FSMD examples in Gezel and in VHDL

Tutorizl 068 on Dedicated systers
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Graduate Course in Compufer Science, 2016-17

1di12
Table of Contents

1. FSMD examples in Gezel and in VHDL
2. tutorial outline
2, hardware/ software implementation of dataflow models
4, FSMD/C codesign example in Gezel
5. hardware implementation of FSMD models
0. FSMD design example: median computation
7. datapath of a median computation filter
8. sequentialization by means of an FSMD
q. FSM description in VHDL

10. lab experience

11. references

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

2di12

tutorial outline

this tutorial deals with:

> codesign and cosimulation of FSMD models in Gezel
% hardware implementation methods for FSMD models
» FSMD design and implementation example
design of a median computation datapath
sequentialization by means of an FSMD
% FSM description in VHDL
> lab experience:

codesign FSMD/C and cosimulation of a testbench of the computation of
the delay of Collatz 'trajec’rories

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

3dil2

hardware/ software implementation of dataflow models

problem: HW/SwW parﬁﬁoning the implemen’raﬁon of a dataflow system
a communication protocol is to be implemented at the HW/SW interface

here is a very simple example:
handshake pro’rocol to synchronize token

1 1 -
ctr @ >@ communication

@ @ % the hardware description includes actor ctr,
the transmitter side of the protocol, and

”g'd‘f"a’e AN nodels of the microcontroller and of its
esign *. Microcontroller ,
5N hardware bus interfaces
SN o the software model includes actor snk, a
g oo ¥ FIFO queue and the protoaol receiver side
req a @ % the hardware is described by an FSMD model
e re however, in this case the FSM is only

given the role of observing the token
communication events, 1o show the

Schaumont, Figure 3,17 - Hybrid hardware/software
implementation of a dataflow graph

token value and their timing by means
of a cosimulation directive

DMI — Graduate Course in Computer Science

Copyleft @ 2016-2017 Giuseppe Scollo

4dil2

dp send_token(out dout : ns(8);
out req : ns(1);
in ack : ns(1)) {
reg ctr : ns(8);
reg rack : ns(1);
reg rreq : ns(1);
always {
rack = ack;
rreq=rack ?0:1;
ctr = (rack & rreq) ? ctr + 1 : ctr;
dout = ctr;
req = rreq;
}
sfg transfer {
$display($cycle, " token ", ctr);
}
sfg idle {}
}

fsm ctl_send_token(send_token) {
initial sO;
@s0 if (rreq & rack) then (transfer) -> s0;
else (idle) -> s0;

FSMD/C codesign example in Gezel

ipblock my8051 {

iptype "i8051system";
ipparm “"exec=df.ihx";
ipparm "verbose=1";
ipparm "period=1"; }

ipblock my8051_data(in data : ns(8)) {
iptype "i8051systemsink";
ipparm "core=my8051";
ipparm "port=P0"; }

ipblock my8051_req(in data : ns(8)) {
iptype "i8051systemsink";
ipparm “"core=my8051";
ipparm “port=P1"; }

ipblock my8051_ack(out data : ns(8)) {
iptype "i8051systemsource”;
ipparm “core=my8051";
ipparm "port=P2"; }

dp sys {
sig data, req, ack : ns(8);
use my8051;
use my8051_data(data);
use my8051_req (req);
use my8051_ack (ack);
use send_token (data, req, ack);

}

system S { sys; }

#include <8051.h>
#include "fifo.c"

void collect(fifo_t *F) {
if (P1) {// if hardware has data
put_fifo(F, P0); // then accept it
P2 = 1; // indicate data was taken
while (P1 == 1); // wait until hardware ack
P2 =0; // and reset
}
}

unsigned acc;
void snk(fifo_t *F) {
if (fifo_size(F) >= 1)
acc += get_fifo(F);

}

void main() {
fifo_t F1;
init_fifo(&F1);
put_fifo(&F1, 0); // initial token
acc=0;
while (1) {
collect(&F1);
snk(&F1);
}
}

Schaumont, Listing 3.5 - GEZEL hardware description of data flow example of Fig. 2.17

DMI — Graduate Course in Computer Science

hardware implementation of FSMD models

Copyleft @ 2016-2017 Giuseppe Scollo

hardware mapping of datapath expressions: same basic rules as with always blocks, however:

har dware da’mpa’rh structure also depends on instruction schedule by FSM...

why?
consider the up-down counter example from the previous lecture:
controller
status control datapath
decoder
-
+/- >
1 —> by =
0 A

% by the FSM model, different instructions will
always execute in different clock cycles

2 instructions which are never concurrent may
share operators’ hardware
such as the adder/subtractor in this case
% alocal decoder converts the instruction

Schaumont, Figure 5.8 - Implementation of the up-down counter

FSMD

encoding into control signals for the datapath,
to enable the proper execution pa’rh

% g local decoder in the controller extracts
doatapath state information for the FSM

conditions

DMI — Graduate Course in Computer Science

Copyleft @ 2016-2017 Giuseppe Scollo

FSMD design example: median computation

function specification: computation of the median in a list of five numbers

problem: design a sfream—processing filter that produces a new output upon each new inpu’r

such filters find application in image processing, for noise reduction

for a fast algorithm, with no list sorting:

in a (2n +1)-element list, with pairwise distinct elements, the median has n smaller elements

dps%egf“;(z"" ;‘3}"25}12"2&53’-2%‘}’2%’5215252(312? l%u:t r?é(é)f;‘s(ﬂ)){ the algorithm presented by this datapath also works
sig s1, s2, s3, s4, s5: ns(1); u)hen some elemem‘s are equal
always {
z1=(al <a2); % the descripﬁon is almost identical to that of
Z2 - (al <o) C function for th lgorith
73= (al < ad) a C function for the same algorithm
Zs Eg% : Zgg % but with a substantial, practical difference:
2 Egg p gggé sequential execution of assignments in C
z8 = (a3 < a4); Vs, pamllel execution in the da'tapafh
z9 = (a3 < ab);

710 = (a4 < ab);
sl=(z1+ z2+ z3+ z4)==2);
s2=(((1-z1)+ z5+ 26+ z7)==2);

where each output producﬁon
requires just one clock-cycle!

s3=(((1-z2) + (1-z5) + z8 + z9) == 2); l l l
= (128 + (1o8) + (1281 710) = 5} pro'wded all input values are simultaneously
gql=sl?al:s2?a2:s3?a3:s4?a4:a5; available ...
} an FSMD may allow a big space saving, as
} Y 9 5p 9
Schaumont, Listing 5.14 - GEZEL Datapath of a median calculation of five numbers we are 90"‘9 to see

DMI — Graduate Course in Computer Science

Copyleft @ 2016-2017 Giuseppe Scollo

dotapath of a medion computation datapath

the presented algorithm requires 192 1/0 lines and 10 comparators
a stream processing filter may reduce these requirements to 04 1/0 lines and 4 comparators

to this end the hardware stores the four data preceding the last
one from the input stream and at every iteration with a new
input element reuses the stored results of six comparisons
from the previous three iterations

21 —|

22 —| median s1
23 — sum ’

24
———
——
-z1 = -
i s:
z5 —{ median k al
26 —> sum 2
7 — e 1
£ a3 !

SN

a4
prrrery
H ﬁ A o o "
A A A : 3
=25 — median | %
8 — sum

s1
H H . -
A A]) s3

23 s4
~26 median s4
—
m - sum
z10

Schaumont, Figure 5.4 - Median-calculation dafapafh for a stream of values

dp median(in al : ns(32); out g1 : ns(32)) {

reg a2, a3, a4, a5 : ns(32);
sig z1, z2, z3, z4;
reg z5, 26, 27, 28, 29, 210 : ns(3);
sig s1, s2, s3, s4, s5: ns(1);
always {
a2 =al;
a3 =az;
a4 =a3;
ab =a4;
z1=(al <a2);
z2 = (al <a3);
z3 =(al < ad);
z4 = (al < ab);
z5 =121,
26 = z2;
z7 =23;
28 = 75;
29 = z6;
z10 = z8;
sl=(z1+ z2+ 23+ z4)==2),
s2=(((1-z1)+ z5+ z6+ z7)==2);
s3=(((1-z2) + (1-z5)+ z8+ 29)==2);
s4 = (((1-z3) + (1-z6) + (1-z8) + z10) ==2),
gl=sl?al:s2?a2:s3?a3:s4?a4:ab5;

7dil2

DMI — Graduate Course in Computer Science

Copyleft @ 2016-2017 Giuseppe Scollo

8dil2

sequentialization by means of an FSMD

the filter in fig 5.9 accepts a new input and produces a new output at every clock cycle
the number of computing components may be further reduced by distributing the computation over
multiple clock cycles under a sequential schedule, so that a single comparator and a single module to
compute s1, s2, s3, s4 are reused, at the cost of adding a few multiplexers and registers for the

internal signals

the figure shows the schedule, the FSMD which implements this idea is in Schaumont Sect. 5.5.4, which
also presents the testbench FSMD here reproduced oside the figure

—]

Schaumont, Figure 5.10 - Sequential schedule median-calculation datapath for a stream of values)

]

dp t_median {
sig istr, ostr : ns(1);
sigal_in, gl : ns(32);

median s1

sum

reg r: ns(1);

reg ¢ : ns(16);

always { r = ostr; }

sfg init { ¢ = 0x1234; }

sfg sendin { al_in = c;
c=(c[0
istr=1;

sfg noin { al_in = 0;

istr=0; }

median
sum

median
sum

initial sO;

state s1, s2;

@sO0 (init, noin) -> s1;
@s1 (sendin) -> s2;

median
sum

use median(istr, al_in, ostr, ql);

B cl2] " c[3]” c[5]) # c[15:1];

fsm ctl_t_median(t_median) {

@s2 if (r) then (noin) -> s1;

else (noin) -> s2;

DMI — Graduate Course in Computer Science

Copyleft @ 2016-2017 Giuseppe Scollo

FSM description in VHDL

general hardware structure of an FSM and example of NHDL description of a Moore FSM:
the VHDL description of the example is taken from the textbook by

(Mealy only)

clk
Output

loglc Outputs
Memory

f
next_state
Next

state -
logic

Inputs ——

Wilson, Figure 22.1 - Hardware state machine structure

TN rst=0

\ choice =0 1

/ \ ‘o 8\
N 82) | out1=3 |
\out1=2 J >4

Wilson, Figure 22.2 - State transition diagram

Wilson, with several amendments

what about the sensitivity list of the
second process! the author refers to
an implicif clock... the simulation
agrees with this, yet the compilation
issues a warning in this respect

library ieee;
use ieee.std_logic_1164.all;
entity fsm is
port(
clk, rst, choice : in std_logic;
outl : out std_logic_vector(1 downto 0)

);
end entity fsm;

architecture simple of fsm is
type state_type is (s0, s1, s2, s3);
_signal current, next_state : state_type;

egin
process (clk)
begin
if (clk ="1") then
current <= next_state;
end if;

end process; end;

process (current)
begin .
case current is

when s0 =>
outl <="00";
if (rst="1") then
next_state <= s1,
else
next_state <= s0;
end if;
when s1=>
outl <="01";
if (choice ='0") then
next_state <= s3;
else
next_state <= s2;
end if;
when s2=>
outl <="10";
next_state <= s0;
when s3=>
outl <="11";
next_state <= s0;
end case;

end process;

9dil2

DMI — Graduate Course in Computer Science

Copyleft @ 2016-2017 Giuseppe Scollo

10di12

lab experience

target of this experience is the HW/SW codesign and the cosimulation, in the Gezel platform gplatform, of an
FSMD model for the computation of the delay of Collatz trajectories

the functionality of the hardware dafapa'th is similar to that of the circuit for the delay of Collatz ijedories
presented in the second lecture and worked out in the second lab exYerier\ce, yet with a few differences due to the
communication protocol with the software and to design decisions relating to cosimulation; in particular:

4 the hardware configuration includes an 8051 microcontroller with the B-bit parallel ports PO, P1, P2, P3

% the size of interface signals and registers for data exchange is thus halved to B bit, and as well it is halved
to 10 bit the size of internal signals and registers for trajectory computation

% the handshake protocol for data exchange is similar to that shown in the FSDM/C codesign example
presented, but with an important difference: in this case there are two distinct handshakes, one to send
the trajectory start point from the software to the datapath, the other to send the result from the
datapath to the software

% the software plays the same role as the tester in the testbench developed in the third lab experience, viz.
to drive the datapath with the numbers ranging from 1 to 255 as trajectory start points

% the hardware component is to be described by an FSMD where, for each double data exchange with the
software, the controller FSM goes through a four-state sequence: initial, receiver-handshake for the
trajectory start point, delay computation, sender-handshake for the result; then back to the initial state

% by Iroper usage of the $display cosimulation directive, the clock cycle is to be shown at every beginning
and ending of the trajectory computation (entry and exit into/from the third aforementioned state),
together with the walues of the trajectory start point and of the computed delay

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

11di12

references

recommended readings:

Schaumont (2012) Ch. 3, Sect. 3.5; Ch 9, Sect. 9.4.4-5.5
Wilson (2019) Ch. 22

readings for further consultation:

\ohid (2000) Cap. 9
Zwolinski (2004) Sect. 5.9-b, 7.1-2

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

12.di12

