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1 Introduction

Recent developments of discrete models to analyse biological processes motivate
the revisitation of typical concepts of classical dynamics in a completely discrete
context, such as that provided by cellular automata [16], or, more generally, by
state transition systems [11,15].

Dynamics of discrete systems, besides being instrumental to the analysis of
metabolic processes [1,2,8,9], in the context of P systems [12,13,14,10,4], in gen-
eral prove most natural in the representation of biomolecular dynamics, where the
symbolic entities which come into play are easily amenable to strings or related
structures, ranging from multisets to dynamical networks [3,17].

This work aims at identifying a few relevant problems outstanding in biomo-
lecular computing [5], and at outlining research directions and strategies for their
solution. The next two sections, which give a contrived summary of basic con-
cepts and relevant research results, form the background for the subsequent out-
look into the possible future of this research.
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2 State transition dynamics

The classical approach to study dynamical systems is focused on differential equa-
tions, that impose local (infinitesimal) relations on quantity variations from which,
under suitable hypotheses, one can analytically reconstruct the global dynamical
behaviour of the system. In [11], we addressed the problem of considering, in
general terms, dynamical systems that are completely discrete in that, not only are
the time instants natural or integer numbers, but also the space is a discrete entity.
We characterized transitions and space states of a discrete dynamical system by
means ofstate transition dynamics, defined as a pair〈S, q〉, whereS is a set of
states andq is a binary relation onS, thetransition relationon states.

A state transition dynamics iseternal if the transition relationq is total. We
assume this to be always the case in the systems of our interest, that is, the set
of final statesS\dom(q) is empty. Every dynamics may be easily extended to an
eternal one by turning each final state into a fixed point of the transition relation,
that is by adding a transition from that state to itself in the extended dynamics.

As in [11], we callquasistateany subset ofS. With the relation algebra no-
tation from [15], thesuccessorquasistate of statex underq is written img(x ; q).
This is generalized to denote the successor of quasistatex underq, defined as the
union of the successor quasistates of states inx. Theorbit of origin x, or x-orbit,
results from iteration of this concept, viz. it is defined as the infinite sequence of
quasistates(xi | i ∈ IN) such thatx0 = x (or x0 = {x}, if x is an individual state)
andxi+1 = img(xi ; q). The orbit isperiodic if ∃n > 0 : xn = x0, while it is
eventually periodicif, for somek≥0, it evolves into a periodic one after ak-step
transient, that is, if ∃n>0 : xk+n = xk. A basinB is a nonempty quasistate that
is closed underq, that is,img(B ; q) ⊆ B. Every orbit gives rise to a basin, by
taking the union of the quasistates it consists of.

For any statex in S, a trajectory of origin x, or x-trajectory, is a function
ξ : IN → S such that, with subscript argument,ξ0 = x andξn+1 ∈ img(ξn ; q).
ξIN denotes the image of this function. Anx-flight is an injectivex-trajectory.

Any x-trajectory thus runs “inside” thex-orbit. The difference between these
two concepts is apparent, but it practically disappears fordeterministicdynamics,
viz. those where the transition relation is actually a function—hence orbits are
singleton sequences, and one may saythex-trajectory, for any statex. In [11,15]
the general case of nondeterministic dynamics is considered, whereby classical
dynamics concepts such asattracting set, attractor, andrecurrencecome in two
distinct modal flavours. While we refer the interested reader to the cited work for
details about the formulations of these concepts, and related results, in the general,
nondeterministic case, in the rest of this paper we shall confine ourselves to the
deterministic case, where modal differences disappear and the aforementioned
concepts take the following shapes.
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A statex is recurrent if it occurs at least twice (hence infinitely often) in the
x-trajectory. Anattracting setA of a basinB is a nonempty subset ofB such
that, for every statex in B, thex-trajectory eventually gets into it; more precisely,
∀x ∈ B ∃k ∈ IN : ∀n ≥ k img(x ; qn) ⊆ A, whereqn denotes then-fold iterated
composition ofq. An attracting set ofB that is minimal under set inclusion is
called theattractorof B. We may saytheattractor since this is unique, for a given
basinB, whenever it exists[11]. The image of anx-flight is a simple example of
a basin that has no attractor. The deterministic-case corollary of a result in [15]
states that the attractor of a basinB exists iffB has no flights, and that in this case
the attractor ofB consists of the set of recurrent states inB.

3 Metabolic P systems

P systems are a computational model based on thecompartmentalization of the
workspaceand onmultiset rewriting. These basic concepts have clear biological
counterparts in the role that membranes play in biological organisms, and in the
biochemical basis of any biological entity, respectively. We refer to [12,13,14] for
the definitions of P systems structure in its most important variants, and for the
usual strategies which determine their evolution in time.

However, from a biological viewpoint, the evolution strategies considered in
standard P systems do not seem to be fully adequate. Indeed, in these systems,
state transitions are usually determined by a maximally parallel application of
multiset rewriting rules, but maximal parallelism or other strategies of this kind
cannot express the dynamics of a population of chemicals governed by biochem-
istry laws, e.g. in its regulatory aspects, which involve a dynamicalchange of
strategy, depending on the system state.Metabolic P systems[1,2,8,9] address
this question by equipping each multiset rewriting rule, also calledmetabolic rule,
with a reaction map, which is a real-valued function of the system state that yields
the “competitive strength” of that rule at the given state.

Metabolic rules thus compete for the allocation of biochemical resources,
whose types occur in the rule pattern. Allocation of resources, which are available
in finite amounts, is governed by amass partition principle, where reaction maps
determine the relative allocation factors. Each metabolic rule acts on a system
state by consuming/producing amounts of biochemical resources that are integer
multiples of areaction unitfor that rule in the given state, thus generalizing the
notion of molar unit (Avogradro’s principle).

In the notationally simpler case of a system with no workspace partitioning,
i.e.with only one (outer) membrane, states are functions of typeT → IN, whereT
is the finite alphabet of biochemical resource types, and a deterministic dynamics
on such states is computed, for a given setR of metabolic rules onT equipped
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with reaction mapsF = (fr | r ∈ R), by theP metabolic algorithm(PMA) [8],
which formalizes the resource allocation strategy outlined above. A generalization
of the PMA to P systems with inner membranes is feasible, as well as to such
systems with possible resource flow through membranes and dynamical change
of membrane structure, but at the cost of increasing notational complexity.

4 Research outlook

While the investigation into state transition dynamics carried out in [11,15] is
motivated by the wish to consider dynamical systems where not only time but
also the state space is discrete, it is to be noted that actually no assumption about
state space structure is made in the definitions and results obtained in that work.
As a matter of fact, one may easily specialize state transition dynamics by making
additional assumptions about state space structure, whether discrete or continuous
as it proves convenient. Thus, for example, even the simple case of metabolic
P systems without inner membranes may get a richer state space structure just
by taking states to be real-valued functions on the type alphabet, if continuous
values prove more convenient to express mass quantities. Furthermore, regardless
of the discrete or continuous nature of the functions’ codomain, the state space of
metabolic P systems is easily endowed with a metric, viz. it is a finite-dimensional
vector space on that codomain (since the type alphabet is finite).

The situation outlined above raises interesting questions relating to further
analysis of state transition dynamics for state spaces endowed with topological
structure, such as the following ones: 1) Definability of weaker notions of recur-
rence, where one would replaceexactrecurrent occurrence of the given state in
its trajectory withapproximateoccurrence, viz. recurrence of seeing the trajec-
tory get across a sufficiently (or arbitrarily) small neighbourhood of the origin.
2) Definability of weaker notions of attraction, where, similarly to the previous
question, exact inclusion of trajectories or orbits in the attracting set is replaced by
approximate inclusion. 3) Which (if any) of the possible answers to the previous
questions deliver a straightforward generalization of the characterization results,
linking recurrence and attractors, already obtained in [15] for structureless state
transition dynamics?

A wholly different class of questions arises from a valuable feature underlying
the very design of metabolic P systems. Here, two distinct levels of description of
biochemical dynamics are readily recognized: thestoichiometrylevel, represented
by the metabolic rules, and theregulationlevel, represented by the reaction maps
assigned to them. Bidirectional interaction between the two levels is inherent,
since state transitions are determined according to the given stoichiometry, but
with relative strength determined by the regulation, while, conversely, regulation
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depends on the state. A first, basic question is: For a given dynamicalbehaviour
of a biochemical system, how can one find the metabolic rules and reaction maps
that best reproduce that behaviour? This may be called the generalsimulation
problemfor metabolic P systems. A somewhat “easier” (but: how muchreally
easier?) subproblem of the general one results from assuming that a solution for
the stoichiometry level is available somehow, but nothing is known about the re-
action maps. This is thus the generalregulation problemfor metabolic P systems.
Finally (for the time being), one may happen to know everything about the sto-
ichiometry of the given behaviour, andsomethingabout plausible reaction maps
(e.g.their polynomial form), but without knowing the values of specific parame-
ters (e.g.polynomial coefficients) which determine those maps uniquely. This is
thetuning problem, a subproblem of the regulation problem as it were.

Different strategies for the solution of the simulation problem are exemplified
in [9], where the mitotic oscillator model proposed by Goldbeter [6,7] is taken
as a case study. This model proves adequate to account for the simplest form of
mitotic oscillations, as found in early amphibian embryos. Goldbeter’s model con-
sists of an autonomous system of ordinary differential equations. Three different
metabolic P system models are developed in [9] for the case under study. Two of
them are directly derived from Goldbeter’s model under different “readings” of the
differential equations in terms of metabolic rules and reactions maps; this clearly
tells that, in general, the “translation” of a differential model into a metabolic P
model is not unique. Furthermore, the third P model is directly synthesized from
the biochemical description of the phenomenon under study; it exhibits the de-
sired oscillatory behaviour as well as the two other P models do, and it is even a
simpler model.
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