Program analysis tools and examples of their use

Tutorizl 08 on Dedicatad systams
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Graduate Course in Compu’ter Science, 2016-17

1dil0

Table of Contents

1. Program analysis tools and examples of their use
2. tutorial outline
2. GNU cross-compilers and binutils
4, example for NIOS II processor
S. example for SimIt-ARM simulator
o. example for ARM Cortex-A4 processor
7 execution with debugger for NIOS II processor on FPGA
8. lab experience
q. references
DMI — Graduste Course in Computer Science Copyleft @ 20162017 Giuseppe Scollo

2di10

tutorial outline

this tutorial deals with:

> GNU cross-compilers and utilities for low-level program analysis

> examples of use of such tools for various processors and program development
systems:
& for NIOS II processor with GCC 4.7.% and 5.2.0 cross-compiler and utilities
& for SimIt-ARM simulator v. 2.1-sfu with GCC 3.2 cross-compiler and utilities
» for ARM Cortex-A4 processor with GCC 5.2.0 cross-compiler and utilities
% execution with debugger for NIOS 11 processor on FPGA

® lab experience: reproduction of the execution of the examples and production of
tutorial documentation

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

3dil0

GNU cross—compilers and binutils

program developmenf for dedicated systems often takes place on machines that are based
on a different processor than the target one, viz. that which is meant for their execution

% a cross-—compiler is a compiler which produces assembly code and executable
programs for a different architecture than that on which it is executed

% just like ordinary compilers, cross-compilers are often equipped with a collection of
utilities for low-level program analysis

the cross-compilers and utilities here considered are GNU free software, that typically have
names <target>-gcc for the compiler, where <target> indicates the target architecture,
and <target>-<util> for the utility <util>, such as for example

> size: list of sizes of sections and total size of an object module or of an executable
% objdump: contents of an object module or of an executable

% nm: list of symbols of an object module or of an executable

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

4di10

example for NIOS II processor

the use of the nios2-elf-gcc cross-compiler and of a couple of binary utilities, exposed in
sect. 7.4 of (Schaumont 2012) for the example in Listing 7.7, can be reproduced by
running the scripts provided in the nios2binutils example.tgz archive, available in the
crosstools folder of the reserved lab area

the scrip’rs are available in two versions, each relating to a version (1%.1 or 16.0) of

the nios2eds suite which contains the cross-compiler and related binary utilities,
respectively of versions 4.7.5 and 5.2.0 of GCC

for each version, two scrip’rs are available:

% nios2gccToolchain.sh for the producﬁon of assembly source, object file and
executable

% ext build/nios2gcc_extToolchain.sh for the analysis of the object and executable
files using the size and objdump utilities, and for the generation of the linker
memory map

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

5di10

example for SimIt-ARM simulator

the example showcases the use of the simulator SimIt-ARM v. 2.1 both for the analysis of the
executable and for the command-line simulation of a program for GCD computation with Euclid's
algorithm (Listing 7.11 in (Schaumont, 2012))

version 2.1 of the simulator is made use of, rather than the current 3.0, because the former
supports cgcle-accura’re simulation, whereas the latter onlg supports functional simulation

compilation goes through the cross-compiler arm-linux-gcc, for IS4 ARMVS, implemented in the
StrongARM processor among others
this cross-compiler with related binary utilities as well as the simulator can be found in repository

rijr\dael.ece.v’r.edu/ gezeIZrepo

archive arm_simitarm_example.tgz, available in folder crosstools of the reserved lab area, provides
two scripts for this tutorial:
% arm-linux-gccToolchain.sh for the production of assembly source, object file and executable

% sim/SimIt-ARM.sh for cycle-accurate analysis of the execution (simulator sima) and for
simulation with the ema debugger, with command-line input in file emadCommands.txt

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

6di10

example for ARM Cortex-A9 processor

the example deals with the execution, on an ARM Cortex-#4 in the Altera DE1-50C system, of a
variation of the program in Listing 7.1, where the main() function body is replaced by
printf("maxgcd(a,b)=%d\n", gcd(a,b));
return O;
loading and execution take place by means of the program altera-monitor-program, under control of
its included GDB debugger and through the JTAG connection between the program and the
DE1-SoC
the system allows the loading of a C or assembly source, whereby compilation is done through
the monitor program itself, however, in this example, scripts are provided that are similar to
those in the previous examples, in order to allow low-level analysis with binary utilities, and the
executable is loaded that is generated by those scripts
the archive arm cortex-a9 example.tgz, available in the crosstools folder of the reserved lab area
contains the following scrip’rs:
% arm altera_gccToolchain.sh for the production of assembly source, object and executable

% ext build/arm altera_gcc_extToolchain.sh for the analysis of the object and executable files

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

7di10

execution with debugger for NIOS IT processor on FPGA

the same C source from the previous example may be compiled and executed by a NIOS IT softcore
on the FPGA of the DE1-50C system, in this example with no other script, just to explore the use
of the debugger included in the monitor program

Elle Actions Windows Help
RN
Disassembly - x| Registers =

Goto instruction | Address (hex) or symbol name: |gcd [Hide | [|__Reg mvalue
ro

0x00003680

6x00003708

0x0000370C t 0x00000000

0xB0003710 & bt OXFFFFFFFE ||
0400003714 w 000000000
8 p 000000000
0x0000371.C <[t 0x00000000
(i o = 000000000
ba OXFFFFFFFF

Disassembly | Breakpoints | Memory | Watches | Trace e rere
Terminal - x| Info &Errors o
JTAG UART link established using cable "DE-SoC [3-2]*, device 2, instance -
0x00 4 I »

naxged = 3 | Info & Errors GDB Server

a snapshot of execution on an Altera DE1-S0C board, controlled by the Altera Monitor Program debugger

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

8di 10

lab experience

run the sariE’rs provided with this tutorial, examine the files produced by their execution, find a few not well-known
aspects of their contents, search the web for information about them and produce some tutorial documentation in
form of a list of questions and answers

each answer should give a reference to its source; if the answer is drawn from a directly accessible web
source, insert the specific link; if this points to information that only answers the question, then giving the
link as answer is enough

here are three examples of question and answer, one for each of the three types described above:
Q: What is the meaning of the acronyms YMA and LM in the output of objdump?
#: Respectively virtual memory address and load memory address; the former is the address of a
program section during execution, the latter is its address when the program is first loaded in memory;
the two addresses may differ when the program is first loaded on a different memory than the one which

holds it at runtime, for example it is loaded on a Flash memory and then copied into RAM when it
executes. (Schaumont, 2012, pp. 216-217)

@: What does the ARM instruction rsb do?

A: It stands for reverse subtract, as it subtracts the first source operand from the second one, that is,
the two arguments are in reverse order with respect to sub; please note that arithmetic ARM instructions
allow the second source operand to be immediate, whereas the first one and the destination must be
registers, so this instruction allows subtraction from a constant. (www.heyrick.co.uk/armwiki/RS%)

@: What is the origin of the name bss of the executable program section that contains the global variables?

A: en.wikipedia.org/wiki/ .bss#Origin

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

9di 10

references

recommended readings:

Schaumont (2012) Ch. 7, Sect. 7.4, 7.6.2

readings for further consultation:

Schaumont (2012) Ch. 7, Sect. 7.6.1, 7.0.%

useful materials for the proposed lab experience:

GCC, the GNU Compiler Collection
GNU Binary Utilities
Introduction to the the #Altera Nios IT Soft Processor, 4ltera University Program, Mag 2010

Introduction to the ARM® Processor Using Altera Toolchain, Altera University Program, May
2010

SimIt-ARM Users' Guide
Altera Monitor Program Tutorial for Nios 11, fltera University Program, May 2016
Altera Monitor Program Tutorial for ARM, Altera University Program, May 2016

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

10di 10

