT s ettty SR e e L B T +----- e e e T
Itra]ect start | 2.53| 0. 19005I 9502720| 65536| Itra]ect start | 3.77| 0. 17170| 8585216| 65536|
--------------- R e bbbt bbbt bbb R il LDl S L e e DL LT LT o
Idelay collatz | 96.3| 7.24331] 362165262| 65536| |delay_collatz | 95.1| 4,33682| 216841223| 65536
--------------- i i S it s e e S et o

13 di 16

DMI — Graduufe Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

14 di 16

test with nonblocking acceleration

it is sensible to expect a further perFormance gain out of the nonblocking
execution of the computation by the custom hardware

the comparison of the following Performance Counter Reports with the
corresponding data for the implementation with all computation done in software,
yields a Z1x speed-up with default optimization O1 and a 1ox speed-up with
optimization 0%; the corresponding speed-up values with blocking acceleration are

19x with 01 and 1%x with 0%

N.B the speed-up is computed on the total time; section data are less significant
with nonblocking acceleration because the execution threads of the two sections
overlap in time

Terminal Terminal

--Performance Counter Report-- --Performance Counter Report--

Total Time: 0.359145 seconds (17957243 clock-cycles) Total Time: 0.285762 seconds (14288114 clock-cycles)
R e e e EEEEEE R e R T LR R + R R Hooee- SR EEEEEEE o Fommmmeeeee +
| Section | % | Time (sec)| Time (clocks)|Occurrences| | Section | % | Time (sec)| Time (clocks)|Occurrences|
Focceceeeecaann s e fecemoanannn e Rt + Focccmcmeeeeann deene- s aELTTEEEEEES S aeEEEEE LTS deccmmmeeann +
|traject_start | 52.9]| 0.19005| |traject_start | 60.1| 0.17170]| 8585216| 65536|

Bt e SRR TR e e R - et e R e R +
|delay_collatz | 86.5]| 0.31065| 15532367| 65536| |delay_collatz | 89.4| 0.25561| 12780693 65536|
Hommmm e e Hommmm e

+
i
a
=
i
i
i
+
i

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

15di 16

references

useful materials for the proposed lab experience:

archive with source files for project reproduction
#Awlon® Interface Specifications, Ch. 1-3
MNL-AVABUSREF, Intel Corp., 2017.05.08

Making CPS_yS Componem‘s - For Quartus Prime 16.1

Intel Corp. - FPGA University Program, November 2010

Introduction to the &sys System Integration Tool - For Quartus Prime 16.1,
Intel Corp. - FPGA University Program, November 2016

Nios 11 Classic Software Developer's Handbook, Ch. 7
NIIZVZ, Altera Corp., 2015.05.14

Intel FPGA Monitor Program Tutorial for Nios 1T - For Quartus Prime 16.1
Intel Corp. - FPGA University Program, November 2010

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

16 di 16

