Program analysis tools and examples of their use

Tuterizal on Dedicatad systams
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Groaduate Course in Computer Science, 2017-18

DMI — Graduate Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

1dil2

Table of Contents

1. Program analysis tools and examples of their use
2. tutorial outline
2, GNU cross-compilers and binutils
4, example for NisUAL ARM emulator< (1)/0>
5. example for \isUAL ARM emulator< (2)/0>
o. execution with debugger for ARM Cortex-#4 processor
7. execution with debugger for Nios II processor
8. low~level analysis of ARM executables
qa. low-level analysis of Nios II executables

10. lab experience

11. references

DMI — Graduste Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

2di12

tutorial outline

this tutorial deals with:

& GNU cross-compilers and utilities for low-level program analysis
s examples of use of such tools for various processors and program development systems:

o for ARM simulator VisUAL v. 1.27 with GCC 3.2 cross-compiler, GNU
Binutils 2.13, and ad-hoc script
s execution with debugger on ARM Cortex-A4 processor (DE1-S0C HPS)
S execution with debugger on Nios II processor (DE1-SoC FPGA)
s for ARM Cortex-A4 processor with GCC 4.8.1 cross-compiler and GNU
Binutils 2.2%
% for Nios II processor with GCC 5.3.0 cross-compiler and GNU Binutils 2.25
s lab experience: reproduction of the execution of the examples and production of tutorial
documentation
DMI — Graduate Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

3dil2

GNU cross-compilers and binutils

program development for dedicated systems often takes place on machines that are based
on a different processor than the target one, viz. that which is meant for their execution

% q cross-compiler isa compiler which produces assemblg code and executable
programs for a different architecture than that on which it is executed

> just like ordinary compilers, cross-compilers are often equipped with a collection of

utilities for low-level program analysis

the cross-compilers and utilities here considered are GNU free software, that typically have
names <target>-gcc for the compiler, where <target> indicates the target architecture,
and <target>-<util> for the utility <util>, such as for example

% size: list of sizes of sections and total size of an objec’r module or of an executable

% objdump: contents of an object module or of an executable

% nm: list of symbols of an object module or of an executable

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

4dil2

example for NisUAL ARM emulator (1)

a first example showcases the use of the NisUAL v. 1.27 ARM emulator, for the simulation of the execution of a
program for GCD computation with Euclid's algorithm (Listing 7.11 in Schaumont, with modified main because of
the different simulation target)
the emulator accepts an ARM source assembly program coded in a subset of the instruction set defined
by the UAL (Unified Assembly Language) syntax
in this example, the assembly program is obtained from the C source by means of the arm-linux-gcc cross-
compiler, for ISA ARMv4, implemented in the StrongARM processor
this cross—com?iler and its binary utilities can be retrieved from
rijndael.ece.vt.edu/gezel2repo/pool/main/a/arm-linux-gcc/
however, the assembly program so obtained does not meet the restrictions Xosed by the emulator, e.g. it contains
assembly directives and other syntactic sugar that are not accepted by VisUAL
this obstacle is overcome by an ad-hoc script that edits a copy of the previous assembly source to produce a version of
it conforming to the VisUAL syntax
archive arm visual examples.tgz, available in folder crosstools of the reserved lab area, provides the C sources and
the required scripts for the cross-compilation and NisUAL emulation of the GCD example and of a second
example, that presents a software implemen‘taﬁon of the Collatz delay calculation, similar in functionality to the
hardware implementations considered in the previous lab experiences
to run the examples, after unpacking the archive with tar xzpvf, in folder arm visual examples run
respectively ./c2visual gcd, and ./c2visual delay collatz, then launch NisUAL and open the respectively
generated files ged/ged.s, and delay collatz/delay collatz.s (warning: with lowercase extension .s 1)

DMI — Graduate Course in Computer Science

Copyleft ® 2018 Giuseppe Scollo

example for VisUAL ARM emulator (2)

Reset to continue editing code
b ai
2 ¥ cmp , #1 ax79 Dec Bin Hex
mov , #0
add , lsr #31
6 bic , 1, #1 ox3 Dec Bin Hex
7 rsbh “
noy ! asr 01 2330
s e 2660 Dec Bin Hex
12 d e ["o | Occ_8in_Hex |
2 add P R6 0xe Dec Bin Hex
wovie d 0x0 Dec Bin Hex
14 addgt B , #1
’ = e o
3 bgt
7 mov 0x0 Dec Bin Hex
o b [o |
e m e]
20 add , #52
2 mov 3 R11 oxe Dec Bin Hex
@ 22 bl delay_collatz
24 and » T, #4
> and e R13 0xFFB00000 Dec Bin Hex
26 and ., T4, #8
> s 2 oxss
= = 4 S ox60 Dec Bin Hex
30 eor , lsr #5
1 mov , lsro#1
32 mov
33 orr) , sl #15
® 54 bl delay_collatz
® = cwp 4 15 © Clock Cycles Current Instruction: 1 Total: 1121
3 moveq , #0 CSPR Status Bits (NZCV)] 1 1 0
- _ 1:1:1¢1

a snapshot of NisUAL emulation of the delay collatz.s ARM assembly program

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

5dil2

6dil2

execution with debugger for ARM Cortex-A4 processor

the figure shows an execution snapshot of program delay collatz.c on the DE1-S0C ARM processor

cross-compilation, loading and execution take place by means of the altera-monitor-program, under

control of tts GNU debugger GDB
the system allows the loading of a C or assembly source, whereby cross-compilation is done
through the monitor program itself

Elle Edit Actions Windows Help

e

w s Hhd

Dm0 NG

Project Files ~ x | Disassembly - x| Registers -x
[delay_colistz Goto instruction| Address (hex) or symbol name: |_start Go| Hide] || Reg [value
B 3
< int main() { £ |3
&-@p sic main: 5 0100000000
0X000002FC push {r1, 1r} 2 0x00000000
(3 dela| oxoocooace add rll, sp, #4 3
0x00000304 sub sp, sp, 424
iyl S b Mo o
0x00000308 mow r3, #4660 0x1234 @
0x0000030C str 3, (1, # - =]
unsigned int taps, 7 Or000008M
¢ = seed 8 ONFFFFFFFF
0x00000310 Wr 3, [, 121 o 0x00000005
0x00000314 str r3, [rl1, #-8] rio OxFFDO2000
int x =€ 1 OXIFFFFFE4
0x00000318 UWr 3, (e, 8] 12 0x000009EC
0x0000031C. str 3, 11, $-16] p OXIFFFFFCE
int d = delay_collatz(x) 1r
0x00000320 wr o, [r11, #-16] lepsr 0x60000103
$0x00000324 bl 254 <delay_collatzs
$0x00000328 str 0, [r11, #-20] ; Oxffffffec
taps = (c & Oxl) ~ ((c & Oxd) »> 2) * ((c & OxB) > 3) ~ ((c & Ox20) > S)4
0x0000032¢ Ur 3, [rl, ¢-8] =
4 I
a[Zzza] T3] Edtor, Disassembly | Breskpoints / Memory / Watches / Trace
Terminal - % | Info &Errors -%
e i e
. »

|| info & Errors | GDB Server | Variables

execution snapshot of an ARM program under control of the GDB debugger within the Monitor Program

DMT — Graduate Course in Computer Science

execution with debugger for Nios IT processor

Copyleft ® 2018 Giuseppe Scollo

the same C source from the previous example may be cross-compiled and executed by a Nios 11
softcore on the FPGA of the DE1-50C system

Eile Edit Actions Windows Help

O aéb &b

Project Files

Dm0 N¢

- % - X
. delay_collatz Goto instruction| Address (hex) or symbol name: |68 | o]
B .. o
B 0x000001A8 stw r2, -4(fp)
T i ¢ = (taps << 15) | (¢ >> 1)
ol 0OxOO0001AC Tdw r2, -4(fp)
[delay_collatz.c Ox0B0R01B0 sl r3, r2, 0
0x00000184 Tdw r2, -20(fp)
0x00000188 stli r2, r2, 0
0x0000018C or r2, r3, r2
0x000801C0 stw r2, -20(fp)
d = delay_collatz(x)
0x000001C4)]
$0x000001C8 (0x00000030: delay_colla
B0x000001CC
int x = ¢;
d = delay_collatz(x)
& 0x1) ~ ((c & 0xa) >> 2) ~ {(c & O
¢ = (taps << 15) | (c »» 1)
vhile (¢ I= seed) {
0x00000100 ldv r3, -20(fp) 2
K 0
Editor | Disassembly | Breakpoints / Memory / Watches | Trace | rl9 0x00000000 -
Terminal = X | Info &Errors -X
[37AG UART ink established using cable “DE-SoC [2-1.2]", device 2, =
:’mstante 0x00
; <
[T 1o
Info & Errors |

execution snapshot of a Nios I program under control of the GD® debugger within the Monitor Program

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

7dil2

8dil2

low-level analysis of ARM executables

execution of the delay collatz example on the ARM processor by means of the monitor
program produces two files in the projecf direc’rorg that are relevant to low-level analgsis:

% delay collatz.axf: the ELF executable

% delay collatz.axf.objdump: its disassembly produced by the objdump utility

in order to carry out low-level analysis even further, it helps one to know where the binary
utilities are located, for the gcc cross-compiler used by the monitor program

in the installation directory of the Quartus Prime software, the cross-compiler and
the binutils are located in directory

University Program/Monitor Program/arm tools/baremetal/bin

N.B. actually, the monitor program mokes use of specialized versions of some of these
tools, that are placed elsewhere; however, for general use, independent of any execution in
the contest of the monitor program, the aforementioned tool collection is the proper one

DMTI — Graduate Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

9dil2

low-level analysis of Nios IT executables

processing the C sources by the monitor program for execution on the Nios II processor
produces the .elf executable in the project directory, but not its disassembly
in the installation directory of the Quartus Prime software, the cross-compiler and the
binutils are found in directory
nios2eds/bin/gnu/H-x86 64-pc-linux-gnu/bin

hre is a simple example of use of the size utility: comparing the sizes of the executables
produced by the three cross-compilers of interest here, for both of the examples proposed and
with the same compilation options; in particular, optimization level 02
the two C sources and the scripts to this purpose are available in the cross-
compiled_sizes.tgz archive, within the crosstools directory in the reserved lab area

the following table presents the outcome of this exercise

C source cross-compiler text data bss total

gcd arm-linux 820 260 4 1084
arm-altera-eabi 492 16 28 536
nios2-elf 1056 1068 0 2124

delay collatz arm-linux 864 260 4 1128
arm-altera-eabi 628 16 28 672
nios2-elf 1196 1068 0 2264

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

10di12

lab experience

run the examples provided with this tutorial, examine the files produced by their execution, find a few not well-
known aspects of their contents, search the web for information about them and produce some tutorial
documentation in form of a list of questions and answers

each answer should give a reference to its source; if the answer is drawn from a directly accessible web
source, insert the specific link; if this points to information that only answers the question, then giving the
link as answer is enough

here are three examples of question and answer, one for each of the three types described above:
Q: What is the meaning of the acronyms N\MA and LM in the output of objdump?
#: Respectively virtual memory address and load memory address; the former is the address of a
program section during execution, the latter is its address when the program is first loaded in memory;
the two addresses may differ when the program is first loaded on a different memory than the one which

holds it at runtime, for example it is loaded on a Flash memory and then copied into RAM when it
executes. (Schaumont, 2012, pp. 216-217)

@: What does the ARM instruction rsb do?

A: It stands for reverse subtract, as it subtracts the first source operand from the second one, that is,
the two arguments are in reverse order with respect to sub; please note that arithmetic ARM instructions
allow the second source operand to be immediate, whereas the first one and the destination must be
registers, so this instruction allows subtraction from a constant. (www.heyrick.co.uk/armwiki/RS%)

Q: What is the origin of the name bss of the executable program section that contains the global variables?

A: en.wikipedia.org/wiki/ .bss#Origin

DMI — Graduate Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

references

recommended readings:

Schaumont, Ch. 7, Sect. 7.4

readings for further consultation:

Schaumont, Ch. 7, Sect. 7.9, 7.b
The ARM Instruction Set, tutorial, ARM University Program, V1.0
NisUAL - A highly visual ARM emulator
tutorials from source Intel® FPGA University Program (November 2016):
Introduction to the ARM® Frocessor Using Intel FPGA Toolchain - For Quartus Prime 16.1
Introduction to the the Intel Nios 11 Soft Processor - For Quartus Prime 16.1
Intel FPGA Monitor Program Tutorial for ARM - For Quartus Prime 16.1
Intel FPGA Monitor Program Tutorial for Nios 11 - For Quartus Frime 16.1

useful materials for the proposed lab experience:

GCC, the GNU Compiler Collection
GNU Binary Utilities

11di12

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

12.di12

