FSMD examples in Gezel and in VHDL

Tuteorizl 06 on Dedicated systers
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Groaduate Course in Computer Science, 2017-18

DMI — Graduate Course in Computer Science

-
=l O

SN N R e

Table of Contents
FSMD examples in Gezel and in YHDL

tutorial outline

hardware implementation of FSMD models
FSMD design example: median computation
datapath of a median computation filter
sequentialization by means of an FSMD
FSM description in VHDL

state encoding techniques

delay optimization

lab experience

references

Copyleft ® 2018 Giuseppe Scollo

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

1dil2

2di12

tutorial outline

this tutorial deals with:

% hardware implementation methods for FSMD models
% FSMD design and implementation example
design of a median computation datapath
sequentialization by means of an FSMD
> FSM description in VHDL
description styles
state encoding
delay optimization
> lab experience:

design and FPGA implementation of a Collatz delay testbench

DMI — Graduate Course in Computer Science

hardware implementation of FSMD models

Copyleft ® 2018 Giuseppe Scollo

hardware mapping of datapath expressions: same basic rules as with always blocks, however:

har dware da’mpa’rh structure also depends on instruction schedule by FSM...
why?

consider the up—down counter example from the previous lecture:

—— S by the FSM model, different instructions will
L(MM always execute in different clock cycles
2 instructions which are never concurrent may
s control _ datapath share operators' hardware
decoder such as the adder/subtractor in this case
! % g local decoder converts the instruction
WY P encoding into control signals for the datapath,
1— e .
o to enable the proper execution path
0—> A
% alocal decoder in the controller extracts
datapath state information for the FSM
Schaumont, Figure 5.8 - Implementation of the up-down counter conditions
FSMD

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

3dil2

4dil2

FSMD design example: median computation

function specification: computation of the median in a list of five numbers
problem: design a sfream—processing filter that produces a new output upon each new inpu’r
such filters find application in image processing, for noise reduction

for a fast algorithm, with no list sorting:
in a (2n +1)-element list, with pairwise distinct elements, the median has n smaller elements

dp median(in a1, a2, a3, a4, a5 : ns(32); out q1 : ns(32)) { (l

e R el e e e the algorithm presented by this datapath also works

sig s1, s2, s3, s4, s5: ns(1); u)her\ some elemem‘s are equal

aiways { L TH
Z; E (61 < a%); % the description is almost identical to that of

= < . .
r E21 X 243 a C function for the same algorithm
i‘é = EZ} t 2%3 % but with a substantial, practical difference:
59 = 523 t 2?,3; sequential execution of assignments in C
zg = Egg 5 gg;; vs. parallel execution in the datapath
z9= ; {
210 = (a4 < ab); where each output produchon
s1=((z1+ z2 + z3 + z4) == 2); ' ' 1 |
2= ((12)+ o5+ b+ T -=2) requires just one clock-cycle!
s3=((1-22) + (125) + 28+ 29)==2); : : :
B R (s 10 =) pro'\{ldled all input values are simultaneously
ql=s1?al:s27a2:s3?a3:s4?a4:ad; available ...
} } an FSMD may allow a big space saving, as
Schaumont, Listing 5.14 - GEZEL Datapath of a median calculation of five numbers we are going to see
DMI — Graduate Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

5dil2

dotapath of a medion computation datapath
the presented algorithm requires 192 1/0 lines and 10 comparators
a stream processing filter may reduce these requirements to 64 1/0 lines and 4 comparators

to this end the hardware stores the four data preceding the last ~ dp median(inal : ns(32); out g1 : ns(32)) {
reg a2, a3, a4, a5 : ns(32);

one from the input stream and at every iteration with a new sig 21, 22, 23, z4;
input element reuses the stored results of six comparisons ;?g 2520, Szg : gf'szg'_ %115,?1')-%(3)’
from the previous three iterations always {
a2 =at,;
71— a3 =az;
22 —| median s1 a4 = a3;
B aum [ab = a4,
24 — z1=(al<a2);
T z2 = (a1 <a3);
-z1 —} z3 = (a1 < ad);
25— median | 2 z4 = (a1 < ab);
26 —| sum a2 z5=121;
27 — a3 qi 26 = z2;
ad z7 = z3;
z5 H z7 ~22 =) a5 78 = z5;
? o - ~25 — median | _$3 29 = 76,
28 —y sum s1 z10 = Z8,
H ﬁ 29 - s1=(z1+ z2+ 23+ z4)==2)
A A T s3 s2=((1-z1)+ z5+ 6+ z7)==2),
-23 s4 s3=(((1-z2) + (1-z5)+ z8+ 29)==2);
26— median | st sd = ((1-z3) + (1-z6) + (1-z8) + z10) == 2)’
A ;TS sum) ql=s1?al1:s2?7a2:s37a3:s4?a4:a5;
}

Schaumont, Figure 5.9 - Median-calculation dafapafh for a stream of values

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

6dil2

sequentialization by means of an FSMD

the filter in fig 5.9 accepts a new input and produces a new output at every clock cycle
the number of computing components may be further reduced by distributing the computation over
multiple clock cycles under a sequentiol schedule, so that a single comparator and a single module to
compute s1, s2, s3, s4 are reused, at the cost of adding a few multiplexers and registers for the

internal signals

the figure shows the schedule, the FSMD which implements this idea is in Schaumont Sect. 5.5.4, which
also presents the testbench FSMD here reproduced oside the figure

Schaumont, Figure 5.10 - Sequential schedule median-calculation datapath for a stream of values }

dp t_median {
21 —) sig istr, ostr : ns(1);
median | S sigal_in, g1 :ns(32);
sum use median(istr, a1_in, ostr, q1);
regr:ns(1);
r?g c: r}s(16);)
I PR — 12 always { r = ostr;
median | 52 : . sfg init { ¢ = 0x1234; }
e | a2 at | sfg sendin {a1_in =¢;
= i ¢ =(c[0] " c[2] " ¢[3] " c[5]) # c[15:1];
| a5 : ‘ in{ 1i5_tr=a;}
median |53 stgrnotnyating=1;
sum | i o istr=0; }
' - i fsm ctl_t_median(t_median) {
| . A i initial sO;
median o [[T T TTTTTT state s1, s2;
sum | @so0 (init, noin) -> s1;
@s1 (sendin) -> s2;

@s2 if (r) then (noin) -> s1;
else (noin) -> s2;

DMI — Graduate Course in Computer Science

a simple example: memory controller
| [[

‘ | ‘ bus_id

general FSM hardware structure

Inputs Outputs
M Combinational["
System T process |

c:{;%gl Q D next

state

FSM hardware structure

<_] T process 2

Copyleft ® 2018 Giuseppe Scollo

7dil2

FSM description in VHDL
reset outpuly
| A * state nc'. we
[¥ !
vy Ao A EINE AR
T hus_id choice | 0 [
| ready |
| / + !
5—> ready | N Yokndy rad | 10
[SRAM ooy wite | 0 1
| memory | | T-0w RN E
| we d | L Py
read " | write

| | ready
_/ ready

State transition diagram of a memory controller

in the VHDL description, states form an enumerated type

(see enclosed code):

% two-process: most immediate way to reflect the scheme in the
figure, one process is sensitive to the clock

this is the translation style with fdlvhd

% one-process: just one state signal, Moore FSM outputs may be
described by concurrent assignments, outside the process

% three-process: state transition and output functions described by
distinct combinational processes

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

8dil2

state encoding techniques

a binary encoding of the state enumerated type is needed to synthesize an HDL description of an FSM
automatically generated by the synthesis tool if not explicitly specified in the description

frequently used encodings:

s

>
>

sequential : compact, a set of n states is encoded in the set of binary representations of the natural
numbers < n, with [logzn] bits
one-hot: with as many bits as are the states, where only one bit is set to 1 in the encoding (bijecﬁon
between states and bit positions in the encoding), automated synthesis often generates this encoding

ad-hoc to opﬁmize the delag, see next page

explicit state encoding may be described in VHDL by defining the state type as a subtype of
STD_LOGIC_VECTOR and by declaring the state encodings as constants of that type; for example, here are
sequential and one-hot encodings of the states from the seen example:

subtype state is std_logic_vector(1 downto 0);

constant idle : state := "00";
constant choice : state :="01";
constant read : state :="10";
constant write : state :="11";

subtype state is std_logic_vector(3 downto 0);
constant idle : state := "0001";
constant choice : state := "0010";
constant read : state :="0100";
constant write : state := "1000";

if the encoding is not surjecﬁve, e.g. a one-hot encoding, the construct case stato is when ... must have the

final clause when others ...

DMTI — Graduate Course in Computer Science

Inputs next

Next- state
state

logic

—»

State
registers

current
state

Current-state dependent outputs (Moore FSM)

Output |

i logic

Inputs i T
—» Next- state
slate >

lagic

State
registers

—»

current
slate

Next-state dependent outputs

Inputs e

> Next- state
slate F
logic

>

Outputs

State
registers

current
slate

Reduction of clock-output delay

Qutputs

State »
>‘ registers

Copyleft ® 2018 Giuseppe Scollo

9dil2

delay optimization

the block diagram corresponds to the two-
process and one-process descriptions in the
enclosed code
a significant clock—to—oufpuf delay may
result

Output Dutpits

logic

this may be reduced to the flip-flop clock-to-q delay by
computing outputs based on the next state and by placing
registers before outputs
the three—process architecture in the enclosed code
exemplifies this optimization
N.B. since processes are sequential, this opﬁmizaﬁon is also
applicable to two-process and one-process architectures as well,
by deferring outputs’ u?da’res until after state updates

another optimization technique e.g. in the seen example:
consists in encoding states so as to
let outputs coincide with some of

the (encoded) state bits

idle 0oon
choice | 00 1
read 010

write 100

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

10di12

lab experience

this experience has a twofold target

1. extension of the dataflow model out of the third lab experier\ce for the delay compu’raﬁon of Collatz frajedories to an
FSMD model that would include a pseudorandom generator feeding the datapath with initial values of trajectories, similar
to the sendin instruction in the testbench example for the median computation filter, and that would alternate the output
of the generated initial value with the sutput of the computed delay for the corresponding trajectory

for the first target, translation to VHDL and simulation are required, the latter as a correctness check
2. implementation of the model on the DE1-50C FPGA, with user control inputs to enable the alternating data output on a
series of five 7-segment displays, in decimal representation
the I/0 for the first target model consist of:
% binary input start, to enable the start of a new trajectory, with output of the generated (16-bit) initial value
% binary output done, to signal te end of computation of a trajectory delay
4 binary input dout, to enable the output of the computed delay, on the same port as of the initial value
% display output of 16-bit numbers, multiplexed over the alternating output of initial value and deloy as mentioned above
after the initial state where the generator is initialized, it is suggested to let the control FSM go through a sequence of four states:

1. wait for user control input start

2. output of the trajectory initiol value, start up the delay computation, and wait for its completion

3. done output and wait for user control input dout

4. output of the delay value and back to state 1

for the second target, use can be made of the 7-segment display decoder from the two latest lab experiences, but this is to be fed
with BCD representations of the 16-bit output decimal digits: five displays are needed to this purpose and package bed, is available,
that provides the BCD_encode function
use keys KEYO, KE1, KEY2 for inputs RST, start, dout, LED LEDRO for output done, and CLOCK_50 for the clock
DMI — Graduate Course in Computer Science Copyleft ® 2018 Giuseppe Scollo

11di12

references

recommended readings:
Schaumont, Ch. 9, Sect. 9.4.4-5.9
readings for further consultation:

C. Brandolese, Introduzione al linguaggio VHDL (Politecnico di Milano), Cap. 8
Zwolinski Ch. 7, Sect. 7.1-2

useful materials for the proposed lab experience

Note sul VHDL, Corso di Architettura dei Sistemi Integrati, Copp. 10.1, 11, 1%
VHDL sources: 7-segment display decoder, package bcd

sources 6f examples in this presentation:
P

Gezel: parallel Median, sequential Median
VHDL: SRAM controller

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

12.di12

