SoC development on FPGA with application profiling

Tutorizal 09 on Dedicated systerms
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Groaduate Course in Computer Science, 2017-18

DMI — Graduate Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

1dil2

Table of Contents

1. SoC development on FPGA with application profiling
2. tutorial outline
2, system integration in SoC development
4, tools for software application profiling
5. construction of a Nios IT system with performance counter
0. a simple, well-known example
7. use of the performance counter in the software application
8. BSP generation and HW/SW integration
qa. debugging and execution

10. lab experience

11. references

DMI — Graduste Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

2di12

tutorial outline

this tutorial deals with:

system integration of hardware components for SoC development with @sys
tools for software application profiling

design of a Nios II system equipped with a performance counter

use of the performance counter API in a well-known example: delay computation on a
sequence of Collatz trajectories, with user input of the sequence length

HW/SW integration through BSP generation in the Monitor Program, compilation, loading on
FPGA, debugging, and execution

lab experience:
design and implementation of a HW/SW system with similar structure and features
as those of the example presented in this tutorial, using the same developmen’r and
profiling tools, but for a different application

VvV VvV VvYVvVVYyVY

DMI — Graduate Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

3dil2
system integration in SoC development
development of a SoC with applications is a typical HW/SW codesign activity
it consists of design and development of components of both kinds, as well as their
integration to form a single system
the Quartus tool utilized in this lab tutorial for the integration of hardware components in SoC
development is @sys
it is advised to consult the introduction to @sys and to run the therein provided example
on the DE1-56C, to get familiar with using the tool
a slightly more complex example is the subject of the present tutorial:
s development of a SoC similar to the aforementioned one, but equipped with a
component that enables accurate profiling of software applications (see next)
s development of a software implementation of the delay computation of Collatz
trajectories, and of a software application to measure its execution time
DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

4dil2

tools for software application profiling

profiling a program: measuring the time spent in different parts of the program, to identify those
which are critical to execution speed

useful in HW/SW codesign to figure out which program parts may deserve possible hardware
acceleration, thence to estimate the achievable speedup

three tools considered in (fairly dated) document Profiling Nios T N MmN
Sysfems : = |p Catalog 33 =
.] A X
GNU gprof : software measurement, high software overload, high o L
measure distortion T e
. e ©- Bridges and Adaptors
Interval 7"m3er: h.ardwa.re measurement, minimal resource JoudmPUsadresss
overload, limited distortion £ On Chip Memory
‘ . e ¢ Simulation; Debug and Verification
Performance Counter Unit: hardware measurement, significant §-Dbug and Pertmance ces & Probes

Altera SignalTap Il Logic Analyzer
Altera Soft Core JTAG 10

Altera Virtual JTAG

Performance Counter Unit

SLD Hub Controller

SLD Hub Controller System
System ID Peripheral

Trace System

the third method is utilized here, since it yields the best accuracy
and the easiest use within the program, while the aforementioned Jace Sysen
upperbound is no problem for the application at stake L. g 55 Debug Master

o= Verification

hardware overload, minimal distortion, upperbound (7) on no. of
measurable program sections

eecececee

DMI — Graduate Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

5dil2

construction of a Nios II system with performance counter

the figure displays the @sys contents of the Nios II system with Performance Counter Unit

the scheme is similar to that of the example in the introduction to @sys, except for the
absence of the LEDs PI0 and the presence of the proFiling component

Connections Name | Description Export Clock Base End IRQY
B ck_0 Clock Source
o ciin Clock Input ok exported
O clicin_reset Resstinput reset
——d ok Clock Outout ch_0
———————— clk_reset Resst Output
B nios2_gsys_0 Nios Il (Classic) Processor
clk Clock Input ck_0
reset_n Reset input ek
————| data_master Avalon Memory Mapped Master =0
——— instruction_master |Avalon Mapped Master =0
~——| din Interrupt Receiver =0 1RQ © IRQ 31%—
— jtag_debug_modul . |Reset Outp| e
jtag_debug_module |Avalon Memory Mapped Stave ek 0x0002_0800 0x0002_0fff
custom_instruction... (Custom Instruction Master
B onchip_memory2_0 On-Chip Memory (RAM or RON)
clit Clock nput ck_0
st Avalon Memory Mapped Siave felk1] @ 0x0000_0000 x0001_ffff
resett Resst input felk1]
B performance_count... Performance Counter Unit
el Clock Input ck_0
reset Resstinput e
control_slave Avalon Memory Mapped Siave e 0x0002_1000 0x0062_163f
B jtag_uart_0 JTAG UART
ol Clock Input ck_0
reset Resstinput e
avalon_jtag_slave |Avalon Memory Mapped Slave e 0x0002_1050 6x0062_1057
in Interrupt Sender =0 —
B switches PIO (Parallel 0)
ol Clock Input ck_0
reset Resstinput e
—— 5 Avalon Memory Mapped Siave ek 0x0002_1040 0x0062_104f
o external_connection |Conduit switches
DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

6dil2

a simple, well-known example

the C function in the figure is a software implementation of the delay computation of a
Collatz ’frajec’rorg with given start point
the preprocessing directives, except the fourth one, relate to the hardware platform
previously built with (sys, see next

delay_collatz_timing.c + *

a_avalon_performance_counter.h"

2 ptinc .

3 Hide ! volatile unsigned int *) SWITCHES._| / from "system.h"
4 Rdefine \ 2 {unsigned int const) 8 /f *switches scale

5 ptdefine pca (void *) PERFORMANCE_COUNTER_O_BASE // from

5}

7 |unsigned int delay_collatz(unsigned int x0) {

8 int d = 0;

9 int x = x0;

10 int hx;
11 while (x > 1) {

12 d++;
13 hx = x == 1;
14 if ((x % 2) >0) {
15 d++;
16 X += hx + 1;
17 }
18 else
19 x = hx;
20
21 return d;
22 |}
DMI — Graduate Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

7dil2
use of the performance counter in the software application
unlike the previous lab experiences relating to hardware implementations of the subject function, the
user input here determines the length of the sequence of trajectories to be generated in the main
program, that is the number of function invocations
the switches input is multiplied by a scale factor, to get a reasonable test duration
delay_collatz_timing.c + *|
24 |int main() {
25 unsigned int i, n, taps, ¢, x, d;
26 n = *switches << N_FACTOR;
27 alt_u32 cpu_freq = alt_get_cpu_freq();
28 unsigned int seed = 0x1234;
29 ¢ = seed;
30 PERF_RESET(pca);
31 | PERF_START_MEASURING(pca);
32 for (1 =0; 1 <n; i++) {
33 | PERF_BEGIN(pca, 1);
34 X =cC;
35 taps = (¢ & Ox1) ~ ((c & Ox4) >> 2) ~ ((c & OxB) >> 3) ~ ({c & Ox20) >> 5);
36 c = (taps << 15) | (¢ >> 1);
37 PERF_END(pca, 1);
38 | PERF_BEGIN(pca, 2);
39 d = delay_collatz(x);
40 PERF_END(pca, 2);
4
4; PERF_STOP_MEASURING(pca) ;
43 perf_print_formatted_report(
a4 pca,
45 cpu_freq,
16 2,
47 ect_start",
48 elay_collatz");
49 | return 0;
s0 |}
DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

8dil2

BSP generation and HW/SW integration

the preprowssing directives, previouslg shown, enable the use of the performance counter API
as well as of other symbols (SWITCHES BASE in this case) defined in the software interface of
the system built with Qsys

+he inter‘FaCC iS Provided bH the %SP, File 5ett.|ngs System Settings ' Program Type | Program Settings | Connection Settings
' . Specify a program type
whose construction here is automated
bEI the MOHH'D" Prbgmm, Fbubwing the Lets you specify a program written in the C, C++, and/or assembly languages, with support for device
1 drivers. Such a program makes use of the Nios Il software build tools to generate a board support
Chblce o_F Program «tHPe Program Wlth package (BSP) for the currently-selected system, and a series of makefiles that are then used to

compile the program. The Intel FPGA Monitor Program automates this whole process, but allows the
|user to specify a custom Tel script if advanced customization is required.

Device Driver Support .

Program Type: |Program with Device Driver Support

other aspects of the BSP (e.g. compiler or linker options) may be sPeciFied by providing a
custom Tl script

in particular, while the default optimization level fixed by the Monitor Program is 01, a

different level, e.q. ~0%, may be obtained by creating a one-line script (with extension
tel):

set setting hal.make.bsp cflags optimization -O3

and providing its pa’rh in the inpu‘l‘ box BSP settings Tcl script (optional) within the
Program Settings tab

DMTI — Graduate Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

9dil2

debugging and execution

C source-level debugging is also available in the Monitor Program (visualization of values of variables)
this requires compilaztion with optimization level -00

the program disassembly remains accessible anyway, where to set breakpoints and to examine its
execution status at critical poin’rs for correctness verification

for example, with breakpoints as in the figure, one may check the correctness of the
computed no. of iterations and of the clock frequency, resp. in r18 and r19

unsigned int i, n, taps d r8 0
n = *switc N_| r9 0
0x0000024C orhi rle 0
0x00000250 addi rll 0
0x00000254 Tdw rl2 0
0x00000258 slli rl3 0
32 get_cpu_freq() ra 0
@0x0000025C alt_get_cpu_freq) rls 0
@0x00000260 16 o
ri7 0
. N rlg 65536
PERF_RESET (pca) s
0x00000264 orhi r2, zero, 0x2 = [30600500
Terminal
q
after removal of all brenkPomfs, sysfem JTAG UART Lk established using cable "DE-SoC (2-1.2)°, device 2,
instance Ox
‘ 0
--Performance Counter Report--
reset and execution restart, the profiling Tore Tove 3 SSHS ot crssases clock-cpcles
B T mmm e mmm e mm e mmm e +
module genem‘l’es the Per‘Formance t’epbrf | Section | % | Time (sec)| Time (clocks)|Occurrences|
B s e R +
displaged in the Figure |traject_start | 2.53| 0.19005| 9502720 65536
T T e e e +
|delay_collatz | 96.3] 7.24331] 362165262 65536
T e PR PR "

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

10di12

lab experience

the proposal aims at the design and implementation of a HW/SW system with similar
structure and features as those of the example presented in this tutorial, using the same
development and profiling tools, but for a different application; precisely, the work goes
about:

% building a Nios II system on FPGA, equipped with a performance counter
component for application profiling

% software development of a coprimality test program, using a GCD computation
function while processing a sequence of number pairs

% HW/SW integration of system and application, with: application profiling using the
API of the aforementioned component, BSP generation, compilation, loading and
execution on the FPGA, with debugging if needed

DMI — Graduate Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

11di12

references

recommended readings:

Introduction to the Qsys System Integration Tool - For Quartus Frime 16.1, Intel Corp. -
FPGA University Program, November 2010

readings for further consultation:
Profiling Nios 11 Systems, AN-291-3.0, Altera Corp., July 2011

useful materials for the proposed lab experience:
Performance Counter Unit Core, Ch. 31 in: Embedded Peripherals IP User Guide,
Intel Corp., UG-01085 | 2017.11.06

Intel FPGA Monitor Frogram Tutorial for Nios IT - For Quartus Prime 16.1, Intel® FPGA
University Program (November 2010)

source files for running the lab experience (in the lab reserved area)

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

12.di12

