Combinational network examples in VHDL

Tuterizal 04 on Dadcated systanms
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Groaduate Course in Computer Science, 2017-18

DMI — Graduate Course in Computer Science

-
=l O

SN N R e

Table of Contents

Combinational network examples in VHDL
tutorial outline

tri-state buffers

decoders

7-segment display decoders

multiplexers

ALU functions

lab experience

RTL schematic of a 1-bit ALV

RTL schematic of a 32-bit ALU on FPGA

references

Copyleft ® 2018 Giuseppe Scollo

1dil2

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

2di12

tutorial outline

this tutorial deals with VHDL descriptions of frequently used hardware components:
% tri-state buffers
% decoders:
> n-input decoders
> 7-segment display decoders
> multiplexers
& ALV functions

various aspects and constructs of the VHDL language are introduced in the context of the
proposed examples

furthermore, a lab experience is proposed which collects various aspects of VHDL that are
illustrated by the examples presented here, and where some of these components may be
reused for the implemen’raﬁon of the proposed experimenf

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

tri-state buffers

the standard, two-valued boolean type BIT, does not suffice to represent all EN
situations that may come into play in circuit design E

e.g. a circuit line may need be disconnected dynamically, in order to allow bus

access by multiple drivers, one at a time tri-state buffer

tri-state gates are typically utilized to this purpose
the IEEE 1164 standard defines the nine-valued std_ulogic type:

v FUniniﬁalilked yet std_ulogic does not allow multiple driver access to the same line
X’ Forcing unknown L 1, . . .
o Forcing o its subtype std logic is endowed with a resolution function to resolve the
‘' Forcing 1 contention, which is allowed thus
‘2’ High impedance [5 JNY W IR AN NN AN (P . NN
‘W’ Weak unknown J U U U U U U U U library igee: .
o S RS EEE RSN AN A EE use ieee.std_logic_1164.all;
L™ Weak O I Wb S N NN ML SN AR HE JEL. entity tri_state is
‘U Weok 1 0 UK 0 X 90 [0 [0 X y tri_state]
e g T Ty Tl I Tl T Ta T Ty T T3 T Ty port (x, en : in std_logic;
—' Don't care T U0 T T2 IW L T y : out std_logic);
il BP RN BN TR A AR YR~ end entity tri_state;
Bl v X 0 1 H W WH X architecture when_else of tri_state is
- U-lxl Ix o [3cl [he | %! [begin
y <= x when en ="'1" else 'Z';
contention resolution between values of 1’5?6 std_logic end architecture when_else;
DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

3dil2

4dil2

decoders

functional unit that proves useful to diverse purposes, for example:

memory chip/ row selection

decoding of a machine instruction opcode

VHDL specification of the 2—4 decoder

generic VHDL specification of the decoder

(Zwolinski, sect. 4.2.%):

library ieee;
use ieee.std_logic_1164.all;

library ieee;

use ieee.std_logic_1164.all;

entity decoder2 is
port (
a : in std_logic_vector(1 downto 0);
z : out std_logic_vector(3 downto 0)

en,d entity decoder2;

architecture when_else of decoder2 is
begin
z <="0001" when a = "00" else
"0010" when a = "01" else
"0100" when a = "10" else

"1000" when a = "11" else 0):=

"XXXX";
end architecture when_else;

use ieee.numeric_std.all;

entity decoder is

generic (n : POSITIVE);
port (
a :in std_logic_vector(n-1 downto 0);
z : out std_logic_vector(2**n-1 downto 0)

en!d entity decoder;

architecture rotate of decoder is

constant z_out : BIT_VECTOR(2**n-1 downto

(0 =>"1", others =>"'0");

begin

z <= to_StdLogicVector (z_out sll
to_integer(unsigned(a)));

end architecture rotate;

NHDL shift operators

DMI — Graduate Course in Computer Science

familiar device of daily use ...

7-segment display decoders

Copyleft @ 2018 Giuseppe Scollo

a decoder for a seven-segment display converts a 4-bit input to the 7-bit configuration of the display
segment states that visualizes the character corrisponding to the (hex or decimal) digit which has the value

coded by the input

the following example (taken from Zwolinski, Sect.

4.2.%)

4 Visualizes decimal digits

% Visualizes E if the input value is 2 10
% inall other cases the display is blanked

ogg8064d

0000 0001 0010 0011 0100 0101

god4d4d

0110 0111 1000 1001 1010 Others
6

Bit ordering i Ig’ ;s
o]

Zwolinski, Figure 4.5 - Seven-segment display

library ieee;
use ieee.std_logic_1164.all;

entity seven_seg is

port (a : in std_logic_vector(3 downto 0);
z : out std_logic_vector(6 downto 0));

end entity seven_seg;

architecture with_select of seven_seg is

begin
with a select

z <="1110111" when "0000",
"0010010" when "0001",
"1011101" when "0010",
"1011011" when "0011",
"0111010" when "0100",
"1101011" when "0101",
"1101111" when "0110",
"1010010" when "0111",
"1111111" when "1000",
"1111011" when "1001"

"1101101" when "101 0‘:|"1 011"]"1100"["1101""1110"["1111",

"0000000" when others;
end architecture with_select;

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

5dil2

6dil2

NHDL description of a
multiplexer with a single select
input:

library ieee;
use ieee.std_logic_1164.all;

entity mux1 is
port (
s :in std_logic;
a:instd_logic;
b : in std_logic;
y : out std_logic

er{d entity mux1;

architecture basic of mux1 is
begin
y<=awhens ="0 else
b whens ="1"else
X
end architecture basic;

2

multiplexer with a 2-select input

how to generulize to n-select
input?

multiplexers

description of an n-input OR gate:

library ieee;
use ieee.std_logic_1164.all;
entity wide_or is
generic (n : POSITIVE);
port (
x :in std_logic_vector(n-1 downto 0);
y : out std_logic);
end entity wide_or;

n-select input multiplexer

library ieee;
use ieee.std_logic_1164.all;
entity mux is
generic (n : POSITIVE :=1);
port (
s : in std_logic_vector(n-1 downto 0);
a:in std_logic_vector(2**n-1 downto 0);
z : out std_logic);
end entity mux;

instantiation of the generic multiplexer

library ieee;

use ieee.std_logic_1164.all;

entity mux2 is

port (

s : in std_logic_vector(1 downto 0);
a:in std_logic_vector(3 downto 0);
z : out std_logic);

end entity mux2;

architecture sequential of wide_or is
begin
process (X) is
variable z : std_logic;
begin
z :=x(0);
if n > 1 then
foriin 1to n-1 loop
z = x(i) or z;
end loop;
end if;
y<=2z
end process;
end architecture sequential;

architecture structural of mux is
signal decout : std_logic_vector(2**n-1 downto 0);
signal andout : std_logic_vector(2**n-1 downto 0);
begin
di: entity WORK.decoder generic map (n)
port map (a => s, z => decout);
oi: entity WORK.wide_or generic map (2**n)
port map (x => andout, y => z);
andout <= a and decout;
end architecture structural;

architecture instance of mux2 is
di: entity WORK.mux generic map (2)
port map (s, a, z);
end architecture instance;

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

ALV functions
an ALU is a multifunction unit: a control input selects the operation to be executed S function
an example of multifunction logic unit has the selection as specified in the table 0l oA

and may be described in VHDL as follows:

library ieee;

use ieee.std_logic_1164.all;

entity alu_logic is

generic (n : POSITIVE :=16);

port (

a :in std_logic_vector((n—1) downto 0);
b : in std_logic_vector((n-1) downto 0);
s :in std_logic_vector(1 downto 0);

q : out std_logic_vector((n-1) downto 0)

en’d entity alu_logic;

co
[}

sum

1-bit full-adder

begin
with s select

not b;

architecture with_select of alu_logic is
constant undefined : std_logic_vector(n-1 downto 0) := (others => 'X");

10 Q <=notB
11 Q<=AxorB

g<=aorb when“00",

a and b when “01”,
when “10”,
a xor b when “11”,
undefined when others;

end architecture with_select;

for opemnds wider than one bit, ALU's arithmetic function may be specified in either structural

or functional style; the latter as follows
library ieee;
use |IEEE.std_logic_1164.all;
entity adder is
generic(n-1: POSITIVE := 16);
port (
a :in std_logic_vector (n-1 downto 0);
b :in std_logic_vector (n-1 downto 0);
ci:in std_logic;
sum : out std_logic_vector (n-1 downto 0);
co : out std_logic

)
end entity adder;

architecture sequential of adder is
begin
process(a,b,ci)
variable carry : std_logic;
variable psum : std_logic_vector(n-1 downto 0);
begin
carry := ci;
foriin 0 to n-1 loop
psum(i) := a(i) xor b(i) xor carry;
carry := (a(i) and b(i)) or (((a(i) xor b(i)) and carry);
end loop;
sum <= psum;
co <= carry;
end process;
end architecture sequential;

7dil2

DMI — Graduate Course in Computer Science

Copyleft @ 2018 Giuseppe Scollo

8dil2

lab experience

the B-bit ALU simulator implemented by S. Lentini and G. Nicotra illustrates how one can iteratively
construct the B-bit ALU by suitably composing 1-bit ALU stages
the schematic and an animated illustration of the ALU functions are presented in the
"#rithmetic logic unit” part of the Flash animation of that project
using the VHDL constructs seen in the examples through this tutorial:

1. build a VHDL model of the 1-bit ALU; an equivalent solution to that which is represented by the
schematic reproduced next, may be obtained by appropria’re use of a mulﬁplexer in place of a
decoder

2. building on this result, construct a generic model of the n-bit ALU

3. compose a 3-bit instance of the generic ALU model with a VHDL model of the hex to 7-segment
display decoder (awailable in the reserved lab area), mapping the I/0 ports of the obtained model to
pins of the DE1-50C FPGA, as specified next and further illustrated in the subsequent RTL
schematic

4. program the FPGA by using its 10 switches and 2 keys for the ALU input (the Z keys for the ENA,
ENB inputs, & switches for the 4, B operands, the remaining switches for the other control inputs)
and a 7-segment display for the visualization of the result (carry included, for addition)

5. ftest the functioning of the 3-bit ALU on the FPGA by acting on the switches and assigned keys

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

9dil2

RTL schematic of a 1-bit ALU

Logical unit Carry in

INVA—]
DD oo o
ENE;::D {>°B _D_

b))
Enable -e;:—{':

lines

Full
adder

IEK)

f

Decader

schematic of a 1-bit ALU (Figure 5-14 in (Tanenbaum, 2000))

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

10di12

RTL schematic of a 3-bit ALU on FPGA

alu3:a3p
— AWE hex7segh7s
64 b[2.0]
1 t hex[3.0] display[0.6
KEY[1.0] [- = =0 L5 I HEX0[0.6]
0 enb If sum{2.0]]
swe.o [o—4 b0 ol sunzo) R
32 11.0]
1 inc
0 inva
aluna3
alu1:\g1:04tf0
0
0 b
il
w2 |
b[2.0] enb
.0
1L0) alu1\g1:1:md:fm —
inva alur\gi:2irtfn
5 :
5
; N
" 2 b
WM 1 cin | cout
= ena if sum i1_sum(2.0]
enb|
P
1.9
11..0]
=
E_

RTL schematic of a 3-bit ALU generated by Quartus Prime Lite 16.1

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

11di12

references

recommended readings:

Zwolinski, Ch. 4, Sect. 4.1-6

useful materials for the proposed lab experience

(sources: DMI Library, Altera University Program, 2010)
Tanenbaum: Structured computer organization, Fifth Edition (Pearson, 2000) Sect. 5.2.%
Making Q@sys Components - For Quartus Prime 16.1, Appendix 4
Quartus Prime Introduction Using VHDL Designs - For Quartus Prime 16.1, Sect. 4
DE1-50C Quartus Setting File with Pin Assignments

VHDL sources:

examples in this presen’raﬁon

examples in Zwolinski book

DMI — Graduate Course in Computer Science Copyleft @ 2018 Giuseppe Scollo

12.di12

