Principles of HW/SW communication

Leciure 09 on Deadicatad systams
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Graduate Course in Compufer Science, 2016-17

1di12
Table of Contents

1. Principles of HW/SW communication
2. lecture topics
3, the hardware/software interface
4. the synchronization problem
5. synchronization with a semaphore
0. synchronization with two semaphores
7. synchronization with handshake
8. blocking and nonblocking data transter
4. performance constraint factors

10. tight or loose coupling

11. references

DMI — Graduste Course in Computer Science Copyleft ® 20162017 Giuseppe Scollo

2di12

lecture topics

outline:

>

components of the hardware/software interface

> the synchronization problem: concepts and dimensions
> synchronization schemes
> sgnchronizaﬁon with semaphores
b S sgnchronizaﬁon with handshakes
> blocking and nonblocking data transfer
b3 perFormance constraint factors: compu’rm‘ion Vs. communication
> tight or loose coupling
DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo
the hardware/software interface
Microprocessor Coprocessor
Figure 4.1 presents a synopsis of the elements
o -0 in a hardware/software interface
B privsd NI NE . | the function of the hardware/software interface
@ ? @ is to connect the software application to the
Onvchip Bus custom-hardware module; this objective involves

Schaumont, Figure 4.1 -~ The hardware/software interface 'FlVe elements:

1. on—chip bus: either shared or po:’nf—fo—Poinf, it transports data between the microprocessor
module and the custom-hardware module

2. microprocessor interface: hardware and low-level firmware to allow a software program to ‘get
out’ of the microprocessor, e.q. by coprocessor instructions or memory access instructions

3. hardware interface: handles the on-chip bus protocol, and makes the data available to the custom-
hardware module through registers or dedicated memory

4. software driver: wraps transactions between hardware and software into software function calls,
while mapping software data structures into structures that fit hardware communication

5. programming model: presents an abstraction of the hardware to the software application; to
implement this mapping, the hardware interface may require additional storage and controls

DMI — Graduste Course in Computer Science Copyleft ® 20162017 Giuseppe Scollo

3dil2

4dil2

the synchronization problem

Microprocessor Coprocessor

synchronization: the structured interaction of two otherwise
independent and parallel entities
in figure 4.2, synchronization guarantees that point 4 in the
execution thread of the microprocessor is tied to point & in

Synchronization Point

Schaumont, Figure 4.2 - Sgnchronizaﬁbn point

the control flow of the coprocessor

synchronization is needed to support communication between pamllel subsystems: every talker needs

t6 have a listener 1o be heard

b2

transfers

b

e.q., in a dataflow system, hardware and software actors need to synchronize on their token

even if the dataflow edge is implemented as a FIFO memory, the requirement to

synchronize does not 9o away, for the FIFO has finite capacity, hence the sender needs to
wait when the FIFO is full, while the receiver needs to wait when the FIFO is empty

Synchronization

l
[TIMET [Da(a]

Clock Cycle]

T Control]
Abstract]
] [

Composite }

Blocking]

Bus Transfer]

—)[Transaction J

Schaumont, Figure 4.5 - Dimensions of the synchr‘bnizaﬁon problem

Scalar Non-Blocking J

three orthogonal dimensions of the synchronization
problem:

& time: time granularity of interactions
% data: structural complexity of transferred data
% control: relationship between local control

flows

DMI — Graduate Course in Computer Science

Copyleft @ 2016-2017 Giuseppe Scollo

synchronization with a semaphore

semaphore: a sgnchronizaﬁon
primitive 5 to control access over an

On
abstract, shared resource, by :
operations:

P(S): (try to) get access, wait
if 5-0, e?se 50 ish

V(S): release resource, 51

int shared_data;
semaphore S1;

entity one {
P(S1);
while (1) {
short_delay();
shared_data = ...;

V(S1); /I synchronization point
}
}
entity two {
short_delay();
while (1) {
P(S1); /I synchronization point

received_data = shared_data;

}

Schaumont, Listing 4.1 ~ One-way synchronization with a semaphore

write shared_data

¥

write shared_data
\l/V(SH
|

T
'
'
=
v
'
'

write shared_data

l\/(SI)
!

P(S1) (S1)
Il
T

time

short_delay short_delay short_delay

e i

P(S1) i P(S1)

stall

i
|
P(ST)!

stall -
time

read shared_data read shared_data read shared_data

Schaumont, Figure 9.4 - Synchronization with a single semaphore

synchronization points: when entity one calls N(51), so
unlocking the stalled entity two

this scheme only works under the assumption that
entity two is faster in reading the shared data than
entity one is in writing it
just assume the opposite, viz. move the short delay()
function call from the while-loop in entity one to the
while-loop in entity two ...

generally, in the Producer/consumer scenario, both
entities may need to wait for each other

DMI — Graduate Course in Computer Science

Copyleft @ 2016-2017 Giuseppe Scollo

synchronization with two semaphores

.the Slluﬂﬁon O‘F unk“ow“ delﬂHS can write shared_data write shared_data
be addressed with a two-semaphore P(S1) vis1) P(s2) lvcsu
One ' { stall {
scheme ' (s} . po
C m var_delay(' var_delay() X
51 is used to synchronize : i
er\‘ﬁ‘tg 'twb, SZ lS used _{_o Sym:hmn:zeunsz Syn:hmn;zeon s
synchronize entity one = ol i T e l
i } t t sl ——
lsnérﬁg?,heod@dsal_a;sz- P var_delay() >|I l ILvar,delayQ stz time
entity one { read shared_data
P(S1); . T
while (1) { Schaumont, Figure 4.5 - Synchronization with two semaphores
variable_delay();
shared_data = ...;
V(S1); /I synchronization point 1 . . .
PESZ;; VA Sgnchronizaﬂon goimz Flgufe Q.E llluslrﬂles lhe case Nhel’e.
} . o . L
} % on the first sgnchromzahon, entity one is quicker
entity two { than entity two, and the synchronization is done
P2 M1 using semaphore SZ, whereas
e onization point 1 % on the second synchronization, entity two is
@%egg?dﬁiiﬁirgugsgag%h 5 faster, and in this case the synchronization is done
} ' using semaphore S1
}

Schaumont, Listing 4.2 - Two-way synchronization with twe semaphores
DMI — Graduate Course in Computer Science

Copyleft @ 2016-2017 Giuseppe Scollo

7dil2

synchronization with handshake

in parallel systems, a centralized semaphore may not be feasible; a common alternative (s

a handshake: a signaling protocol based on signal one-way handshake has a similar limitation as

levels; the most simple one is: one-semaphore synchronization, the solution is:
Entity One Entity Two

Entity One Entity Two
T = ~rd/ ! ~qd/
e ~qd/ el (O o et e
© | FRO
\ rd/
Y q qd
a=1 qd/
¥l qd/ =1
q qd @ d r
@ _ig=0 / _tr=0
i @ £ &
o _Iq=0 o
§7 .50 S0 -S0 S0—-S0 SO0—Si
50 81

8787 ;8787 §72.52 5283
5283

« 1 BT mAmE s oeniie imae‘imams

9 | \
q / ad /
L / EE INENE SHSN NNET SESE VHEN

Tsynchronlzalion point

Schaumont, Figure 9.6 - One-way handshake

Tsynchronizallon point

Schaumont, Figure 4.7 - Two-way handshake

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

8dil2

blocking and nonblocking data transfer

if a sender or receiver arrives too early at a synchronization point, should it wait idle until
the proper condition comes along, or should it g0 off and do something else?

% a blocking data transfer will stall the execution flow of the software or hardware
until the data-transfer completes

e.q., if software has implemented the data transfer using function calls,
then these functions do not return until the data transter has completed

> a nonblocking data transfer will not stall the execution flow, but the data transfer
may be unsuccessful

a software function that implements a nonblocking data transfer will need to
introduce an additional status flag that can be tested
both of the semaphore and handshake schemes discussed earlier implement a blocking
data-transfer
to use these primitives for a non-blocking data transter, the outcome of the

sgnchronizaﬁon opemﬁon should be testable without acfuallg engaging in it
DMI — Graduate Course in Computer Science

Copyleft @ 2016-2017 Giuseppe Scollo

9dil2

performance constraint factors

compufaﬁonal speedup is often the motivation for the s s it

design of custom hardware

however, the hardware/software interface is also
relevant to the resulting system performance

32 32128 128

Microprocessor Custom-HW
. . . Interface Interface
communication constraints need to be evaluated as well!
e.g., assume the custom-HW module in fig. 9.8 tokes 5 clock it Onchip Bus , 32Dt it
cycles to compute the result, with a 520-bit total data transfer 7
size per execution: can the system actually perform at a rate of Schaumont, Figure 4.8 - Communication constraints of a
520/5 = b4 bits per cycle? coprocessor
v bits par vanster e e ——— the number of clock cycles needed per execution
Seican oty H cycles per execution . .
of the custom hardware module is related to its
n : Tt hardware sharing factor (HSF) =4.¢ number of
Hardware/Software L —_ Hardware m 0
interface B ‘:> H Module available clock cycles in between each I/0 event
Computation v w Architecture HSF
Constrained | ? # ?
Systolic array processor 1
A == v w Bit-parallel processor 1-10
‘::Tnm;{z:::;:" i e Bit-serial processor 10-100
Micro-coded processor >100

Schaumont, Figure 4.9 - Communication-constrained system vs.
computation-constrained system Schaumont, Table 4.1 - Hardware sharing factor

DMI — Graduate Course in Computer Science

Copyleft @ 2016-2017 Giuseppe Scollo

10di12

coupling indicates the level of interaction between
execution flows in software and custom hardware

tight or loose coupling

tight = frequent synchronization | data transfer
loose = the opposh‘e

coupling relates synchronization with performance

Software

input data [

result l:l

inputdata []

result l:l

inputdata [

result l:'

inputdata []

result]

synchronization
point

Custom Hardware

TR s

synchronization
point

=-=>

synchronization
int

synchronization

point

I s

>[] compute

"=
T compute

Schaumont, Figure 4.10 - Tight coupling versus loose coupling

Software

input data |:|

result D

synehronization
pont
“ETreLoy

synchronization

compute

Coprocessor Memory-mapped
Factor interface interface

Addressing Processor-specific On-chip bus address

Connection Point-to-point Shared
Latency Fixed \ariable
Custom Hardware . Throughput Higher L ower

Schaumont, Table 4.2 - Comparing a coprocessor interface with a
memory-mapped interface

example: difference between

coprocessor interface: attached to a
dedicated port on the processor

memory-mapped interface: attached
to the memory bus of the processor

N.B.: achieving a high degree of parallelism
in the overall design may be easier to achieve
with a looselg-coupled scheme than with a
ﬁghﬂg-coupled scheme

DMI — Graduate Course in Computer Science

recommended readings:

Schaumont (2012) Ch. 4, Sect. 4.1-9.4

Copyleft @ 2016-2017 Giuseppe Scollo

11di12

references

DMI — Graduate Course in Computer Science

Copyleft @ 2016-2017 Giuseppe Scollo

12.di12

