Hardware interfaces

Lecture 1l on Dedicatzd systams
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Graduate Course in Compufer Science, 2016-17

Table of Contents

1. Hardware interfaces
2. lecture topics
3. functions of the coprocessor hardware interface
4. layout of the coprocessor hardware interface
5. data addressing
0. multiplexing and masking
7. control design
B. hierarchical control
4. address map
10. instruction set
11. references

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

lecture topics

outline:

> the coprocessor hardware interface: functions and layout
> hardware data design
> data addressing
> multiplexing and masking
> control design
hierarchical control
> oaddress map

% instruction set

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

functions of the coprocessor hardware interface

Microprocessor Coprocessar

a hardware interface connects a custom hardware

module to a coprocessor bus or an on-chip bus

Module

API

the hardware interface steers the I/0 ’!n
POVTS 0{: the custom hardware MOdUle v Hardware Interface
hardware interface design should match the @ @
Flexibility of custom hardware design to the realities B,
O‘F The hardwat’e/ SO‘F tware inferf ace Schaumont, Figure 12.1 - The hardware interface maps a custom-hardware module

to a hardware-software interface

typical functions of the hardware interface:
data transfer: read/write operations on the on-chip bus, or handshakes on a coprocessor bus,
or even optimized high-throughput or bursty data transfers, e.q. using a DM#A controller
wordlength conversion: data operands of the custom-hardware module can be arbitrary in size
and number, whereas data suitable for on-chip bus communication are limited in both respects
operand storage: local storage for arguments and parameters of the custom hardware:
arguments are updated every time the module executes; parameter updates may be infrequent
instruction set: the custom instruction set is a key feature of the hardware interface, its
design defines the software view of the custom hardware component
& local control: implementation of local control interactions with the custom hardware module,
such as sequencing a series of microoperations in response to a single software command

vV Vv Vv V¥

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

layout of the coprocessor hardware interface

O-ehip Bus Inteface/ Coprocessor Interface | components commonly found
Control Port in a hardware interface:
TS | > o data input buffer for
 BEEEimEm. mmmmsm=z smaas argument storage
Sustom s > o data output buffer for

Mo > result storage
> o command interpreter
Schaumont, Figure 12.2 - Layout of a coprocessor hardware interface For local control based

on software commands

Argument
Storage

Data Input
Port(s)

from the perspective of the custom hardware module, it is common to partition the
collection of ports into data input/output ports and control/status ports

note that, in fig. 12.2, control signals and data signals are orthogonal: control flows
vertically, and data flows horizontally

the separation of control and data is an important design aspect, for, ina coprocessor
design, the granularity of interaction between data and control is chosen by the designer

both data-design and control-design are going to be discussed next

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

data addressing

features of a coprocessor data port: wordlength, direction and update rate

extremes for the update rate are: parameter, only set upon module reset, and function
argument, which changes value upon each execution of the hardware module

to make a good mapping of actual hardware ports to custom interface ports, it is convenient to start
from the features of the actual hardware ports

e.q., a coprocessor for the GCD function, specified as int ged(int m, int n), would have two
input ports and one output port, all 2-bit wide, with frequent update rate

when this module is implemen’red as a memorg-mapped coprocessor, the ports of the hardware
interface will be implemen’red as memorg-mapped registers

a straightforward approach is to map each actual hardware port to a distinct memory-mapped
register, as this makes each port of the hardware module independently addressable from
software
however, it may not always be possible to allocate an arbitrary number of memory-mapped ports in the
hardware interface—in that case, one needs to multiplex the custom-hardware module ports over the
hardware interface ports

besides shortage of interface ports, another reason for multiplexing may be the infrequent
update rate of some ports of the custom hardware module, so that it is inefficient to allocate
a separate interface port for each of them

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

multiplexing and masking

multiplexing can be implemented in different ways: the first is time-multiplexing of the hardware
module ports; the second is to use an index register in the hardware in’rerﬁzce

control-shell i

port index] .
i

'

'

index port

write (ctl)

i
4
i : Hardware Module
H]
1 ! GCD q1
1 po
] H Y pes r"./
. “ |
' ; | output port
i) dama _)E} = i o
Tl i N
e [a7 -
q8
out —>
"5—_
I—) Schaumont, Figure 12.4 - Index-register to select one of eight
3 & output ports
=5

multiplexing is also useful to handle long operands
Schaumont, Figure 12.5 - Time-multiplexing of two hardware-module ports Piecewise, wherebg the opemnd can be provided
over a single control-shell port one piece at a time by means of time-multiplexing

masking is a technique to work with very short operands, e.g. to group several single-bit ports of the
hardware module in a hardware interface port: a mask register is used to this purpose, to bit-mask the
module por’rs involved in an updafe, e.9.: new_hw_port = (old_hw_port & ~mask) | (upd_value & mask)

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

control design

control design ina coprocessor is the collection of activities to generate control signals and
to capture status signals

the result is a set of custom-tailored commands or instructions that can be
executed by the coprocessor

figure 12.5 shows a generic architecture to control a custom hardware module

Command S o command interpreter, the
el [el top-level controller in the
coprocessor, accepts commands
from the software and returns
TolFrom Crerompucnt [status information

Software

& while a command is a one-time

L control operation, a configuration
Configuration D—) Margwars is a value which will affect the

) execution of the coprocessor over

an extended period of time,

Schaumont, Figure 12.5 - Command design of a hardware interface POSSiblH over Wlﬁf)le commands

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

hierarchical control

Figure 12.06 shows the architecture of a coprocessor that can achieve communication/ computaﬁon
overlap, as illustrated in figure 12.7

HW/SW Som Command Input Compute Qutput
Interface i Interpreter FSM FSM FSM

\|/ 1\ i start

—_—

Command Interpreter

cmd status cmd status emd status

R RERRSRE RN 45,

Compute i
ke Output FSM | e

Input FSM |

V) v 7 V) TEEENNE EEEnEEE
i done i
HW/SW % HW/SW : H
interface > == || (o =3 —> Interface i | o1t
Kernel ‘ lt»me
Schaumont, Figure 12.6 - Hierarchical control in a coprocessor Schaumont, Figure 12.7 - Execution overlap using hierarchical control

the command interpreter analyzes each command from software and splits it up into a combination of
commands for the lower-level FSMs
e.q., for a coprocessor which has an addressable register set in the input or output butfer, the
register address may be embedded into the command coming from software

to effectively achieve execution overlap, a pipelining of the FSM actions is to be organized, where the
command interpreter should adapt to the individual schedules of the lower-level FSMs

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

address map

programmer’s model = control design + data design

the programmer’s model, that is the software view of a hardware module, includes a
collection of the memory areas used by the custom hardware module, and a
definition of the commands (or instructions) understood by the module

the address map reflects the organization of software-readable and software-writable
storage elements of the hardware module; its design should consider the viewpoint of the
software designer rather than the hardware designer, thus:

S 0 given memory-mapped address should always affect the same hardware register,
regardless of whether the operation on it is a read or a write

s by default all memory-mapped registers should be read/write; in some cases,
read-only registers are justified, such as for example to implement registers that
reflect hardware status information or sampled-data signals; however, there are
very few cases that justify a write-only register

s the address map should respect the alignment of the processor; e.g., extracting bits
number 5—12 out of a 52-bit word is more complicafed than ex’rracﬁng the second
byte of the same word

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

instruction set

the design of a good instruction set is a hard problem, that requires the codesigner to make
a proper trade-off between Flexibility and efficiency

it strongly depends on the function of the custom-hardware module
here are a few generic design quidelines:

& one can distinguish three classes of instructions: one-time commands, on-off
commands, and configurations; their mix affects the general behavior of the
hardware module, it should be aimed at minimizing the amount of control
interaction between the software driver and the hardware module

& design the synchronization between software and hardware at multiple levels of
abstraction, that is, not just at the data transfer level but also at the algorithmic level

s another synchronization problem occurs when mulﬁrle software users share a single
hardware module; this may be solved either by serializing coprocessor usage or by
implementing a context switch in the hardware module

o finally, reset design must be carefully considered; an example of flawed reset
design is when a hardware module can only be initiolized by means of full system
reset—it makes sense 1o define one or several instructions for the hardware
module t6 handle module initialization and reset

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

references

recommended readings:

Schaumont (2012) Ch. 12, Sect. 12.1-12.2.1, 12.4

for further consultation:

Schaumont (2012) Ch. 12, Sect. 12.%.2

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

