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ARTICLES 

Before The Conquest 

MARCIA ASCHER 
Ithaca College 

Ithaca, NY 14850 

Introduction 

In the late 15th century, through their explorers, Europeans "discovered" the New 
World. Although the discovery would cause drastic change, the New World was, of 
course, not new to its inhabitants. When the Europeans arrived, there were at least 9 
million people in about 800 different cultures living in the Western Hemisphere. 
Because of the vast disruptions that eventually took place, what we know about them 
and their mathematical ideas is limited. Most of the cultures had no writing as we 
commonly use the term and so there are no writings by them in their own words. For 
the cultures that did not survive, we have primarily what can be learned from 
archeology and from the writings of the Europeans of the time, who had little 
understanding and little respect for these cultures so different from their own. For 
those that did survive, we also have their oral traditions. 

We focus here on the mathematical ideas of two sizable groups, the Incas and the 
Maya. The regions the groups inhabited, their cultures, and their histories are quite 
distinct, as are their mathematical ideas. Fortunately, for both groups, there is 
sufficient information for us to gain some understanding of their rich and complex 
ideas. Here we present an abbreviated introduction to the content and context of the 
sophisticated data handling system of the Incas and the intricate calendric system of 
the Maya. 

The Incas 

The Incas comprised a complex state of about 5 million people that existed from 
about 1400 C.E. to 1560 C.E. in what is now Peru, and also parts of modern Ecuador, 
Bolivia, Chile, and Argentina. There were many different peoples in the region, but, 
starting about 1400, the Incas forcibly consolidated the others into a single bureau- 
cratic entity. The consolidation was achieved by the overlay of a common state 
religion and a common language, relocation of groups of people, extensive systems of 
roads and irrigation, and a system of taxation involving, for example, agricultural 
products, labor, and cloth. The Incas also built a network of storehouses to hold and 
redistribute goods as well as to feed the army as it moved. The Inca bureaucracy can 
be characterized as methodical, highly organized, and intensive data users. Although 
the Incas did not have what we call writing, they did keep extensive records. These 
were encoded via a logical-numerical system on spatial arrays of colored, knotted 
cords called quipus. 

A few selected people from each region that the Incas occupied were trained to 
serve in the Inca administration and, in particular, to be responsible for gathering, 
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and then encoding and decoding a wide variety of information on the quipus. 
Believing the quipus to be works of the Devil, the Spanish destroyed thousands of 
them. Only about 500 remain. These were recovered from graves, probably buried 
with those who made them. Only rarely can we read the quipus in the sense that 
specific meaning can be assigned. However, we can reconstruct something of their 
logical-numerical system and, as a result, see the interrelationships of some of the 
data they contain. 

A photograph of a quipu is in FIGURE 1. FIGURE 2 is a schematic. In general, a 
quipu has a main cord from which other cords are suspended. Most of the suspended 
cords are attached such that they fall in one direction (pendant cords); some few fall 
in the opposite direction (top cords). Subsidiary cords are often suspended from the 
pendant or top cords. And there can be subsidiaries of subsidiaries, and so on. (Notice 
that in FIGURE 2 the first pendant has two subsidiaries on the same level while the 
fourth pendant has two levels of subsidiaries.) Some pendant cords have as many as 
18 subsidiaries on one level, and some have as many as 10 levels of subsidiaries. 
Sometimes a single cord (dangle end cord) is attached to the end of the main cord in 
a way that sets it apart from the pendant and top cords. All cord attachments are tight 
so that the spacing between the cords is fixed and serves to group or separate the 
cords. Overall, a quipu can be made up of as few as three cords or as many as 2000. 

FIGURE 1 
A quipu in the collection of the Museo Nacional de Anthropologia y Arquelogia, Lima, Peru. 
(Photo by Marcia and Robert Ascher.) 
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FIGURE 2 
A schematic of a quipu. 

Color is also a feature of the logical system. It is used primarily to associate or 
differentiate cords within a single quipu. Thus, color as well as space can create cord 
groupings. For example, eight pendants can be formed into two groups by having four 
white pendants followed by four green pendants, or by a four-color sequence 
repeated twice. In the latter case, each cord is not only associated with its group, but 
also with the like-colored cord in the other group. Similarly, subsidiaries are associ- 
ated or differentiated by color as well as by level and relative position on the given 
level. 

Spaced clusters of knots on the cords represent numbers. No matter what the cord 
placement, only three types of knots appear (single knots, long knots, and figure-8 
knots). Depending on the knot types and relative cluster positions, each cord can be 
interpreted as one number or as multiple numbers. If it is one number, it is an integer 
in the base 10 positional system. Each knot cluster is read as a digit and each 
consecutive cluster, starting from the free end of the cord, is valued at one higher 
power of 10. The units position is always a long-knot cluster or a figure-8 knot, while 
all other positions are clusters of single knots. When, instead, the cord carries 
multiple numbers, long-knot clusters or figure-8 knots are interspersed with single- 
knot clusters thereby signaling the start of a new number. The color coding of the 
cords also helps in the interpretation of values by enabling the distinction between a 
numerical value of zero and an intentional omission or blank. 

Knot types and knot positions, cord directions, cord levels, color, and spacing are 
all structural indicators that were combined together in sufficiently standardized ways 
to be read and interpreted by the community of quipumakers. That is, the quipus 
served for communication, not as ad hoc personal mnemonic devices. Top cords, for 
example, generally carry the sum of the pendant cords with which they are grouped 
on the main cord. Another aspect of the system that is crucial to its general 
applicability is that numbers were used as labels as well as magnitudes. Particularly 
with the advent of computers, this usage is now very prevalent in our own culture. 
For example, the composite number 202-387-5200 is a label identifying a geographic 
region, a locale within that region, and a specific telephone within that locale. 
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The quipus, then, are logically structured arrays of magnitudes and labels. Let us 
translate three of them into notation that is familiar but preserves their logical 
structure. Then we can delve into some of their internal data relationships. 

The quipu shown in FIGURE 1 contains solely quantitative data. Analysis of the 
pendant cord colors and spacing shows that there are six ordered sets of 18 values 
each. We will call the jth value in the ith set aij where i = 1, . . , 6; j = 1,... 18. 
When the knots are interpreted as magnitudes, we find that, for all j, 

a,j = a2j + a 

and, in turn, 
6 

a2j = E 
i=4 

Hence, the relationship 
6 

i==3 

also holds. Additionally, there are subsidiary cords on the pendants in five of the six 
cord groups. Thus, for each aijj for i = 2,..., 6; j = 1 , 18, there are as many as 11 
ordered subsidiary values. Call them 

aijk with k= 1,. 11. 

Here, too, consistent summation relationships exist: 

6 

a2jk =E aijk for k =1. 11; j= 1,...18. 
i=3 

A modern analogy of data with sums of sums and sets of sums, as is seen in this 
example, is an accounting scheme for a company, broken down to reflect that it is 
made up of several departments and producing a variety of products. 

In our second example, the arrangement of values and their sums is analogous to a 
matrix that has, as a subset, the transpose of the sum of two other matrices. 
Specifically, this quipu's data can be thought of as two 3 x 3 matrices, each preceded 
by a single value, and a 3 X 5 matrix. Calling the elements of the matrices 

aijk i=1,2,3; j = 1,2,3; k = 1,2, 

and 

bij i=1,2,3;j=1,2,3,4,5, 

the relationship is 
2 

bi,2j-1 1= ajik for i= 1,2, 3; j=1,2, 3. 
k=i 

And, continuing the analogy to matrices, the single value preceding each of the 
3 X 3's would be the sum of its first row; that is, 

3 

Ck E aljk for k= 1,2. 
j==lI 
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Some of the data structures remind us of spreadsheets, matrices, and tree diagrams. 
Other quipus have other layouts, nonquantitative as well as quantitative data, other 
kinds of internal data relationships, or even relationships with data on other quipus. 
Many remain fascinating puzzles. One of these, our final example, is from a pair of 
quipus that were found together. 

The specific numbers on these two quipus are different, but the quipus share 
several internal data relationships, including what we commonly call a difference 
table. While both appear to be expressions of the same algorithm, a concise unifying 
description escapes me. Translated into tabular form, they are compared in FIGURE 3. 
I have superimposed arrows and heavy lines on the tables to indicate the similarities 
that I see. Perhaps you can find additional similarities or, perhaps, you can find a 
generalization that unites the data sets. 

7,L 4 54- 4 A- 6 4 4 t2zI 10 01 

12'2 45 6 14- 3IO'jj17' 
2 37 _ _ 6 iZ l3 7 14 

9 4 16 2 41 i 34__ 6 T + 5? 

FIGURE 3 
Data excerpted from a pair of quipus found together. Arrows and heavy lines highlight some of 
their similarities. In both, for example, all values are the same in the first column and in row 2, 
column 3. Also, in both, the third column contains the differences of consecutive values in the 
second column. (The quipus are described by C. Radicati di Primeglio in La "seriacion" como 
posible clave para descifrar los quipus extranumerales, Documenta: Revista de La Sociedad 
Peruana de Historia 4 (1965), 112-215.) 

Reference [1] contains more details, examples, and discussion of the context, 
contents, and interpretation of quipus. Although we lack the cultural associations 
needed to know what a specific quipu means, the quipus surely are records of human 
and material resources and calendric information. But they contain much more-pos- 
sibly information as diverse as construction plans, dance patterns, and even aspects of 
Inca history. Overall, the logical-numerical system embedded in these spatial arrays 
of colored, knotted cords was sufficiently general to serve the needs of the Inca 
bureaucracy. Their use was terminated soon after the destruction of the Inca state in 
1560 C.E. 

The Maya 

The Mayan peoples have a complex cultural tradition extending over a long period of 
time and encompassing different groups speaking about 25 different languages. They 
shared much in the way of culture but, spread through time and space, they had 
different centers and political organizations, some different ideas, and some different 
practices. Discussions of their history usually begin sometime before 1000 B.C.E. The 
period 200-1000 C.E. is referred to as the Classic period and is marked by 
ceremonial centers with monumental architecture, a system of writing, an elaborate 
astrological science, and numerous centers of social, religious, economic, and political 
activities interrelated by marriage and trade networks. During the Classic period, the 
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Maya inhabited what are now the eastern Mexican states of Chiapas, Tabasco, 
Campeche, Quintano Roo, and Yucatan; Belize; Guatemala; and the western portions 
of Honduras and El Salvador. On the eve of the Spanish conquest, there were spread 
out in this area, many independent yet culturally interrelated states, none as grandiose 
as earlier. Because they were dispersed and independent, they did not succumb to 
the Spanish as quickly and easily as did the Incas. Today, primarily in Chiapas and 
the highlands of Guatemala, some Maya traditions continue. 

Christopher Columbus, in 1502, is said to have been the first European to 
encounter the Maya, and his brother, Bartholomew, was the first to record the name 
of the group. By that time, however, remains of the Classic Maya period were already 
covered over, and so another "discovery" -this time archeological-took place 
beginning in the mid-1800s. In addition to some ongoing traditions, what we know of 
the Maya, and in particular of their mathematical ideas, comes from archeological 
materials, including thousands of inscribed stone monuments (stelae) and four 
post-Classic books (codices), the only ones remaining of the thousands that were 
burned by the Spanish. 

We will concentrate on the idea of time as it permeates the Mayan culture. Time is 
considered to be cyclic. Supernatural forces and beings are associated with and 
influence units of time. Events of the past, present, and future are related through the 
recurrence of named time units. There are, however, not just one, but several, 
overlapping cycles that all must be taken into consideration to give meaning to any 
particular time unit. Although their calendric concerns extend to the incorporation of 
astronomical phenomena, the Maya were preoccupied with the interrelationship of 
the arbitrary cycles they created and imposed on time. For this reason, the Maya are 
said to have "mathematized" time and, through it, their religion and cosmology. 

There is, first of all, a 260-day ritual almanac. Each day within it is identified by a 
number in a cycle of 13 and a named deity in a cycle of 20. (Each of the 13 numbers 
also has an associated deity.) There is a vague year of 365 days (called "vague" 
because it does not keep in alignment with the seasons). It results from a cycle of 20 
numbers within a cycle of 18 named deities plus five unnamed days. (The cycle of 20 
is now referred to as a month but does not have a lunar correspondence.) One 
calendar round is 18,980 days (52 vague years, 78 almanac cycles) since that is the 
least common multiple of 365 and 260. A date within this, made up of an almanac 
date and a vague year date, reads, for example, 4 Ahau 8 Cumku where Ahau and 
Cumku are names of deities. 

In the ceremonial centers of the Classic period, there were temples atop large, 
stepped pyramid frusta as high as 213 feet. Hundreds of stelae, some as tall as 32 feet, 
were erected around them to commemorate different events. To mark an event, what 
was needed was to accurately and fully identify it in time and, sometimes, to state. 
how many days it was from another event. In addition to the calendar round date, 
another significant identifier was a Long Count: the number of days from the 
beginning of the then current Great Cycle. A Great Cycle is based on a 360-day 
period (a tun) consisting of 18 uinals of 20 days each; 20 tuns are a katun; 20 katuns 
are a baktun; and 13 baktuns are a Great Cycle. An example of a Long Count 
transcribed into our numerals is 9.0.19.2.4. From left to right this reads "9 baktuns, 0 
katuns, 19 tuns, 2 uinals, and 4 days." To convert to our system, starting at the right, 
each position-with the exception of the third-is multiplied by one higher power of 
20. In the third position, an 18 is used instead. Hence, the Long Count date of 
9.0.19.2.4 is interpreted as: 

9 18 203 + 0 18 202 + 19 18 20 + 2 20 + 4 = 1,302,884 days 
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from the beginning of the Great Cycle that started on the calendar round date of 4 
Ahau 8 Cumku. The exact correlation of this date with the Gregorian calendar is not 
known. However, by one commonly accepted correlation, the beginning of the Great 
Cycle was in 3114 B.C.E. and the date given by the Long Count above is, thus, in 454 
C.E. 

This Long Count date appeared on a stela that also was dated in the calendar round 
as 2 Kan 2 Yax. But, as with most stelae, it had dates placing it within still more 
cycles. There was a 9-day cycle of Lords of the Night, each associated with one of the 
nine levels of the underworld. Hence, a specific Lord of the Night also dates the day 
being marked. And, in addition, the day is placed within a lunar cycle. Lunar years 
and half-years are made up of 29- and 30-day lunar months. The stela contains the 
moon number within the lunar half-year, the age of the moon, and whether it is a 29- 
or 30-day month. 

Just as there are nine levels below the earth, there are 13 levels in the heavens 
above. There are four cardinal directions and each of the quadrants they define is 
associated with a different color. Uniting time and space, the days of the 260-day 
ritual almanac move in a counterclockwise direction through the four quadrants. 
Hence, not only are time and space related, but the ritual almanac has within it a 
four-color cycle. In some cases, where dates also identify days within a 819-day cycle 
associated with the rain god, the use of four colors effectively makes that cycle 
819 * 4 = 3276 days. 

Many of the Maya computations are projections into the past or into the future that 
require dovetailing the cycles. For instance, one inscription, commemorating the 
enthronement of a ruler, gives the calendar round dates of his birth and his 
enthronement, as well as of the enthronement of an earlier, somehow related ruler or 
deity. The number of days between these events is also included in Long Count form. 
For example, the time elapsed since the enthronement of the deity is 7.18.2.9.2.12.1 
days. Hence, given one calendar round date, a calendar round date some 1l million 
years earlier was calculated or, given two calendar round dates, their Long Count 
difference (number of days between them) was calculated. 

To more fully savor the calculation, you might try to do such a problem. First, 
recall that each of the 260 days in the ritual almanac is identified by a number in a 
cycle of 1 to 13 and a named deity in a cycle of 20. For simplicity, let us call the 
deities D1,... D20. In the 365-day vague year, five days are unnamed while, for the 
rest, each day is identified by a number in a cycle of 1 to 20 within each of 18 months 
named for deities. Call these deities dl, ... . d18 and assume that the five unnamed 
days follow 20d18. The calendar round date is the almanac date followed by the vague 
year date. What, then, is the calendar round date that is 2.3.5.10 days after 8D1013d10? 
And, what is the Long Count Difference between 12 D86d2 and the next 5D412d17? 
(Answers are on page 235.) 

The Dresden Codex, attributed to the eleventh century in Yucatan is the most 
mathematical of the codices. It is constructed as a long strip of paper made from tree 
bark, folded into pages, coated with white plaster, and painted. Perhaps as aids to 
computation, the codex includes several tables of multiples; for example, there are 
tables of multiples of 5.1.0 (that is, of 1820 that equals 7 * 260 and 5 * 364) up to 
1.0.4.8.0. But, even more important, other tables in the codex combine backward and 
forward calendar projections with evidence of keen astronomical knowledge. One set 
of tables correlates lunar cycles with ritual almanac dates. These tables cover 405 
lunations and are interpreted as prediction tables for possible eclipses. Another set of 
tables in this codex correlates Venus visibility events with ritual almanac and vague 
year dates. Covering 65 Venus cycles, which is 146 almanac cycles and 104 vague 
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years, it includes corrections reflecting the fact that the mean synodic year of Venus is 
not an integral number of days. (The mean synodic year of Venus is 583.92 days.) The 
corrections are such that the error between real and tabulated times of the positions 
of Venus would be off by just two hours in about 500 years! 

We know that much is unknown about the knowledge and mathematical ideas of 
the Maya. Dates and numbers, written in a variety of symbolic forms, have been 
recognized and deciphered. But the Maya writings contain much more. The writing 
system is complex because it contains about 1000 symbols and both phonetic and 
nonphonetic elements. A great deal of recent activity in decipherment raises the hope 
that more will become known about Maya ideas and the Maya culture in general. 
(For more details on number representation, the tables in the Dresden Codex, and 
possible algorithms for the date difference calculations, see [2] and [5]. Reference [3] 
discusses the importance of the Maya scribes including evidence that they were both 
women and men. Also, [4] is an excellent comprehensive overview of the Maya.) 

Conclusion 

The Inca and Maya are two substantial examples of cultures whose mathematical 
ideas were both sophisticated and independent of those of Western culture. We can 
never know about all of the mathematical ideas they had and, what is more, we cannot 
know what they might have developed had they continued to thrive. 
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