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Abstract

The Collatz problem is comprised of two distinct, separate questions: ex-
istence of eventually periodic Collatz reductions with a nontrivial period,
and existence of period-free Collatz reductions. This paper introduces a few
distinct, related formalizations of the Collatz dynamics as term rewriting
systems, using elementary concepts from the theory of state transition dy-
namics. Some of the subject systems act on finite terms, whereas others
rewrite terms that are endowed with a countable, recursively defined struc-
ture. The latter presents a convenient framework for the investigation of
extensions of the Collatz dynamics to dense systems.

Keywords: State Transition Dynamics, Attractor, Periodicity, Quasiperi-
odicity, Infinitary Rewriting
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1 Introduction

The 3x+1 problem, also known as the Collatz problem, and under several
other names, concerns the behavior of the iterates of the function which takes
odd integers n to 3n+1 and even integers n to n

2
. The 3x+1 Conjecture

asserts that, starting from any positive integer n, repeated iteration of this
function eventually produces the value 1. One immediately sees that, in one
step, the function in question takes any odd integer to an even one, so it can
be replaced by the function that takes odd integers n to 3n+1

2
. This is the

first variant of the Collatz problem that is considered in this paper. A second
variant of interest considers the restriction of Collatz iterates to odd positive
integers, whereby the subject function is replaced by that which takes every
such integer n to the greatest odd divisor of 3n+1

2
(which may or may not

be 3n+1
2

itself). We refer the interested reader to [4] for a detailed, historical
account of the Collatz problem, together with a comprehensive annotated
bibliography.1

The Collatz problem is comprised of two distinct, separate questions:

1. existence of eventually periodic Collatz reductions with a nontrivial
period (if only transitions between odd positive integers are considered,
then the trivial period is of length 1, otherwise it is of length 2 and is
unique up to circular permutation),

2. existence of Collatz reductions which would not be eventually periodic.

The Conjecture says that both questions have a negative answer. The
proof of both conjectures has turned out to be awfully hard to find, in that
it is affected by all difficulties which one may expect from the purported
chaotic behaviour of Collatz reductions.

The two variants described above will be our starting framework to ex-
plore further variants of Collatz-like dynamics, according to the following
collection of variations on the theme.

In each case we start from a formalization of the state space (positive
integers, odd positive integers, etc.) as a quotient term algebra with a con-
stant, two unary constructors and a relation; the latter turns out to have
an interesting connection with a constant-free specification of the Collatz
dynamics. This is readily seen by our further formalization of Collatz (or
“restricted” Collatz) dynamics by a term rewriting system on a suitable ex-
pansion of the previous algebra. In turn, this provides one with a slightly
more abstract understanding of Collatz dynamics, that is, by forgetting the

1Both are available and kept up-to-date on the Web, at address
http://www.cecm.sfu.ca/organics/papers/lagarias
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arithmetic interpretation of terms, while taking the dynamic behaviour of the
labelled state transition system, and its connection with the computational
behaviour of the rewriting system, as the main subjects of investigation.

With labelled transitions, states in the labelled transition system are con-
gruence classes of the (possibly expanded) word algebra, and canonical syn-
tactic representatives for them are readily found. On the other hand, it is
possible to get rid of transition labels by encoding the labelling information
(the behaviour “history”) in states, which thereby take a richer structure—
basically that of a pair, where a record of the sequence of Collatz rule ap-
plications that have led to the state, adjoins the previously mentioned rep-
resentative of that state. This record is closely related to what is called the
“parity vector” in [4], following [8, 9], and it is actually possible to get such
records be exactly those parity vectors, even when our system acts on odd
positive numbers only, under the arithmetic interpretation.

The previous outline justifies the “rewriting” in the title of this paper; we
now briefly introduce and motivate its Greek prefix—standing for countable
infinity, as it were. This plays a twofold role in the extension of the rewriting
systems of our concern, as follows.

1. All operators of the word algebras which represent the state space are
unary ones, with the obvious exception of the constant symbol, hence
term trees are just plain operator sequences, ending either in the con-
stant symbol if they are ground terms (i.e. words), or in a variable oth-
erwise. We first extend the previously introduced rewriting framework
by replacing the constant symbol with an infinite sequence of unary
operators. Words thus become infinite, and variable substitution by
such words turns a finite term structure into an infinite one.

2. Since rewrite rules act on infinite terms, the concept of limit of an
infinite sequence of rewriting steps comes into play [3, 1, 2]. Such
limits are needed in order to obtain a faithful extension of the rewrite
relations, previously defined on objects represented by finite terms, to
the same objects represented by infinite terms.

The reader may wonder what’s the point with introducing the compli-
cation of infinity in a representation where an only finite prefix of the term
structure conveys all the information about it, while the neverending tail is
just the iteration of a given finite period. The point is twofold.

1. The fear of complication is actually defeated by a greater simplicity
of the resulting system of rewrite rules, in that all the rules which, in
any of the finite-term rewriting systems of our interest, are needed to
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formalize the basis clause of an inductive specification, those rules may
just be dispensed of in the ω-rewriting extension of that system. This
happens not just because “there’s no basis anymore”, but because the
rewriting outcomes specified by the aforementioned rules turn out to
be (at the limit, possibly) the outcomes of (possibly infinite) sequences
of applications of the other rules, under the new representation of the
constant.

2. A more profound point of motivation for the subject extensions is the
mathematical interest in extensions of the Collatz dynamics to richer
domains, such as the integers, the rational field, dyadic number sys-
tems, etc. In this paper we show that, by removing the constraint that
the ω-words of interest must end in an iterated one-symbol tail, the
ground is settled for a straightforward extension of the Collatz prob-
lem to a dense domain. This leads us to the final kind of variations on
the theme that are addressed in this paper.

Even when states in Collatz dynamics are represented by finite words,
behaviour is inherently infinite; it can be either finitely presentable, that is
to say, eventually periodic, or period-free. The latter is at least a possibility,
in the standard Collatz problem, as long as its second half is not settled in
the negative; but it is more than that, plain reality as a matter of fact, in
certain well-known cases of generalized formulations of the Collatz problem.
Generalization might be pushed to the extent of giving rise to further op-
tions of finitely presentable behaviour, yet with no eventual periodicity; for
instance, almost-periodicity as well as quasiperiodicity would be of theoreti-
cal as well as practical interest according to [7, 6]. In all cases, behaviour in
state transition dynamics is an infinite sequence of observations—an infinite
parity vector indeed.

When that behaviour becomes the central subject of investigation, one
is naturally led to investigate conceptual and formal tools to operate on
behaviours, or representations thereof, to link their infinite evolution to that
of the states they come across, and maybe to lift questions and techniques to
the upper floor of abstraction. An interesting point in case is the equivalent
formulation of the Collatz conjecture proposed by Lagarias [4], in connection
with the extension of the Collatz transformation to the dyadic numbers Z2.
This is briefly summarized as follows. One defines a transformation Q∞
on this field by the infinite parity vector, whereby the image of any dyadic
number state is the dyadic number whose digits are the components of the
infinite parity vector under the Collatz transform starting from that state.
The Collatz conjecture is then equivalent to the inclusion of the Q∞-image
of the positive integer subset of Z2 in the 1

3
Z subfield of Z2.
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To get a first essay of what an ω-rewriting framework may have to of-
fer in respect of behaviour analysis in Collatz-like dynamics, just consider
the following question. What does a variable stand for in an ω-rewriting
system? The basic mechanism of substitution is not unlike that of ordinary
rewriting, yet the infinite size of ground terms (which may convey an amount
of information that may need infinite time to be appraised) prompts us to
contemplate a sort of high-school algebra view of variables as “unknowns”,
but actually in an informational sense. That is to say, by the substitution of
a variable with a term that may contain variables, but definitely contains a
finite, or finitely described, operators’ structure, a gain of information takes
place about the evolution of the original term, whereby its set of ground in-
stances (its “substitution extent”) shrinks to a subset of the original set that
was available before applying the substitution. This may sound a bit too
familiar, but the net effect is that of opening the way to a conceptual view
of substitution as a process that takes time, in contrast to its instantaneous,
timeless view that seems traditional.

Here is an outline of the contents of the forthcoming sections. The ba-
sic ingredients and notation adopted to establish the formal and conceptual
framework presented in this paper, are introduced in the next section. We
then move to the core of our subject, which consists in building a sequence
of term rewriting systems, first the standard, finite-term rewriting ones, then
their extensions to ω-rewriting, according to the series of variations on the
theme outlined above. We finally draw brief conclusions and have a glimpse
at forthcoming research directions.

2 Preliminaries

Basic concepts and notation are established as follows.
The one-step, binary-labelled Collatz reduction relation is another form

of the first variant of the Collatz function that is considered here, actually
a ternary relation in N+×2×N+, with N+=N\{0}, that is defined as the
smallest such relation which satisfies the following clauses:

x
1→3x+1

2
if x is odd, x

0→x
2

if x is even.

By taking N+ as the set of states and any element n of N+ as initial
state, one gets a (deterministic) labelled transition system (LTS) starting at
n and thereafter evolving according to the binary-labelled transitions between
states as specified by the reduction relation displayed above.

The binary label b in the x
b→y reduction step, is thus the parity of x. By

lifting the label set to the set of nonempty finite bitstrings 2+, one-step reduc-
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tions are embedded into many-step reductions in a straightforward manner.
The bitstring-labelled Collatz reduction relation is defined by extending the
previous basic clauses with the following inductive clause:

x
σb→y if x

σ→z
b→y for some z ∈ N+

where b is the one-bit suffix of the σb bitstring. As a matter of notation,
in this paper σ is always a variable ranging over bitstrings, and the one-bit
suffix operation on bitstrings is denoted by juxtaposition.

It is easy (and will prove inspiring) to reformulate the basic clauses which
specify one-step reductions in such a form that neither fractional expressions
nor explicit parity conditions occur; given that x ranges over N+, one may
equivalently write them as follows:

2x
0→x, 2x−1

1→3x−1 .

This reformulation does not affect the resulting transition system, but it
affects the computational means employed to let the transition relation de-
termine the progress of the system through the state space.

Consider now the second variant of the Collatz problem, where the state
space is restricted to the odd positive integers. There are no numbers to halve
in this space anymore, but the one-step labelled reduction relation now has a
different label set, whereby each transition step is labelled by a finite bitstring
10k, where k is the (possibly zero) number of divisions by 2 that are required
to get an odd number out of 3n+1

2
, for any given source state (that is, odd

positive integer) n; the target state then is 3n+1
2k+1 .

3 Collatz dynamics by term rewriting

When symbolic computation means are of interest, then the design of a suit-
able term rewriting system (TRS) is a straightforward choice. This proceeds
by devising a syntactic representation of the state space, and then by trans-
ferring the state transition relation over this representation. In the case of a
labelled transition system, the TRS rewrite rules will conveniently act upon
an extended representation of the LTS state space, that will be referred to as
TRS state space, where terms representing LTS states are paired with label
sequences which summarize the history of transitions leading from the initial
state (paired with the empty sequence) to the given state. For the problem
under consideration, a solution is obtained as follows.

LTS states are represented by words over the signature ΣC which consists
of a constant symbol ⊥ and the two unary prefix operators 0, 1, modulo the
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word congruence specified by the equation 1⊥ = ⊥. The correspondence of
this representation to the given state space, that is N+, is established by
interpreting ⊥ as the number 1, that is the bottom of the natural order on
N+, and the two unary operators respectively as follows:
0 7→ λx.2x, 1 7→ λx.2x−1 (“7→” denotes application of the interpretation
map).

To start with, let the TRS state space consist of the terms built by the
binary infix operator #, pairing a (possibly empty) bitstring on the left (a
transition label history) with a ΣC-word on the right (the reached state,
modulo the aforementioned congruence). Please note the typeface difference
to distinguish the bits 0, 1, on the left of #, from the unary ΣC-operators 0, 1,
on the right of #. It would be nice if one could formalize the state transition
relation just by rewrite rules acting on terms over the aforementioned TRS
state representation signature, possibly with variables, but life is not always
easy. The difficulty here arises from the severely limited computational power
of the available operations, whereby multiplication by 3, among others, is
hard to express. What seems purposeful to overcome this problem, is the
expansion of the ΣC-term algebra to a richer operators’ signature, so as to
include the needed operations to the computational means of the TRS under
design. We do so by introducing three unary auxiliary operators, that is we
extend ΣC to the signature ΣA = ΣC +{t, r, s}, with intended interpretation
of the new symbols as the following functions on N+:
t 7→ λx.3x, r 7→ λx.3x−1, s 7→ λx.3x−2 .

The rewrite rules are going to act on terms to express either dynamical
properties of the original LTS or computational properties of its representa-
tion. This is to be expected, in that the pairing operator # will now have a
ΣA-word on the right, where occurrence of any of the newly introduced oper-
ators is the symptom of an as yet unfinished computation of the target state
of a transition. The rewrite rules are thus conveniently grouped under two
categories: the set D of dynamical rules, where the pattern only has operators
from {#}∪ΣC (and possibly variables), and the set C of auxiliary computa-
tional rules, where some of the auxiliary operators occurs in the pattern. We
further orthogonally classify the rewrite rules by distinguishing the boundary
rules, which are those where the constant symbol ⊥ occurs in the pattern,
from the nonboundary ones. The set B of boundary rules is thus comprised
of those which are dynamical, viz. its subset BD, and those which formalize
auxiliary computation at the constant, viz. its subset BC. Similarly, the set
A of nonboundary rules is comprised of its subsets AD and AC, respectively
gathering the dynamical and auxiliary computational cases thereof.
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BD : σ#⊥ → σ1#0⊥ BC : r⊥ → 0⊥ AC : r0x→ 1tx, r1x→ 0sx
AD : σ#0x → σ0#x s⊥ → ⊥ s0x→ 0rx, s1x→ 1sx

σ#1x → σ1#rx t⊥ → 10⊥ t0x→ 0tx, t1x→ 1rx

Consider now the second variant of the Collatz problem, where the state
space is restricted to the odd positive integers. We may essentially keep the
same rewrite rules as with the previous system, but under a different clas-
sification. This arises from the fact that certain states from the previous
state space, viz. the even positive numbers, are no longer found in the re-
stricted state space. This entails that not all ΣC-words represent states of
the restricted LTS; only those which do not have ’0’ as outermost operator
do so. One may consider the ΣC-representations of the removed states, that
occur at the right of the pairing operator, as auxiliary computational states
of the new TRS. This boils down to move the first AD-rule from the set of
the dynamical rules to that of the auxiliary computational ones.

Simply stated, the dynamical rules for the restricted system are those
which only exhibit operators from {#}∪ΣC\{0} (and possibly variables) in
their pattern. Another formal difference is that transition label histories, at
the left of the pairing operator, now have bitstrings of form 10k as one-step
transition (or atomic) labels of the restricted LTS. This fact corroborates the
auxiliary computational nature of the first AD-rule, since this contributes to
the computation of an as yet unfinished atomic label.

The syntactic representation outlined above for the restricted LTS has
an apparent drawback in that, under the given interpretation of ΣC , not
all ΣC-words represent states of the LTS, but on the other hand no proper
subsignature of ΣC generates the LTS state space. For example, the number 3
is represented by the ΣC-word 10⊥ (modulo 1⊥ = ⊥), hence the 0 occurrence
cannot be dispensed of. However, an alternative interpretation of ΣC exists
that does not feature such a drawback. This coincides with the previous
interpretation for the constant symbol ⊥ and the 1 operator, but differs for
0: 7→ λx.2x+1. Furthermore, the two functions of our concern here are
restricted to the odd positive numbers. Then one may easily see that the
restricted LTS state space is represented, under this interpretation, by the
ΣC-word algebra modulo the same congruence recalled above.

One may expect the just introduced change of interpretation to have
a somewhat dramatic impact on the syntactic representation of the LTS
dynamics by a TRS. On the whole, this is indeed the case. However, not
everything of the previous TRS structure is lost: 1) the signature extension
to ΣA is kept unchanged, whereas only a consistent change of interpretation
for two of the three auxiliary operators is needed; 2) a further auxiliary unary
operator is also needed, to deal with the unbounded length of 0-bit substrings
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in one-step transition labels; 3) the dynamical rules are substantially different
from those of the previous TRS, whilst the present computational rules can be
kept unchanged, but for extension of the AC and BC sets with rules relating
to the new auxiliary operator. The technically detailed meaning of these
statements and validity of related claims are deferred to Appendix A. For
the purposes of the present analysis, the greater formal simplicity of the first
variant of the Collatz problem turns out to offer the best basis for extensions
and further investigation. The next section is aimed at pushing that formal
simplicity even further.

4 Collatz dynamics by ω-rewriting

Following [3], infinitary rewriting extends term rewriting by allowing infinite
terms and infinite rewriting sequences. These naturally arise in program-
ming, for example in the correspondence between graph rewriting and term
rewriting that is the foundation of useful implementation techniques for func-
tional languages. Cyclic graphs frequently occur as an important ingredient
of optimization techniques, and they naturally correspond to infinite terms.
The rewriting of cyclic graphs then corresponds to infinite computations on
those terms. Cyclic graphs also provide one with a most natural represen-
tation in state transition dynamics, whenever periodicity is of concern. The
previously recalled statement of the Collatz problem is just one out of many
examples of this obvious fact.

There seems to be sufficient motivation to try a variant of the TRS formal-
ization of the Collatz dynamics presented in the previous section, whereby the
presence of suitable cycles is rendered by the infinitary means of ω-rewriting.
To this purpose, as well as to exemplify which cycles fit the purpose, consider
the following facts.

On the one hand, the dynamics of the subject system, as formalized by
the D-rules, immediately reveal the presence of a 2-state cycle, through the
states represented by the ΣC-words⊥ and 0⊥. On the other hand, a (different
kind of) cycle is also found among the static features of the representation,
whereby ΣC-words represent states modulo the congruence 1⊥ = ⊥. This
corresponds to the fact that the bottom state, represented by ⊥, is the fixed
point of the function λx.2x−1, interpreting the operator 1. This fact prompts
us to consider the representation of the bottom state by the infinite ΣC-word
1ω as a natural alternative to its representation by a constant symbol. This
is indeed a viable alternative in the framework of infinitary rewriting.

Now, consider what happens with the previous TRS when its rules are
turned into infinitary ones by replacing every occurrence of ⊥ with 1ω. It just
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turns out that all rules where this occurs, that is to say, all boundary rules,
can be deduced from the other rules by transfinite induction. For example,
when considering the rewriting of the ω-term σ#1ω, one finds:

σ#1ω → σ1#r1ω by the second AD − rule
→ σ1#0s1ω by the second AC − rule
→ω σ1#01ω by the fourth AC − rule (ω times).

By a similar reasoning, all other boundary rules can be dispensed of.
The aesthetic appeal of the resulting ω-TRS accrues from the fact that it is
reduced to a “strong core”, where two dynamical rules formalize the corre-
sponding basic clauses of the original LTS dynamics, while the only auxiliary
computational rules are the nonboundary ones. The form of these appears
to be “robust” even with respect to changes of interpretation, such as those
which help one reusing the rewrite rules to formalize variants of the dynam-
ical system like that mentioned at the end of the previous section.

Now, in our view, the main reason for interest in formal robustness, in the
sense just outlined above, is to be found in that it highlights a greater role
for syntactic abstraction in the characterization, analysis and understanding
of essential features and inherent properties of state transition dynamics.
The Collatz problem, and variants thereof, all arise from, and live within, an
arithmetic world; however, the hard questions they address, such as charac-
terizations of periodicity and of attractors, truly are of a dynamical nature,
and similar questions can be found in much diverse worlds, such as systems
biology or wheather forecasting—just to mention a couple of them. While the
building of syntactic representations of those kinds of problems surely is an
interesting and potentially useful exercise in most cases, we believe it brings
a greater added value when representations enjoy neatness and robustness,
because of their potential to yield deeper insight and wider understanding.

Indeed, coming back to the subject problem, a similar situation occurs
with the infinitary TRS for the aforementioned “restricted” Collatz dynamics
that is worked out in Appendix A, that is, boundary rules can be elegantly
dispensed of there as well.

Even more interesting tests of the usefulness of ω-rewriting to the afore-
mentioned purpose are to be expected from exploring the converse direction
of variations on the theme, that is to say, extensions of the problem under
study. An effort in this direction is what comes next.
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5 Extended Collatz dynamics

As shown in the previous section, the representation of the constant by an
infinite word in the ω-TRS formalization of the Collatz dynamics has the
pleasant effect of letting the boundary rewrite rules become redundant. On
the other hand, the infinite word which represents the constant may also
be seen as the unfolding of a fixed point equation which corresponds to the
congruence relation on the word algebra that is induced by its arithmetic in-
terpretation. This yields a straightforward method to design and investigate
ω-TRS formalizations of a certain class of extensions of the Collatz problem
to larger domains. In a nutshell, the method consists of the following steps:

1. specify the extension of the Collatz problem domain by introducing new
constants, so that the new elements in the larger domain are generated
by the new constants and available operations;

2. determine the congruence relation that is induced on the extended word
algebra by its interpretation in the extended domain;

3. determine the ω-words which represent the new constants by unfolding
the equations that specify the interpretation congruence and involve
the new constant symbols, which thus become redundant.

A simple illustration of this method is found in the extension of the
Collatz problem to the integers, thus including 0 as well as the negative
integers, as follows.

1. The set of available operations, consisting of the constant 1 and the
unary λx.2x and λx.2x−1, is extended with a new constant: the number
0. Every negative integer may then be obtained as the result of a
suitable composition of the available operations, applied to the new
constant.

2. The word algebra is extended with the constant symbol > to designate
the new constant; its interpretation congruence is specified by adjoining
the previous equation with a new one: 0> = >.

3. The ω-word which represents the new constant is thus 0ω. This cor-
responds to the fact that the new constant is the fixed point of the
function λx.2x, interpreting the operator 0. The > symbol may be
dispensed of.
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Now, the extension of the ω-TRS with the word 0ω is all that is needed to
represent the extension of the Collatz problem to the integers. This happens
because:

• the two nonboundary dynamical rules do not change, since they for-
malize the dynamics of the transition system, which is extended to the
new state space precisely in the sense that the form of the dynamical
rules is kept unchanged;

• the AC rules do not change, essentially for a similar reason—they for-
malize the nonboundary dynamics of the auxiliary computation, and
this is extended to the new computational state space much in the same
sense;

• were we to deal with a finitary TRS representation, new boundary rules
would be badly needed, to cater for dynamics and auxiliary computa-
tion at the new constant; we leave it to the reader as an exercise to
write down such rules, and then to check that their translations under
the ω-TRS representation of the new constant are subsumed by the
previous two classes of rules.

In the variants as well as in the extension of the Collatz problem hitherto
considered, the state space is generated from the operations starting from
constants that are represented by given ω-words. One may then look for
further extensions by considering the interpretation of additional ω-words in
a given state space: if that is not defined, then an extension of the state
space can be contemplated.

To start with, consider one-symbol ω-words. In the case under study, both
such words for the two unary operators in ΣC have a defined interpretation
in the integers, hence one is led to consider the auxiliary operators. It turns
out that two of them yield a similar situation, no extension thus, in that
the numbers 0 and 1 respectively solve the fixed point equations tx = x
and sx = x, hence yield interpretation of the ω-words tω and sω. This is
not the case for the r operator; its interpretation λx.3x−1 has no integer
fixed point, but just the rational 1

2
. The rational extension of Z that is

generated by composition of the available operations applied to this new
constant, represented by rω, is not a terribly interesting one, however. This
extension is just a discrete subset of Q, viz. 1

2
Z; its noninteger elements,

i.e. those in 1
2
Z\Z, are the interpretations of infinite ΣA-words where no ΣC

operator occurs.
In order to generate a dense extension of Z by application of the avail-

able operations to new, noninteger constants interpreting infinite words, these
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must exhibit infinite occurrences of more than one operator. Let’s thus ad-
mit all periodic ω-words over the unary operators of ΣC as constant symbols.
Unlike the previous extension by rω, this one keeps the auxiliary, derived na-
ture of the operations which interpret the operators in ΣA\ΣC , using the AC
rules as computation rules. On the other hand, this extension does generate
a dense, albeit proper subset of Q. This is the set

{
m

2n − 1
| m ∈ Z, n ∈ N+

}

and a proof that it is dense is worked out in Appendix B. To realize that this
is indeed the set generated by the subject extension, consider the interpreta-
tion of the ω-words in {πω|π ∈ {0, 1}∗, |π|>0}. Clearly, the interpretation of
π is a linear function λx.2nx−m, with n = |π|, for some integer m≥0 that only
depends on π, hence the interpretation of πω is the unique fixed point of that
function, viz. the solution of 2nx−m = x. One may write this by using the
fixed point operator: µx.2nx−m; thus, for example, (10)ω 7→ µx.4x−1 = 1

3
,

(01)ω 7→ µx.4x−2 = 2
3
, (110)ω 7→ µx.8x−3 = 3

7
. The negative elements in

the aforementioned set are then generated by application of compositions of
the available operations to the constants in question.

A useful outcome of this way of extending the Collatz problem domain
is that the rewrite rules in AD∪AC are unaffected. That is to say, one gets
a straightforward way of extending both the dynamical and the computa-
tional mechanisms of the Collatz problem to the wider domain. An alterna-
tive, known way of doing so goes by embedding the wider domain into the
dyadic number field Z2, whereby the first dyadic digit tells the parity [4].
This alternative exhibits a distinct advantage over the fixed point seman-
tics employed here, in that the latter breaks down when one tries to widen
the ω-language of constants symbols beyond the limits of periodicity, e.g.
by admitting quasiperiodic ω-words [6], whilst no such drawback affects the
interpretation of any infinite binary word in Z2.

Another use of quasiperiodic binary words in the investigation of the
Collatz problem, and of extensions thereof, contemplates their occurrence as
parity vectors, or as labels of possibly infinite transition sequences. There
is no problem with fixed point semantics in this case, since the structure of
labels rather than states is of concern now. Existence of quasiperiodic parity
vectors that are not eventually periodic is only possible in those extensions
of the Collatz problem where the second half of the Conjecture fails.
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6 Conclusions

The use of infinitary rewriting has been investigated in this note as a for-
malization tool to specify both dynamical and computational aspects of the
Collatz problem and extensions thereof. Merits of this approach, in compar-
ison with standard, finite term rewriting, have been highlighted. Limitations
of the proposed approach have been pointed out, when dealing with exten-
sions of the Collatz problem where space structure is not only dense (which
is no problem per se), but also beyond (eventual) periodicity.

Here are a few directions of forthcoming research on the problems con-
sidered in this note. Known open questions relating to the Collatz problem,
and extensions thereof, can be formulated in the theory of state transition
dynamics [5], where, for example, the two halves of the original Collatz prob-
lem can be respectively stated as the uniqueness of the trivial period and the
(non)existence of “flights” (i.e. divergent, or period-free reductions) in the
attractor of the Collatz dynamics. The difficulty of these questions seems to
arise from what has been often called “chaotic” behaviour of Collatz reduc-
tions. We should like to try to get a more precise characterization of this
purported property of the reduction systems under study, by analysing which
of those features of chaos in state transition dynamics that are identified in
[5], may be recognized in the transition systems of our concern. Further-
more, the existence of extensions of the Collatz dynamics that would exhibit
quasiperiodic flights is an open question.
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A TRS and ω-TRS for the restricted variant

of the Collatz problem

As mentioned in section 3, the LTS state space of the Collatz dynamics
restricted to the odd positive integers, has a syntactic representation as the
ΣC-word algebra (modulo 1⊥ = ⊥), corresponding to the interpretation of
ΣC over the odd positive integers specified by:
⊥ 7→ 1, 0 7→ λx.2x+1, 1 7→ λx.2x−1.

A (finitary) TRS that formalizes this restricted Collatz dynamics by syn-
tactic computations is built by extending ΣC to ΣA + {u}, where again
ΣA = ΣC + {t, r, s}, but u is a new, unary auxiliary operator. The interpre-
tation of the auxiliary operators in ΣA differs from that seen in Section 3,
consistently with the changed interpretation of ΣC , in that we now take the
following functions over the odd positive integers:
t 7→ λx.3x+2, r 7→ λx.3x, s 7→ λx.3x−2 .

We need not specify an interpretation for the new auxiliary operator u,
since it only plays a merely syntactic role in the computation dynamics, that
is easier to grasp in the context of the presentation of the TRS rewrite rules.
These are designed according to the following facts.

Let p, q be metavariables, ranging over the unary operators {0,1} in ΣC ,
and x a variable, ranging over the odd positive integers. Evaluation of pqx
always yields an odd positive integer, hence its residual (mod 8) may take
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one out of only four values. This is actually independent of the value assigned
to x, since it is determined by the outermost operators’ pair pq, under the
aforementioned interpretation of ΣC , according to the following evaluation
map (mod 8): 11x 7→ 1, 01x 7→ 3, 10x 7→ 5, 00x 7→ 7 .

Now, if we evaluate pqx in the restricted Collatz LTS state space, the case
10x is the only one which somewhat complicates our TRS design a little, as
follows. If 8n + m is an evaluation of pqx for some n ∈ N, m ∈ {1, 3, 5, 7},
taken as the source state of a transition in our LTS, then the target state
of that transition will be 3(8n+m)+1

2k+1 , where k + 1 is the exponent of 2 in the
prime factorization of 3(8n + m) + 1. The reader may check that k > 1 iff
m = 5 iff pq=10. In all other cases, the atomic label 10k for the transition
to the target state will be computed by just one rewrite rule of our TRS.
On the contrary, states represented by the 10x pattern are starting states
of a computation aimed at establishing the value of k. This is accomplished
by means of the u operator. As the reader will see, each rule where this
operator occurs in the pattern, mimics a corresponding rule without it in the
pattern, in that its right-hand-side term coincides with that of the rule it
mimics, except for the absence of a bit 1 occurrence in the extension of the
label history (clearly, each occurrence of bit 1 in the label history marks the
start of an atomic label).

Given this premiss, here are the rewrite rules of the subject TRS (modulo
1⊥ = ⊥):

BD : BC : AC :
σ#⊥ → σ10#⊥ σ#u⊥ → σ0#⊥ r0x→ 1tx, r1x→ 0sx
σ#0⊥ → σ1#10⊥ σ#u0⊥ → σ#10⊥ s0x→ 0rx, s1x→ 1sx
AD : t0x→ 0tx, t1x→ 1rx
σ#11x → σ10#sx r⊥ → 0⊥ σ#u11x → σ0#sx
σ#01x → σ1#1rx s⊥ → ⊥ σ#u01x → σ#1rx
σ#10x → σ100#ux t⊥ → 10⊥ σ#u10x → σ00#ux
σ#00x → σ1#0tx σ#u00x → σ#0tx

By transfinite induction, it is easy to see that, also in this representation
of the restricted variant of the Collatz problem, the representation of the
constant by the infinite word 1ω in the ω-TRS formalization of the Collatz
dynamics, makes the boundary rewrite rules to become redundant.

B Proof of claim in Section 4

The claim is stated in section 4, that the subset
{

m
2n−1

| m ∈ Z, n ∈ N+

}
of

Q is dense. Here is a proof of this statement. Let m
2n−1

< p
2q−1

by assumption;
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the goal is to show that ∃x ∈ Z, y ∈ N+ . m
2n−1

< x
2y−1

< p
2q−1

.
One may restrict the assumption to 0 ≤ m

2n−1
< p

2q−1
≤ 1, for otherwise

either of the following two cases occurs:

• ∃i ∈ Z. m
2n−1

< i < p
2q−1

, in which case the goal is achieved by
x = i, y = 1;

• ∃i ∈ Z. i ≤ m
2n−1

< p
2q−1

≤ i + 1, which case is amened to the stated
assumption by considering m

2n−1
− i < p

2q−1
− i, that is

0 ≤ m−(2n−1)i
2n−1

< p−(2q−1)i
2q−1

≤ 1, and then from a solution x′

2y′−1
to this, a

solution x
2y−1

to the case in question is easily obtained by letting

x = x′ + (2y′ − 1)i, y = y′.

Assume n ≥ q. Let then y = 2n, x = m(2n + 1) + 1. This entails

x

2y − 1
=

m(2n + 1) + 1

22n − 1
=

m

2n − 1
+

1

22n − 1
therefore

m

2n − 1
<

x

2y − 1

and moreover x
2y−1

< m
2n−1

+ 1
(2n−1)(2q−1)

because 2n + 1 > 2q − 1. Now, since

m

2n − 1
+

1

(2n − 1)(2q − 1)
=

m(2q − 1) + 1

(2n − 1)(2q − 1)

and
m

2n − 1
<

p

2q − 1
=⇒m(2q − 1) + 1 ≤ p(2n − 1)

it follows that

x

2y − 1
<

m

2n − 1
+

1

(2n − 1)(2q − 1)
≤ p(2n − 1)

(2n − 1)(2q − 1)
=

p

2q − 1
.

Conversely, assume q ≥ n. Let then y = 2q, x = p(2q + 1) − 1. This
entails

x

2y − 1
=

p(2q + 1)− 1

22q − 1
=

p

2q − 1
− 1

22q − 1
therefore

x

2y − 1
<

p

2q − 1

and moreover x
2y−1

> p
2q−1

− 1
(2n−1)(2q−1)

because 2q + 1 > 2n − 1. Now,
“symmetrically” to the previous case, since

p

2q − 1
− 1

(2n − 1)(2q − 1)
=

p(2n − 1)− 1

(2n − 1)(2q − 1)

and
m

2n − 1
<

p

2q − 1
=⇒p(2n − 1)− 1 ≥ m(2q − 1)

it follows that

x

2y − 1
>

p(2n − 1)− 1

(2n − 1)(2q − 1)
≥ m(2q − 1)

(2n − 1)(2q − 1)
=

m

2n − 1
.
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