Program design and analysis for dedicated systems

Lecture 07 on Dedicated systams
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Graduate Course in Compu’ter Science, 2016-17

1di12
Table of Contents

1. Program design and analysis for dedicated systems
2. lecture topics
3. microprocessors, toolchain
4. from C to (ARM) assembly: an example
5. object code analysis
0. data type representation
7. ariables in the memory hierarchy
B. function calls: an example
4. stack frame construction

10.  program layout in memory

11. references

DMI — Graduste Course in Computer Science Copyleft @ 20162017 Giuseppe Scollo

2dil12



lecture topics

outline:

> motivation for using dedicated micropocessors

% program development toolchain

> tools for object code analysis
% data type represen’raﬁon
% variables in the memory hierarchg
% compilation of function calls
> memory layout of executable programs
% C and ARM assembly examples
DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo
3dil2
microprocessors, toolchain
microprocessor: most successful programmable Parn | [
component over the past decades... why? 4 ( i
Compiler Assembler
% separation of software from hardware through T T
a0y . . | Object J ‘ Object J
definition of an instruction set Gove Gode

% wide availability of software tools to support
program development, also in high-level languages

Executable
Format

Binary
Format

% highly efficient options of reuse of components
and of interoperapility with other components,
both hardware (standard bus) and software
(libraries)

> high scalability, e.q. 4-bit up to O4-bit word

length, use of a Microprocessor as coordination

onoo oonn

e

|=pEpugE] ooy

Memory Processor

onoon
oooo

onoon
oooo

component in a complex SoC architecture, etc.
Schaumont, Figure 7.1 - Standard design Flow of
software source code to processor instruction

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

4di12



from C to (ARM) assembly: an example

int gcd(int a[5], int b[5]) { gcd:
inti . str Ir, [sp, #-4]!
inti, r_n n max; - It #0
max = 0; mov ip, Ir
for (i=0; i<5; i++) { .L13:
m = alil; 1dr r3, [r0, ip, asl #2]
i ldr 12, [r1, ip, asl #2]
n T (; cmp r3, 12
while (m !=n) { beq .L17
ifm>n)m=m-n; .L11: 5 e
L cmp r3, 1
elss=nam rshgt r3, r2, r3
} rshle r2, 13, 12
if (max < m) max = m; cmp r3, r2
} bne 11
. L17:
return max; add ip, ip, #1
} cmp Ir, r3
int a] = {26, 3,33,56,11}; movlt Ir, rﬁ4
) 1 | cmp ip,
int bf] = (87,1223.45,17%; oLy 0, 1o
int main() { 1drgt pc, [spl, #4
return ged(a, b); b L13
a:
Schaumornt, Listing 7.1 = 4 C program to find a maximum GCD be yorg 26,3, 33,56, 11
label instruction L -.word 87,12, 23,45, 17
i tz/ &=~ mnemonic main:
Ll o str Ir, [sp, #-4]!
s drg fgee =4l 1dr r0, .L19
d r0,GLI9 ldr rl, .L19+4
ldr Ir, [spl, #4
b ged
.align 2
B .L19:
52 \assemhler .word a
+¥ a directive .word b
o o
Schaumont, Figure 7.2 - Elements of an assembly program produced by gcc Schaumont, Listing 7.2 - ARM assembly dump of Listing 7.1
DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

5dil2
objed code analysis
the symbolic assembly code of the example just seen, is obtained from the C source by
running the command:
/usr/local/arm/bin/arm-linux-gcc -c -S -O2 gcd.c -o gcd.s
the command to generate the ARM ELF executable is:
/usr/local/arm/bin/arm-linux-gcc -O2 gcd.c -o gcd
it is also possible to obtain the symbolic code from the ELF executable by means of a
disassembler, in this example with the following command:
/usr/local/arm/bin/arm-linux-objdump -d gcd
the disassembler output also shows the binary code of each symbolic instruction and the
address value of each label
the use of this tool, as well as of other utilities which come along with compilers,
for executable code analysis will be further exPlored in lab tutorials
DMI — Graduate Course in Cbmpufer Science Cbpgleﬁ @ 2016-2017 Giuseppe Scollo

6dil2



dota type representation

efficient hardware/software codesign requires a simultaneous understanding of both system architecture and software

data type representation is a good starting point, compilers are aware of differences in: C dota type
} memory size char B-bit
_ . . . short signed 16-bit
% low-level implementation of operations ot signed 32-bit
r 1 long signed 32-bit
table 7.1 shows how C maps to the native data types supported by 22-bit processors long long signed bh-bit
32 bit physical Schaumont, Table 7.1 - Compiler data types
memory organization
—>
MSB LSB
0x8000 —aligned mm Word Value
logical 0xB004 | [__
memory  0x8008
0x800C |_"°"A‘"9"ed 0xB003 0x8002 OxBOO1 0xB00O s';::':;"g:’e"
oxsot0 | | )
""""""" 0xB00D 0xB0O1 0x8002 0xBO03 s:’;’!’.::‘(’)'r‘:"
Schaumont, Figure 7.7 (a) - Alignment of data types Schaumont, Figure 7.7 (b) - Little-endian and Big-endian storage order
word-based memory organization requires alignment to byte ordering, in some cases even the bit-ordering, is
word boundaries, to perForm a word transfer by a single relevant to hardware/software codesign
memory access in the transition of software to hardware and back
the compiler generates directives to this purpose
DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

7di12
variables in the memory hierarchy
another relevant aspect of data representation is what kind of physical memory they are assigned to
Gontrolled by Controlled by memory hierarchy is transparent to high-level programs, e.g.
architecture instruction type . 7
{cackhe miss) (comgiier} N written in C, yet the low-level control affects perFormance;
here is an example:
; - void accumulate(int *c, int a[10]) {
M':;Try s Cache [ 5 PegEer inti;
*c=0;
for (i=0; i<10; i++)
*c += ali];
Schaumont, Figure 7.8 - Memory hierarchy
lust/local/arm/bin/arm-linux-gcc -O2 -c -S accumulate.c in the example, the value of the accumulator
) . variable travels up and down in the memor
generates the following code in accumulate.s : \ P J
hierarchy
mov r3, #0 . L . !
L 13, [10, #0] in C a limited control is available
mov ip, r3 through use of storage class
L6: iFiers and lifi
specifiers an e qualifiers
1dr r2, [rl, ip, asl #2] ; 12 < ali] P f fyP qu fi
1dr r3, [r0, #0] ; 3 < *c (memory) L A
add ip, ip, #1 ; increment loop ctr Storage specifier Type qualifier
add r3, r3, r2
cmp ip, #9 register const
str r3, [r0, #0] ; T3 = *c (memory) static volatile
movgt pc, Ir okt
b .L6
DMI — Graduate Course in Cbmpufer Science Cbpgleﬁ @ 2016-2017 Giuseppe Scollo

8dil2



function calls are the fundamental structure of
behavioural hierarchy of programs; here is an

example of their translation to machine
language
int accumulate(int a[10]) {
inti;
intc=0;
for (i=0; i<10; i++)
c +=ali];
return c;
}
int a[10];
intone = 1;
int main() {
return one + accumulate(a);

}

Schaumont, Listing 7.4 - Sample program

compiling this program without optimization
shows the creation of the actiation frame within
the stack, that is dynamically associated to the
function execution to host local variables and

register saving

in this case, the function parameter and

return value are passed in register rO;

when several parameters are to be passed,
then the activation frame is made use of
the use of the frame pointer (FP) register

enables call nesting and recursion

function calls: an example

accumulate:

L2:

.L5:

.L3:

mov
stmfd
sub
sub
str
mov
str
mov
str

ldr
cmp
ble
b

1dr
mov
1dr
add
1dr
1dr
add
str
1dr
add
str
b

1dr
mov
ldmea

ip, sp

sp!, {fp, ip, I, pc}
fp, ip, #4

sp, sp, #12

r0, [fp, #-16]

r3, #0

r3, [fp, #-24]

r3, #0

r3, [fp, #-20]

r3, [fp, #-20]
13, #9

r3, [fp, #-20]
12, 13, asl #2
r3, [fp, #-16]
r3, 12, r3

r2, [fp, #-24]
r3, [r3, #0]
r3, 12, r3

r3, [fp, #-24]
r3, [fp, #-20]
r3, r3, #1
r3, [fp, #-20]

r3, [fp, #-24]
10, r3
fp, {fp, sp, pc}

; base address a

e+ 4%

;¢ =c+ ali]
; update ¢

;i=i+l

; return arg

Schaumont, Lisﬁng 7.0 - fccumulate without compiler opﬁmizaﬁons

DMI — Graduate Course in Computer Science

stack frame construction

figure 7.9 shows the construction of the activation frame in the stack

the SP register points to the full top of the stack, which grows downwards; these conventions are
reflected in the fd (full, descending) sutfix of the multiple transfer instruction stmfd, saving

registers in the stack frame

Before Calling Accumulate

High|

old fp —»

sp —>

Stack Frame Construction

Stack Frame Return

tp, {ff

Copyleft @ 2016-2017 Giuseppe Scollo

During Execution of Accumulate

High

newfp = oldip

-4 old sp
-8 | retum address
-12 pc
-16 base adr a
-20 i
Low 2

l¢— newsp

Schaumont, Figure 7.9 - Stack frame construction

the restoring of the saved registers and return take place by just one multiple transfer instruction

in this case the converse suffix ea (empty ascending) applies, noting that FP, rather than SP, is the
base register for the transfer start address

DMI — Graduate Course in Computer Science

Copyleft @ 2016-2017 Giuseppe Scollo

9dil2

10di12



program layout in memory

for the phgsical represen’raﬁon of the program and its data structures in the memory hierarchy, a
distinction is to be made between:

%  static program layout : organization of the compiler+linker output in an ELF file (or ROM)
& dynamic program layout : memory organization of an executable program during execution

C Source ELF Object Memory
Code File Layout
Header
Information SRAM DDR RAM
e N 5 N
E> -text E> addr1 Ao addr2 deis
Compile Loader addr3f™ ) cs (0)
+ Link i ~ /
olher addrd) e
sections
addr5)
Debug heap
Information
S

Schaumont, Figure 7.10 - Static and dynamic program layout

the loader may assign different sections of the ELF program to different kinds of storage

-
% in the dynamic layout, sections appear that are not present in the ELF file, for the storage of
dynamic data (stack, heap etc.)

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

11di12

references

recommended readings:

Schaumont (2012) Ch. 7, Sect. 7.1, 7.%

for further consultation:

Schaumont (2012) Ch. 7, Sect. 7.2, 7.5

Introduction to the ARM® Processor Using #ltera Toolchain, #ltera University
Program, May 2016

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

12.di12



