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Abstract. Maximal planar graphs with vertex resp. edge colouring are
naturally casted as (deceiptively similar) institutions. One then tries to
embody Tait’s equivalence algorithms into morphisms between them,
and is lead to a partial redesign of those institutions. This paper aims at
elucidating the pragmatic questions which arise in this case study, which
also showcases the use of relational concepts and notations in the design
of the subject institutions, that is driven by the design of an isomorphism
between them.
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1 Introduction

Institution morphisms are a lively, albeit controversial subject of debate in the
community of researchers who investigate abstract model-theoretic concepts and
methods [7] in computing.

The original definition for these structure maps [10] was soon to compete
with differently conceived, variously motivated proposals, such as the ”maps”,
”simulations”, ”transformations”, respectively found in [15,6,18], among (sev-
eral) others. Recent work [11] aims at systematic investigation of properties and
interrelations of these notions, that surely is a promising, useful effort.

So far, lesser attention seems to have been attracted by pragmatic questions
relating to institution morphisms, whatever sensible kind thereof, such as the
understanding of how do those maps affect the design of institutions, meant as
formalizations of given logical frameworks. This question is not necessarily to be
understood in a ”comparative” sense; that is to say, our expectation is that even
? This research has been partially supported by MURST Grant prot. 2001017741 under
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in straightforward cases where different notions of institution morphism have
essentially equivalent instances, it may well happen that institutions designed
without taking morphisms into account need to be (partially) redesigned when
the problem of mapping (relating, translating, structuring) them comes into play.
The present paper is aimed at presenting a little exercise of this kind. We start
with introducing and motivating the exercise idea.

The Four Colour Theorem (4CT) is a paradigmatic case of potential ap-
plicability of methods and results that are offspring of research on translations
between logical frameworks. Here is why the 4CT offers an interesting case study
for translation concepts and methods relating to logical frameworks.

Our starting point is a view of the 4CT as a consistency theorem of finite,
ad-hoc logics of graph colouring. The plural form logics here is purposeful, since
a well-known result by Tait [20,21] proves the equivalence between the 4CT
with vertex colouring and the 3CT with edge colouring. The latter means proper
colouring of edges rather than vertices, where ”proper” is spelled out as the
condition that adjacent edges, i.e. the border of a same triangular face, must be
assigned different colours, whereas adjacent vertices must be assigned different
colours by a proper vertex colouring.

Now, Tait’s equivalence comes equipped with a constructive proof, whereby
algorithms are exhibited that turn any given proper 4-colouring of vertices of
any given maximal planar graph into a proper 3-colouring of its edges, and
vice versa—see e.g. [8] for an outline of Tait’s algorithms. In this paper we use
somewhat simpler algorithms for graph colouring conversion, that exploit the
nice algebraic properties of the Klein 4-group, as presented in [1].

So, here’s our basic idea for an exercise aimed at testing practical impact of
institution morphisms, possibly in different flavours, into institution design in
the case study in question: 1) formalize maximal planar graph colouring by two
distinct institutions, respectively with vertex colourings and edge colourings as
models, and 2) (try to) cast Tait’s equivalence into a pair of converse morphisms
between the two institutions.

The first part of the exercise already raises institution design questions, e.g.
the choice of signature morphisms; on pragmatic grounds, one might like to have
such morphisms formalize edge contraction, in view of the relevant role played
by this operation in reducibility proofs [5], yet contraction doesn’t preserve max-
imality of planar graphs in all cases, which entails that the Set-valued sentence
functor ought to map those morphisms to partial functions. One may take the
design decision to formulate just vertex, resp. edge permutations as signature
morphisms, since these operations are of practical interest, too. This leads to a
straightforward solution of the first part of the exercise, where we also showcase
the use of relational concepts and notations, whereby one gets a pleasing concise-
ness and elegance in their presentation. Moreover, sentences in the institution
with edge colouring have an amazing syntactic representation by Matiyasevitch’s
polynomials [13], whereby the number of proper colourings of any given maximal
planar graph is readily found.
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The second part of the exercise raises new design questions. Since the solution
of the first part was determined without taking mutual interpretability of the two
institutions into account, one shouldn’t be surprised at finding out that Tait’s
algorithms prove hard to get embodied into structure-preserving maps between
those institutions. Our redesign work in this respect seems quite instructive: we
summarize the lessons of method drawn from this experience in the conclusions,
where we also propose a few hints which may stimulate further work.

2 Graph colouring preliminaries

The first proof of the 4CT [2,3,4] raised controversial discussions due to its combi-
natorial complexity which, for the analysis of the nearly 2000 graphs involved, re-
quired the construction of a program—whose correctness was not proven though.
A new proof was obtained by [16], keeping the structure of the previous proof but
cutting down to 633 the number of graphs involved. The impression yet remains
that a simpler reason for the truth of this theorem may exist. One dreams of a
logical construction where combinatorics weigh no more than necessary, that is,
inherent to the problem rather than to specifics of the proof. There are obvious
reasons to be pessimistic about such a dream, if only for no evidence being avail-
able to-date that inherent combinatorics may lose weight any further (evidence
of the contrary seems even harder to achieve, though). May a formulation of
the 4CT in the abstract model-theoretic language of institutions help the dream
become true? Our educated guess is that it won’t. This pessimistic expectation
doesn’t affect our interest and motivation in carrying out the exercise, since
they arise in the converse research direction—investigation into pragmatics of
institution design rather than search of a new proof of the 4CT.

As customary, we only consider colourings of maximal planar graphs, viz.
those where no new edge may be added between existing vertices without losing
planarity. This restriction is harmless w.r.t. the 4CT, since every planar graph
is a subgraph of a maximal one on the same vertices, and a proper colouring of
a planar graph is a proper colouring of any subgraph on the same vertices.

Maximal planar graphs are also referred to as triangulations of the sphere,
thanks to the well-known bijection established by stereographic projection be-
tween the plane and the surface of the sphere, where the projection point on
this surface maps to the infinite in the plane. The spheric view proves somewhat
more convenient, in that the graph divides the surphace into bounded triangu-
lar faces (viz. regions delimited by graph edges but containing no edges besides
those at the border), whereas in the planar view one face, albeit triangular like
all other faces, is unbounded.

In the next sections we shall adopt the following notational conventions.
Notation
n: the finite ordinal with n elements, viz. the natural numbers lesser than n.
1n, 1′n, 0′n: resp. the universal, identity and diversity binary relations on n,
thus 0′n = 1n\1′n or, with standard relation-algebraic notation for the Boolean
complement operation: 0′n = 1′n

−1.
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r :̆ relation-algebraic converse of r. Consistently, we also let f˘ denote the inverse
of an invertible function f.
r ; s : relation-algebraic composition of binary relations r, s. Consistently, we
also let f ; g denote the function composition g◦f.
TV(n): the set of n+2-labeled (n+2)-vertex triangulations of the sphere.
TE(n): the set of 3n-labeled 3n-edge triangulations of the sphere.

3 Institution preliminaries

The classic definition of institution, already appearing in the paper introducing
this concept [9], will suffice for our purposes. Generalizations of this definition
were proposed later [10], base on twisted relation categories, that allow one to
choose one of set-structure or category-structure for sentences as well as for
models, the two choices being independent of each other. This gives rise to four
variants of the institution concept, while other variants have been proposed too,
referred to as ”close variants” in [11].

Let’s fix some basic notation about categories first.

Notation
|C| is the set of objects of category C.
C(a, b) is the set of morphisms from a to b in category C, for a, b∈|C|.
Set is the category of (small1) sets with total functions as morphisms.
Cat is the category of (locally small2) categories with functors as morphisms.

An institution is a 4-tuple I = (Sig, Sen, Mod, |=), with:

(i) Sig a category, whose objects are called signatures,
(ii) Sen:Sig→Set a functor, sending each signature Σ to the set Sen(Σ) of

Σ-sentences, and each signature morphism π:Σ1→Σ2 to the mapping
Sen(π):Sen(Σ1)→Sen(Σ2) that translates Σ1-sentences to Σ2-sentences,

(iii) Mod:Sigop→Cat a contravariant functor, sending each signature Σ to the
category Mod(Σ) of Σ-models, and each signature morphism π:Σ1→Σ2 to
the π-reduction functor Mod(π):Mod(Σ2)→Mod(Σ1),

(iv) |= : a |Sig|-indexed relation {|=Σ ⊆ |Mod(Σ)|×Sen(Σ) | Σ∈|Sig|}, viz. a sat-
isfaction relation between Σ-models and Σ-sentences for each Σ∈|Sig|, such
that the following satisfaction condition holds for all Σ1,Σ2∈|Sig|, signature
morphisms π∈Sig(Σ1, Σ2), Σ2-models M and Σ1-sentences ϕ:

Mod(π)(M) |=Σ1 ϕ ⇔ M |=Σ2 Sen(π)(ϕ)

Notation
A few notational conventions will simplify the presentation. We shall hence-

forth adopt the abbreviations: πϕ for Sen(π)(ϕ), and Mπ for Mod(π)(M), where
π:Σ1→Σ2 is a signature morphism, ϕ is a Σ1-sentence, and M is a Σ2-model.

1 i.e., excluding proper classes
2 i.e., those with a small set of morphisms between any two objects
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When considering different institutions, it proves convenient to decorate the
name of each element of the 4-tuple which an institution consists of, by adding
the institution name as first subscript.

The original definition of institution morphism proposed in [10] is as follows3.
Let I = (SigI , SenI , ModI , |=I), I ′ = (SigI′ , SenI′ , ModI′ , |=I′) be insti-

tutions. An institution morphism T : I→I ′ is a 3-tuple T = (Φ, α, β), with:

(i) Φ: SigI→SigI′ a functor,
(ii) α: Φ ; SenI′ → SenI a natural transformation (sentence transformation),
(iii) β: ModI → Φop ; ModI′ a natural transformation (model transformation),

such that the following satisfaction condition holds, for all signatures Σ∈|SigI |,
models M∈|ModI(Σ)| and sentences ϕ′∈SenI′(Φ(Σ)):

M |=I,Σ αΣ(ϕ′) ⇔ βΣ(M) |=I′,Φ(Σ) ϕ
′

Note that model transformation and the signature functor go in the same
direction, whereas sentence transformation goes in the opposite direction.

A somewhat dual concept was proposed under the name of ”plain map” of
institutions in [15], and renamed ”institution comorphism” in [11], to emphasize
the duality with the original concept. We welcome this change of terminology,
and we further refer to an ”institution (co)morphism” whenever the difference
doesn’t matter. The essential difference is in the directions of the natural trans-
formations involved, both of which change, according to the following definition.

An institution comorphism T : I→I ′ is a 3-tuple T = (Φ, α, β), with:

(i) Φ: SigI→SigI′ a functor,
(ii) α: SenI → Φ ; SenI′ a natural transformation (sentence transformation),
(iii) β: Φop ; ModI′ → ModI a natural transformation (model transformation),

such that the following satisfaction condition holds, for all signatures Σ∈|SigI |,
models M′∈|ModI′(Φ(Σ))| and sentences ϕ∈SenI(Σ):

βΣ(M′) |=I,Σ ϕ ⇔ M′ |=I′,Φ(Σ) αΣ(ϕ)

We recall that a functor is an isomorphism of categories when it is a bijection
(both on objects and on arrows), and that a natural transformation is a natural
isomorphism when every component is an invertible arrow. An isomorphism of
institutions is then an institution (co)morphism such that its signature func-
tor is an isomorphism of categories, and both the sentence transformation and
the model transformation are natural isomorphisms. It doesn’t matter whether
”morphism” or ”comorphism” is taken in this definition, since the inverse compo-
nents of each transformation of an institution morphism define the components of
the corresponding transformation of an institution comorphism, and vice versa.
3 modulo a minor notational detail: in the definition of institution presented here, the

type of the model functor follows a traditional convention for contravariant functors
[12]; this explains the occurrence of the dual functor Φop in the type of the model
transformation as presented here, in the definition of institution morphism as well
as comorphism. Recall that Φop and Φ coincide on objects.
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4 A vertex colouring institution

Syntax will be abstract, exploiting the fact that institutions do not force one to
deal with concrete syntax. Signatures are just positive numbers, ranking maximal
planar graphs by their size, and we take the bijective relabelings of vertices as
signature morphisms. This restriction is a design decision, motivated as follows.

Each n>0 is the rank of the maximal planar graphs, or triangulations of the
sphere, that have n+2 vertices. Vertex colouring of such structures require that
each vertex be given a unique identity. To this purpose we consider vertices to
be uniquely labeled by the elements of finite ordinal n+2, for triangulations of
rank n. Bijective relabelings are thus just label permutations. The pragmatic
question arises as to what purpose could be served by non-bijective maps on
finite ordinals. On the one hand, loss of surjectivity appears useless, insofar as
it introduces labels in the morphism codomain that are not made use of to label
any vertex, according to the morphism image. On the other hand, though, loss
of injectivity would seem to be of some use, inasmuch it amounts to identify for-
merly distinct vertices, thus it could prove useful to formalize edge contraction—
whenever an edge connects two such vertices. This operation, however, does not
preserve maximality of planar graphs. This happens when a vertex of degree 3 is
opposite to the contracted edge, see e.g. fig. 1, where the dashed edge is subject
to contraction and its opposite vertices, both of degree 3, are circled.

Fig. 1. Edge contraction not preserving maximality of planar graphs

Since edge contraction decreases by one the degree of those vertices which
are opposite to the contracted edge, when one of them is of degree 3 the resulting
graph is maximal only if it is the smallest triangulation, which consists of three
vertices of degree 2 (no other triangulation has vertices of degree 2).

We must conclude that, if one admits non-injective relabelings as signature
morphisms, then the Set-valued sentence functor, giving the set of vertex-labeled
triangulations of rank n for each n > 0, ought to map those morphisms to partial
functions, whereas only total functions are available as morphisms in Set.

Signatures

|SigV | = N\{0}
SigV(n, n) = {π:n+2→n+2 | π is bijective}
SigV(m,n) = ∅ if m 6= n
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Sentences

Each θ∈TV(n) is represented by the symmetric quotient of a binary relation on

vertices, εθ
def
= ηθ/Sym, where ηθ is the irreflexive, symmetric edge relation of θ,

thus satisfies the relation-algebraic laws ηθ≤0′n+2, ηθ=ηθ˘, while |ηθ|=6n, but
the Sym quotient turns ordered pairs into unordered ones, thus |εθ|=3n. As a
matter of notation, we write i εθ j or {i, j}∈εθ, rather than the more cumbersome
{(i, j), (j, i)}∈εθ, whenever {(i, j), (j, i)}⊆ηθ. We thus define:

SenV(n) = {εθ | θ∈TV(n)}

Sentence translation

If π∈SigV(n, n) and εθ∈SenV(n), then πεθ∈SenV(n), with

(πi) πεθ (πj) ⇔ i εθ j

Models

The model functor assigns to each signature n > 0 the category of 4-colourings
of the n+ 2 vertices, with colour permutations as model morphisms, thus:

|ModV(n)| = 4n+2

∀µ, µ′∈|ModV(n)|.ModV(n)(µ, µ′) = {ρ∈44|ρ is bijective, µ′ = µ ; ρ}

Model reduction

If π:n+2→n+2∈SigV(n, n) and µ:n+2→4∈|ModV(n)|, then µπ∈|ModV(n)|, with

(µπ)i
def
= µ(πi), and ρπ

def
= ρ for all colour permutations ρ:4↔4. This makes

model reduction to be a functor, thus ρπ∈ModV(n)(µπ, µ′π) if ρ∈ModV(n)(µ, µ′),
since (µπ) ; ρ = (µ ; ρ)π, by an easy check.

Satisfaction

In V, a n−model satisfies a n−sentence iff it is a proper vertex colouring of that
triangulation, that is:

µ |=V,n εθ iff ∀i, j∈n + 2. iεθj ⇒ µi6=µj

A relation-algebraic formulation of this definition may exploit the ”oriented”
edge relation ηθ from which εθ is obtained as a quotient, and the view of the
4-colouring map as a binary relation µ ⊆ n+2×4. Then we get:

µ |=V,n εθ iff µ ;̆ ηθ;µ ≤ 0′4

It is easy to show that this definition complies with the satisfaction condition:

µπ |=V,n εθ ⇔ µ |=V,n πεθ

therefore V is an institution.
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5 An edge colouring institution

Syntax will be somewhat more concrete, inspired by Matiyasevich’s polynomial
representation of triangulations of the sphere [13]. Signatures remain the same,
but we now take the bijective relabelings of edges as signature morphisms.

Signatures

|SigE | = |SigV | = N\{0}
SigE(n, n) = {π:3n→3n | π is bijective}
SigE(m,n) = ∅ if m 6= n

Sentences

Sentences in SenE(n), ranged over by ψϑ, are represented by Matiyasevich’s
polynomials in product form:

ψϑ =
∏

tijk∈ϑ
(xi − xj)(xj − xk)(xk − xi)

where ϑ∈TE(n) and tijk is a triangular face of ϑ having edges labeled i, j, k in
clockwise order. We thus define:

SenE(n) = {ψϑ | ϑ∈TE(n)}

Sentence translation

If π∈SigE(n, n) and ψϑ∈SenE(n) represented as above, then πψϑ∈SenE(n), with

πψϑ =
∏

tijk∈ϑ
(xπi − xπj)(xπj − xπk)(xπk − xπi)

Models

The model functor assigns to each signature n > 0 the category of 3-colourings
of the 3n edges, with colour permutations as model morphisms, thus:

|ModE(n)| = 33n

∀ν, ν′∈|ModE(n)|.ModE(n)(ν, ν′) = {ρ∈33|ρ is bijective, ν′ = ν ; ρ}

Model reduction

If π:3n→3n ∈ SigE(n, n) and ν:3n→3 ∈ |ModE(n)|, then νπ ∈ |ModE(n)|, with

(νπ)i
def
= ν(πi), and ρπ

def
= ρ for all colour permutations ρ:3↔3. This makes

model reduction to be a functor, thus ρπ∈ModE(n)(νπ, ν′π) if ρ∈ModE(n)(ν, ν′),
since (νπ) ; ρ = (ν ; ρ)π, by an easy check.
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Satisfaction

In E , a n-model satisfies a n-sentence iff it is a proper edge colouring of that
triangulation, that is:

ν |=E,n ψϑ iff ∀i, j∈3n.(xi − xj) occurs in ψϑ ⇒ νi6=νj

A relation-algebraic formulation of this definition may use the binary relation of
”occurrence in ψϑ”, ξψϑ

≤13n: i ξψϑ
j iff (xi − xj) occurs in ψϑ. Then, by using

the view of a 3-colouring map as a binary relation ν ⊆ 3n×3, we get:

ν |=E,n ψϑ iff ν ;̆ ξψϑ
; ν ≤ 0′3

It is easy to show that this definition complies with the satisfaction condition:

νπ |=E,n ψϑ ⇔ ν |=E,n πψϑ

therefore E , too, is an institution.

6 Tait’s equivalence

A triangulation admits a proper 4-colouring of its vertices if, and only if, it admits
a proper 3-colouring of its edges. This is Tait’s classical result [20,21], albeit
here stated in graph-theoretic terms rather than, as in its original formulation,
in terms of cubic map colourings. The equivalence is shown by exhibiting two
algorithms, which we are going to recast in graph-theoretic terms, that for any
given triangulation respectively turn any proper 4-colouring of its vertices into
a proper 3-colouring of its edges, and vice versa.

We take 4 as the set of colours for vertex-colouring and 4\1 that for edge-
colouring. Taking the latter rather than 3 somewhat simplifies the presentation of
Tait’s algorithms, thanks to the properties of an elegant, algebraic construction
which uses the Klein 4-group, as provided in [1]. We take 4 as the group carrier,
with 0 as its neutral element. Every element is self-inverse, and the binary group
operation +o further satisfies x+o y = z whenever {x, y, z} = 4\1. This defines
+o , since 0 +ox = x+o 0 = x+ox = 0 for all x∈4, by the previous conditions.

4CT ⇒ 3CT

Let µ:n+2→4 be a proper 4-colouring of given triangulation θ∈TV(n). For each
edge x in θ, let µi 6=µj be the colours assigned by µ to the vertices connected by
x. Then their Klein sum µi+oµj is the colour assigned to edge x.

By the properties of the Klein 4-group, this colour is never 0 insofar as µi6=µj
(by assumption, µ is a proper colouring of the vertices of θ). Furthermore, any
two edges sharing a face get different colours since they share one vertex (thus
one addend of the Klein sums yielding their respective colours), whereas the
other two vertices they resp. join are coloured differently by µ, as they are the
ends of the third edge sharing the same face. We thus have a proper 3-colouring
of the edges of θ, with colours out of 4\1.
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3CT ⇒ 4CT

The construction in the converse direction is a bit more complex. Let ν:3n→4\1
be a proper 3-colouring of given triangulation ϑ∈TE(n). Choose a vertex in the
triangulation as start-vertex, and assign it colour 0. Every other vertex is then
coloured by the Klein sum of the colours assigned by ν to the edges of any path
from the start-vertex to that vertex.

Of course, the specified construction is only sound if Klein summation of the
colours assigned by ν proves invariant for all paths joining any given pair of
vertices. This holds because (i) every element is self-inverse in the Klein group
and (ii) Klein summation of the colours assigned by ν along every circuit turns
out to be 0. A proof of this fact is worked out in [1] (pp. 22–23), for the colouring
of cubic maps, but it is readily interpreted in our present setting as follows.

Let S=
∑
νxi be the Klein sum of the colours assigned by ν to the edges of

a given circuit K, and consider those triangular faces which belong to one of the
two regions of the sphere having K as border (no matter which one). Since ν is
a proper 3-colouring with colours out of 4\1, the Klein sum of the colours of
the edges of any given triangular face is always 1 +o 2 +o 3=0. Summation over all
faces considered above must obviously yield 0 as well. Now, each edge in K is
counted only once in this summation, whereas each other edge is counted twice,
giving thus a null contribution to the summation since x+ox=0 for all x∈4. We
thus conclude that summation over the edges in K alone must yield 0, viz. S=0.

Finally, it is immediately seen that the 4-colouring of vertices specified above
is proper, since adjacent vertices have paths from the start-vertex that differ
by one edge only, and ν assigns a non-zero colour to this edge, whence the two
vertices get different colours.

One may wonder whether the present construction has exactly the previous
one as its inverse, for every given triangulation. That is to say, if one starts with
a proper 3-colouring ν of edges, gets a proper 4-colouring of vertices out of it
as specified here above, and then gives this as input to the previous algorithm,
does then this yield back the 3-colouring ν one started with? The answer is
positive, and an almost similar exactness holds in the converse direction, where
one starts with a proper 4-colouring µ of vertices, and gets it back if in the second,
3CT→4CT stage the start-vertex is chosen among those which are assigned
colour 0 by µ. The proof of these facts exploits the algebraic properties of the
Klein 4-group, and is left to the reader as an exercise.

7 Morphism-driven redesign of institutions

A basic obstacle makes it impossible to embody Tait’s algorithms into (what-
ever kind of) morphism between the V and E institutions presented above, and
that is: the lack of a non-trivial functorial mapping between their categories of
signatures. Although those categories share their objects, their signature mor-
phisms differ, and these prove hard to map. It’s seems worthwhile to review the
implicit reason for the choice of different signature morphisms in the design of
the aforementioned institutions.
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The choice of signature morphisms for V was just the obvious one, as far as
abstract syntax for vertex colourings is concerned. Similarly, that for E was in-
spired by Matiyasevich’s polynomial representation of triangulations, where only
the naming of edges matter, thus it seemed fairly natural to take edge renamings
as the edge colouring counterpart of vertex renamings for vertex colouring, as
far as abstract syntax for edge colourings is concerned. This choice is actually
sentence independent, in that it only depends on the rank of the triangulation
(since every triangulation of given rank n has the same number of edges, that is
3n), therefore it was appropriate as a design choice for signature morphisms.

Our ”local” design choices of signature morphisms prove no longer appropri-
ate when a wider perspective is taken, that is to say, as soon as one needs to
know which vertices are connected by which edges—as it happens to be the case
with Tait’s algorithms, for example.

As a side remark, we note that the situation whereby a structure is first
designed according to a local view of its purpose, and only later a wider context
of its operation comes into play, seems to be a fairly general trait of human design
activities. Since the main vehicle of context interaction on abstract algebraic
structures is the concept of structure-preserving map, or morphism, it is hardly
surprising to find out that context-driven redesign becomes morphism-driven
redesign in the case under study. Let’s now turn our attention from general
remarks into a search for a solution to our institution redesign problem.

The unordered edge relation εθ on vertices shows up in V as sentence repre-
sentation. We need to keep this information when moving to Matiyasevich’s rep-
resentation used in E . Here any enumeration of the edges does the job, thus one
may choose a particular enumeration that be determined by the vertex labeling
only. To this purpose we define the lexicographic edge-labeling map λθ:εθ→3n for
every triangulation θ∈TV(n) represented in V by εθ, as the unique enumeration
of edges which satisfies:

∀ i, j, i′, j′.i εθ j, i′ εθ j′, i < j, i′ < j′ ⇒
(λθ{i, j} < λθ{i′, j′} ⇔ (i < i′ ∨ (i = i′ ∧ j < j′)))

Now, since the λθ map is sentence-dependent, it cannot be used to recover
permutations of 3n as signature morphisms in the edge-colouring institution.
However, by this map, for each θ every permutation π of n+2 will induce
a unique permutation π#

θ of 3n that commutes with the lexicographic edge-
labeling map. More precisely, let π2 denote the straightforward extension of π to
(unordered) pairs of elements of n+2, π2{i, j}def= {πi, πj}, and let then, for any
given θ∈TV(n), π2

θ denote the restriction of π2 to εθ; finally, let πθ∈TV(n) be the
triangulation which is obtained from θ by relabeling its vertices with π—then
πθ is represented by πεθ in SenV(n), επθ = πεθ thus. Since λθ is a bijection, we
can define the permutation π#

θ :3n→3n as follows:

π#
θ

def
= λθ ;̆π2

θ ;λπθ .

Although, for any given triangulation in TV(n) with n > 1, one does not
get all permutations of 3n in this way, one does not need all of them either.
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On pragmatic grounds, in order to get all isomorphic triangulations of a given
one, only vertex label permutations are needed, regardless of whether vertices
or edges are coloured. It makes thus sense to try to redesign the edge-colouring
institution only. The new version of it, let it be E ′, has the same signature
morphisms as V, the same category of signatures thus: SigE′ = SigV .

For sentences in E ′, we keep Matiyasevich’s polynomial representation, but
enumerating edges by the λθ map, thus for θ∈TV(n) we define

ψθ =
∏

tijk∈θ
(xλθ{i,j} − xλθ{j,k})(xλθ{j,k} − xλθ{k,i})(xλθ{k,i} − xλθ{i,j})

where tijk is a triangular face having vertices labeled i, j, k, in clockwise order.
Let SenE′(n) be the set of all such sentences.

The change of signature morphisms just made, requires a straightforward
adaptation of sentence translation along them. If π∈SigE′(n, n) and ψθ∈SenE′(n)
is a Matiyasevich’s polynomial as above, then πψθ∈SenE′(n) is defined by

πψθ
def
= π#

θ ψθ
def
=∏

tijk∈θ
(xπ#

θ
λθ{i,j} − xπ#

θ
λθ{j,k})(xπ#

θ
λθ{j,k} − xπ#

θ
λθ{k,i})(xπ#

θ
λθ{k,i} − xπ#

θ
λθ{i,j}).

The check that SenE′ so defined is indeed a functor is straightforward.
The change with the signature morphisms affects the model category more

deeply, in that model reduction is to be defined uniquely, for each vertex-label
permutation π:n+2→n+2, in a sentence-independent way, whereas the edge
labeling defined by the λθ map clearly depends on the sentence. We’ve thus got
to define edge colourings using (unordered) pairs of vertex labels as edge labels,
and we shall do so for all such pairs (but those in the identity relation), to let
model reduction not depend on any sentence.

This is not the only problem with model design, though. Our present aim is to
get such edge colouring models that the vertex colouring models found in V could
be naturally mapped onto them, embodying Tait’s algorithms. However, these
algorithms only specify mapping between proper vertex colourings and proper
edge colourings. This raises two design problems: i) a colouring is proper with
respect to a given triangulation, thus we are still faced with sentence dependence,
and ii) models in V comprise all 4-colourings of vertices, including those which
satisfy no sentence at all, so our mapping will have to account for them too.

We may deal with both problems at once if we consider what happens if we
drop the assumption, made in the 4CT⇒3CT part of Tait’s equivalence proof,
that the vertex colouring µ:n+2→4 be a proper one. Then, by Klein sum, we
may get edges ”coloured 0”, meaning that the two vertices have the same colour.
One may use this within an edge colouring model to mean that it will not satisfy
any sentence having some edge which links a pair of vertices whose label pair is
”coloured 0” in that model. In the converse direction, we may only well-define
vertex colourings as images of edge colourings in terms of Klein summation
of edge colours along paths if the soundness condition is met that enabled us
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to do so in Tait’s equivalence proof. We thus require edge-colouring models to
have Klein sum 0 along every triangle. Summing up, we are led to the following
definition.

Let En+2=0′n+2/Sym be the universe of (unordered) pairs of different vertex
labels available for all triangulations in TV(n), thus εθ⊆En+2 for all θ∈TV(n),
and |En+2|=(n+ 1)(n+ 2)/2. For each n > 0 we take as n-models the maps in
the following set:

|ModE′(n)| = {ν : En+2→4 | i6=j 6=k 6=i ⇒ ν{i, j}+o ν{j, k}+o ν{k, i} = 0}

and the n-model morphisms should be the 0-preserving colour permutations
ρ:4↔4, thus for all ν, ν′∈|ModE′(n)|:

ModE′(n)(ν, ν′) = {ρ∈44|ρ is bijective, ρ0 = 0, ν′ = ν ; ρ}

Edge colour permutations are required to preserve 0 because of its distin-
guished role in the Klein 4-group, that is consistent with our interpretation of
that role as an edge ”colour”. This will be apparent in the definition of satisfac-
tion below.

Model reduction is defined as expected: if ν∈|ModE′(n)| and π:n+2→n+2
is a signature morphism, then νπ{i, j} = ν{πi, πj}, while ρπ = ρ for all model
morphisms ρ. The check that ModE′ so defined is indeed a functor is straight-
forward, since (νπ) ; ρ = (ν ; ρ)π, as it is easily seen.

Finally, according to the chosen sentence representation in E ′ we have

ν |=E′,n ψθ iff
∀i, j, k∈n + 2.(xλθ{i,j} − xλθ{j,k}) occurs in ψθ ⇒ 0 6=ν{i, j}6=ν{j, k}6=0.

To get a relation-algebraic formulation of satisfaction in E ′, we use the view
of a colouring map as a binary relation ν ⊆ En+2×4, and we let ξψθ

denote
the binary relation on 3n that is defined, for each ψθ∈SenE′(n), just as ξψϑ

is, for each ψϑ∈SenE(n) (cf. end of section 5). Let further ιθ:εθ→En+2 be the
inclusion map, viewed as a binary relation ιθ ⊆ εθ×En+2. Then satisfaction in
E ′ is characterized by

ν |=E′,n ψθ iff ν ;̆ ιθ ;̆λθ; ξψθ
;λθ ;̆ ιθ; ν ≤ 0′4\1

This definition complies with the satisfaction condition:

νπ |=E′,n ψθ ⇔ ν |=E′,n πψθ

as it is easily seen using the definitions of sentence translation and model reduc-
tion given above, therefore E ′, too, is an institution. Perhaps surprisingly, this
turns out not to be apt to our redesign purpose yet. The story of our ultimate
design problem leads us straight into the subject of the next section.
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8 Natural fine tuning of institution design

The construction of a 4-colouring of vertices out of a given 3-colouring of edges
presented in section 6 begins with the choice of a start-vertex, which is assigned
colour 0. At a first glance, it may seem natural to make that choice appear as
a constituent of the model transformation part of an institution (co)morphism
between the institutions V and E ′, resp. introduced in sections 4 and 7. At a
closer look, however, such an idea proves troublesome precisely with respect to
naturality of the transformation! This is shown by the following analysis.

Suppose one defines, for n > 0, the components βn of the model trans-
formation β:ModE′→ModV as pairs βn=〈bn, sn〉, where sn∈n+2 be the start
vertex and the functor bn:ModE′(n)→ModV(n) be defined on objects according
to the construction recalled above: for all ν∈|ModE′(n)|, let (bnν)sn = 0 and
i6=sn ⇒ (bnν)i=ν{sn, i}. So, sn is fixed for each βn. This destroys naturality,
for the choice of the start-vertex is insensitive to vertex relabeling, so it doesn’t
commute with model reduction; if π:n+2→n+2 is a signature morphism, then
(bn(νπ))sn=0 whilst ((bnν)π)sn=(bnν)(πsn) depends on π and is not always 0.

Now, the components of a natural transformation may only depend on the
objects of the underlying category (the common domain category of the source
and target functors), not on its arrows, so one may only make the choice of the
start-vertex prove sensitive to signature morphisms if that choice shows up as
an institution constituent, where those morphisms live.

The result of our analysis still leaves room to design decisions, such as: should
the choice of the start-vertex be a constituent of signatures, or of models? In
both institutions or just in one of them? To answer the first question, we take
adherence to meaning as a pragmatic design criterion; since that choice is only
relevant to model transformation, and is only needed in the construction of
a vertex colouring model from an edge colouring model, we choose to extend
the model structure to accommodate for the choice of the start-vertex. Our
answer to the second question is driven by our wish to build an isomorphism
between the subject institutions. This requires that every component of the
model transformation be invertible. Now, this is only possible if one keeps track
of the choice of the start-vertex when mapping models from either institution to
the other (one of the two mappings would not be injective otherwise), so model
structure is to be extended in both institutions.

Summing up, we introduce yet new versions V ′ and E ′′ of both institutions,
that respectively inherit both the category of signatures and the sentence functor
from V and E ′, but have slightly modified model functors, defined as follows.

Extended model functor for vertex colouring

|ModV′(n)| = {υ = 〈µυ, sυ〉 | µυ∈4n+2, sυ∈n + 2, µυsυ = 0}
∀υ, υ′∈|ModV′(n)|.ModV(n)(υ, υ′) = {σ∈44| σ is bijective, µυ′ = µυ;σ}

So, the n-model morphisms still are the colour permutations, but constrained
(by the target model) to keep 0 as the colour of the start-vertex (in the target
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model, where the start-vertex need not be the same as in the source model).
Then the condition µυ′ = µυ;σ entails σ(µυsυ′) = 0 by the constraint on models
that fixes the colour of the start vertex to be 0. This cuts down by a factor of
4 the number of those colour permutations which induce morphisms between
any two given models, thus from 4! down to 3!, whence a natural isomorphism
construction between the model functors of the two institutions under design
will prove possible (take it into account that colour permutations in the edge
colouring institution, even though extended to ”colour 0”, are required to be
Klein 4-group isomorphisms, thus 0-preserving permutations, hence there are
just 3! of them).

Model reduction, for a given n-model υ=〈µυ, sυ〉 and a signature morphism
π:n+2→n+2, is defined by υπ= 〈µυπ, sυπ〉, where (µυπ)i = µυ(πi) like in

V, and moreover sυπ
def
= π˘sυ. Letting σπ = σ for all n-model morphisms σ

and n-signature morphisms π, makes model reduction to be a functor, since
(µυπ) ; σ = (µυ ; σ)π, as it is straightforward to check.

Extended model functor for edge colouring

|ModE′′(n)| = {ε = 〈νε : En+2→4, sε〉 |
sε∈n + 2 ∧ (i6=j 6=k 6=i ⇒ νε{i, j}+o νε{j, k}+o νε{k, i} = 0)}

∀ε, ε′∈|ModE′′(n)|. ModE′′(n)(ε, ε′) = ModE′(n)(νε, νε′) =
{ρ∈44, | ρ is bijective, ρ 0 = 0, νε′ = νε; ρ}

So, the n-model morphisms still are the 0-preserving colour permutations. Model
reduction, for a given n-model ε=〈νε, sε〉 and a signature morphism π:n+2→n+2,
is defined by επ= 〈νεπ, sεπ〉, where (νεπ){i, j} = νε{πi, πj} like in E ′, and more-

over sεπ
def
= π˘sε. Letting ρπ = ρ for all n-model morphisms ρ and n-signature

morphisms π, makes model reduction to be a functor, since (νεπ) ; ρ = (νε ; ρ)π,
as it is straightforward to check.

Satisfaction

Satisfaction in V ′ and E ′′ is defined as in V and E ′, respectively, but only using the
colouring map part of the model, whence the satisfaction condition is met just
as it is in the respective, aforementioned previous versions of those institutions.

A final check would be in place, viz. that the fine tuning of the model functors
just worked out does indeed solve the problem which motivated it. That turns
out to be a natural task to be dealt with in the next section.
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9 Graph colouring institution morphisms

Enough material is now available to build an isomorphism between the graph
colouring institutions V ′ and E ′′.

As a matter of notational convenience, for each of the three constituents
of the isomorphism T : V ′↔E ′′, we use the same symbol in either direction,
so we need not specify whether T is an institution morphism or comorphism.
Furthermore, if γ is a bijection, we write x

γ↔ y to mean y = γx and x = γ y̆.
Let Φ

def
= 1SigV′ be the identity functor on the category of signatures (the

same in both institutions), then we are going to show the existence of natural
isomorphisms α: SenV′ ↔ SenE′′ and β: ModV′ ↔ ModE′′ , so that T = 〈Φ,α, β〉
is an institution isomorphism T : V ′↔E ′′.
For each n > 0, the sentence transformation component αn : SenV′(n)↔SenE′′(n)
is the bijection whereby εθ

αn←→ ψθ for each θ∈TV(n), with εθ as defined in section
4 and ψθ as defined in section 7.

The model transformation component βn : ModV′(n)↔ModE′′(n) is the in-
vertible functor defined by the following conditions.
Objects: for all υ=〈µυ, sυ〉∈|ModV′(n)| and ε=〈νε, sε〉∈|ModE′′(n)|,

υ
βn←→ ε iff sυ = sε ∧ ∀i, j∈n + 2.i 6= j ⇒ νε{i, j} = µυ(i) +oµυ(j).

Arrows: for all υ, υ′∈|ModV′(n)|, ε, ε′∈|ModE′′(n)|, σ∈ModV′(n)(υ, υ′), and
ρ∈ModE′′(n)(ε, ε′),

σ
βn←→ ρ iff ∀x∈4.ρx = σ0 +oσx.

A little calculation shows that the clauses given above do indeed define a
functor in either direction. For arrows, the map in the E ′′→V ′ direction is also
determined by the condition σ(µυsυ′) = 0, as previously pointed out. This,
together with the conditions given above (on arrows as well as on objects),
uniquely determines the σ permutation for a given ρ, thanks to the algebraic
properties of the Klein sum. The verification of these facts is left to the reader.

As customary, the next checks address naturality of the transformations.
These present no difficulties, but we include them to show that the fine tuning
carried out in the previous section solves the motivating problem.

Naturality of sentence transformation

For all n > 0, π:n+2↔n+2 and θ∈TV(n), we have επθ
αn←→ψπθ by definition of

αn, and επθ = πεθ by definition of πθ. So, in order to show naturality of the
sentence transformation, that is πεθ

αn←→πψθ, it is enough to prove πψθ = ψπθ.
Now, since π is a bijection, we can write the ψπθ polynomial as follows:∏
tijk∈θ

(xλπθ{πi,πj}−xλπθ{πj,πk})(xλπθ{πj,πk}−xλπθ{πk,πi})(xλπθ{πk,πi}−xλπθ{πi,πj})

and since π2
θ ;λπθ = λθ;π

#
θ by definition of π#

θ , the subscript replacement which
this identity enables on the previous polynomial makes it identical to the poly-
nomial which defines πψθ.
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Naturality of model transformation

For all n > 0, π:n+2↔n+2, υ=〈µυ, sυ〉∈|ModV′(n)| and ε=〈νε, sε〉∈|ModE′′(n)|,

υ
βn←→ ε⇔ sυ = sε ∧ (i 6= j ⇒ νε{i, j} = µυ(i) +oµυ(j))

[by definition of βn]
⇔ π s̆υ = π s̆ε ∧ (i 6= j ⇒ νε{πi, πj} = µυ(πi) +oµυ(πj))

[since π is a bijection]
⇔ sυπ = sεπ ∧ (i 6= j ⇒ νεπ{i, j} = µυπ(i) +oµυπ(j))

[by definition of model reduction]

⇔ υπ
βn←→ επ

[by definition of βn]

Satisfaction condition

Let n > 0, εθ∈SenV′(n), ψθ∈SenE′′(n), thus εθ
αn←→ψθ; let 〈µ, s〉∈ModV′(n) and

〈ν, s〉∈ModE′′(n), with 〈µ, s〉 βn←→〈ν, s〉. Then we have got to show that

〈µ, s〉|=V′,nεθ ⇔ 〈ν, s〉|=E′′,nψθ.

Let’s first reduce our goal by the following sequence of implications:

〈µ, s〉|=V′,nεθ ⇔ 〈ν, s〉|=E′′,nψθ

if (∀i, j.iεθj ⇒ µi 6= µj) ⇔ (∀i, j, k.λθ{i, j}ξψθ
λθ{j, k} ⇒ 0 6= ν{i, j} 6= ν{j, k} 6= 0)

[by definition of satisfaction in V ′ and E ′′]
if (∀i, j.iεθj ⇒ µi 6= µj) ⇔ (∀i, j, k.λθ{i, j}ξψθ

λθ{j, k} ⇒ 0 6= µi+oµj 6= µj +oµk 6= 0)
[by definition of βn].

We now prove the two directions of this double implication separately.
(⇒)

λθ{i, j}ξψθ
λθ{j, k} ⇒ (iεθj∧jεθk) [since εθ

αn←→ ψθ]
⇒ µi 6= µj 6= µk [by assumption]
⇒ (µi+oµj 6= 0)∧(µj +oµk 6= 0) [by properties of +o ].

Furthermore,
λθ{i, j}ξψθ

λθ{j, k} ⇒ λθ{j, k}ξψθ
λθ{k, i} [by triangular construction of ψθ]

⇒ kεθi [since εθ
αn←→ ψθ]

⇒ µk 6= µi [by assumption]
⇒ µk+oµj 6= µi+oµj [by properties of +o ],

which, together with the outcome of the previous deduction sequence, concludes
this part of the proof.
(⇐)

iεθj ⇒ ∃k.λθ{i, j}ξψθ
λθ{j, k} [since εθ

αn←→ ψθ, and
by triangular construction of ψθ]

⇒ 0 6= µi+oµj [by assumption]
⇒ µi 6= µj [by properties of +o ].
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Remark. The forgetful morphisms E ′′→E ′ and V ′→V, whereby the start-vertex
disappears from the model structure, are also comorphisms E ′→E ′′ and V→V ′.
Our case study seems to suggest a general technique to relate institutions, when
some structure translation algorithm between their models is known, but that
introduces additional, specific structure for the sole purpose of translation.

10 Conclusions

What general lessons of method can be drawn from the institution design exer-
cises carried out in this work? We propose the following statements.

The first design decision to be taken is: Which variant of the institution
concept should one use? Criteria to orientate this decision should be drawn from
the intended purpose and context of the design, e.g. whether meant for model-
theoretic analysis or proof-theoretic reasoning. Our approach to the case study
elaborated in this paper belongs to the first mainstream; undoubtedly, similarly
interesting design questions can be expected to arise in the syntactic mainstream.

A strong influence on the design of an institution is further expected to
come from its intended, or desired, structural relationships (such as: embedding,
equivalence, isomorphism) with other institutions. As a matter of fact, institu-
tion design turns out to be a byproduct of the design of appropriate institution
(co)morphisms, when enough information about those relationships is available.
The work here presented in sections 7 and 8 gives some support to consideration
of the following as potentially relevant factors of influence in this respect:
1. A purposeful choice of the abstract syntactic map: not every functor between
the given categories of signatures does the job, for example, the trivial one hardly
ever does;
2. Totality of the sentence and model transformations, whereby all sentences
of the source institution should get an image in the target one, not just a
”meaningful” subset thereof; idem for the models;
3. Naturality of the sentence and model transformations, which may require
fine-tuning of an institution design in order to make room, somewhere inside
its structure, for support to information which is needed by a transformation
algorithm but can’t be embodied in the transformation itself without losing
naturality.

The methodological conclusions proposed above are not necessarily the most
useful outcome of this work. We rather expect, or at least hope, that outcome to
show up as a rise of interest in carrying out further institution design exercises—
in the fascinating area of finite model theory in particular. We are well aware
that a term like abstract finite model theory is of a somewhat oxymoronic flavour,
in that finite implies set, hence concrete, yet it might prove apt to designate an
area of investigation where the use of abstract model-theoretic concepts in finite
model-theoretic questions is taken as characteristic trait.

Further exercise ideas on the theme considered in this work, may be inspired
by the vast literature on the subject, that over the years has resulted in several
equivalent reformulations of the 4CT, see e.g. [17,14].
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More closely relating to the problem considered in this paper, perhaps the
following concluding remarks, while providing some kind of evaluation of what
has been achieved, will also prove useful to stimulate further work.

We managed to find one solution to the problem proposed in [19]; there may
be more. . . For instance, one could seek for design alternatives by exploring the
feasibility of some ”transfer of structure” from sentences to signatures. The care-
ful reader may have noted sentence-dependence as a recurring problem in the
analysis carried out in section 7. Clearly, if those sentences are taken as sig-
natures, the problem disappears. This idea has not been pursued in this paper
since it clashes against an original intuition of triangulations as abstract sen-
tences, that we just wished to stick to, throughout the redesign work. We do
not know whether it’s a good or bad idea, we just point it out as an example of
potential source of design alternatives.

Perhaps more interesting inspiration for further work also arises along the
complementary evaluation path, viz. that of the design alternatives which have
been undertaken here. This includes, for example, a critique of the design deci-
sions which have shaped the models in E ′ and the model structure extension in
E ′′ and, V ′. One may argue that our solution to the problem has been obtained
at the expense of a remarkable loss of simplicity, in comparison with the model
structures in V and, especially in E . While the objection is surely well-founded,
two facts should not be missed, if a fair judgement is to be drawn. First, if
Tait’s equivalence had been taken as the core design topic from the outset, there
would have been little reason to choose an abstract syntax based on self-standing
edge labels, that is, unrelated to vertex labels. Without this choice, the E ′ model
structure would have emerged rightaway, but we would have missed the chance of
illustrating an instructive design problem. Second, which seems more relevant to
a future work perspective, other combinatorial problems naturally arise from the
model construction as in E ′, e.g. relating to characterization of 4-colourability
of graphs, not necessarily planar ones. This view is justified by the following
considerations.

1. All possible edges between the given vertices are available in models, viz. the
set En+2, so there’s no obstacle to extend attention to nonplanar graphs.

2. The detachment of models from sentences that is enforced by the institution
structure, has led us to build models where not only the colour of (some) edges
is given, but also the admissibility of the presence of (other) edges, in sentences
that are satisfied by a given model.

3. It is well known that some nonplanar graphs are 4-colourable (some even 2-
colourable!), thus the 4CT gives an only sufficient condition for 4-colourability,
that is planarity, which has the virtue of being syntactic precisely in the sense
which this term has taken in this paper—a property of sentences, as it were. One
may wonder whether a syntactic characterization of 4-colourability may exist,
and of k-colourability more generally, besides the obvious one. This problem
seems to be widely open.
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