
FINAL WORKSHOP OF GRID PROJECTS, ”PON RICERCA 2000-2006, AVVISO 1575” 1

Results and programming techniques
from the CR3x+1 project

Giuseppe Scollo
University of Catania, Department of Mathematics and Computer Science

Catania, Italy, scollo@dmi.unict.it

Abstract—The CR3x+1 project runs a parallel
algorithm on the COMETA Grid Infrastructure
for the search of Class Records in the 3x+1
Problem. The search up to 259 was recently com-
pleted, following a 15-month computational effort
that delivered 149 new Class Records. Besides
presenting these results, a few techniques adopted
in this project are introduced that are aimed at
keeping the search proceed on schedule despite of
occasional failures and delays of running jobs.
The ideas behind these techniques seem easily
adaptable to a wider class of search programs over
a countable search space. Examples of problems
solved by this kind of programs are provided, and
an attempt is made to characterize such a wider
applicability class. A summary of the measured
performance of the CR3x+1 search program is
provided, along its evolution throughout several
running versions. An outline of a future research
direction concludes the paper, relating to the aim
of full automation of job control and management
for this application, and in perspective for any
suitable program in the aforementioned wider
class.

Index Terms—COMETA, Collatz Problem,
Grid programming, recursive parallelization, job
control and management.

I. INTRODUCTION

FOLLOWING the results published in [7],
this paper reports on the progress made

in the COMETA Grid Infrastructure by the
CR3x+1 project, since Spring 2008 up to Winter
2009. This project owes its name to the target
of its running application, which implements
a parallel algorithm for the search of Class
Records in the 3x+1 Problem [1], also known as
Collatz Problem and under several other names.

To the benefit of the unfamiliar reader, the
basic terms of the search target are recalled be-
low, whereas a detailed account about the 3x+1
Problem, which is not in the focus of the search
target, is provided by the paper just cited, and
plenty of additional references may be found
in the comprehensive annotated bibliography
on this problem and its several extensions and
generalizations, that is maintained by the same
author on arXiv [2],[3].

A. 3x+1 Class Records, and the like
Subject of interest here is the behavior of

the iterates of the function which takes odd
integers x to 3x+1 and even integers x to x

2 .
The 3x+1 Conjecture asserts that, starting from
any positive integer x, repeated iteration of this
function eventually produces the value 1; or, in
other words, that it has the 1 → 4 → 2 → 1
cycle as (unique) attractor. One may classify the
eventually periodic 3x+1 trajectories ending up
in this cycle by their finite transient length, also
referred to as the delay of a trajectory, and aims
at finding minimal elements of delay classes,
that are referred to as class records. More pre-
cise definitions of these and related concepts are
as follows. Let f denote the subject function,
and fn its n-fold iterate, then the following
definitions refer to the (discrete) dynamics of
iterated f :
• trajectory at (origin) x : the infinite se-

quence x =f0x, f1x, f2x, . . . ;
• delay of (trajectory at) x : the small-

est n such that fnx=1;
• delay class d : the set of those x which

have delay d;

SCOLLO: RESULTS AND PROGRAMMING TECHNIQUES FROM THE CR3X+1 PROJECT

• class record (CR): the smallest member of
a delay class;

• delay record (DR): an x such that every
y < x has a lower delay.

A couple of remarks are in place:
• every delay class is populated (2d is the

largest member of delay class d), so a CR
exists in every delay class;

• every DR is a CR (by the definitions of
these concepts), but the converse does not
hold (for example, 5 is the CR of delay
class 5, but it is not a DR, since 3 has
delay 7; the latter happens to be a DR).

The computational challenge posed by the
CR search is not just the trivial consequence
of the fact that it will never end, since not only
the search space is infinite but also the search
target, that is the set of CR’s, is infinite. It
rather consists of a twofold aspect of the CR
distribution:

1) exponential decay of their average den-
sity;

2) logarithmic growth of the average delay
of trajectories.

The design of an efficient, parallel algorithm
for CR search was addressed at the very outset
of the CR3x+1 project. The interested reader
is referred to our cited previous work for an
overview and technical details of the algorithm
optimization techniques adopted in this project.

B. 3x+1 CR search efforts

A distributed 3x+1 CR search effort has been
set up since quite a few years by [5], who
maintains a website with results and status of
the ongoing progress of that endeavour. This
has produced 2016 Class Records so far, ex-
ploring the search space up to 60200·1012.
The present CR3x+1 search on the COMETA
Grid Infrastructure arose as a follow-up of that
effort, and was primarily aimed at expanding
the rate of search space exploration thanks to
the computational power here available, sup-
plemented by the aforementioned optimization
techniques. Indeed, a tenfold widening of the
explored search space is the primary outcome
of this endeavour to date.

II. CR3X+1 PROGRESS AND RESULTS

15-month CR search in the COMETA Grid
Infrastructure (9/2007 – 12/2008) delivered 149
new Class Records, by exploring the search
space up to 259. To date this has been raised up
to 6·1017 and 7 new CR’s have been found. The
list of 51 CR’s found by this search until March
2008 is available in [7]; those found afterwards,
up to date, are listed here, in the Appendix.

Besides the aforementioned results, the
progress made by the CR3x+1 project includes
major software enhancements, to cope with a
software upgrade of the job management system
and command-line user interface operating in
the COMETA Grid Infrastructure. Those en-
hancements do not affect the search algorithm
implementation, where only a minor change
in the output format turned out to be conve-
nient. A major scripting effort proved rather
necessary to exploit new functionalities made
available by the Grid software upgrade, as well
as to take new resource allocation constraints
into account. The latter were introduced, along
with the Grid software upgrade, by new Grid
management policies aimed at enforcing fair
use of computational resources. The following
details are needed, in order to appreciate the
technical evolution of the CR3x+1 application
that is reported in later sections below.

In Summer 2008, the COMETA Grid mid-
dleware installation was upgraded to gLite 3.1,
including an upgrade of the Workload Man-
agement System to the most recent version,
hereafter referred to as WMS. In order to enable
a smooth transition to the new user interface and
functionalities provided by the upgrade, the new
WMS was actually adjoined to the legacy one,
hereafter referred to as EDG (acronym of the
European DataGrid project), but this is going
to be disposed of in the near future.

A convenient, new WMS functionality is the
support of collection-type jobs, that is, the abil-
ity to submit a bunch of parallel jobs, termed
nodes of the collection, as if they were a single
one, the collection parent job. This greatly
reduces the submission waiting time, and it also
simplifies the inquiry of the status of all jobs

2

FINAL WORKSHOP OF GRID PROJECTS, ”PON RICERCA 2000-2006, AVVISO 1575”

in the collection. This functionality proves very
convenient to implement, by appropriate scripts,
the recursive parallelization technique described
in Section IV below. However, in order to over-
come the unavailability of resources following
from temporary WMS configuration problems,
an implementation of recursive parallelization
has been also developed to run under EDG.

The aforementioned management policies [4]
were introduced in the COMETA Grid Infras-
tructure near the end of Summer 2008. These
constrain the number of jobs that may be con-
currently running per user and per site, de-
pending on job CPU time requirements. For
ordinary applications, three types of job queues
are available at each site. Let T denote the upper
bound on CPU time, N the upper bound on the
number of concurrent running jobs per user; the
three queue types are as follows:
• short: T = 15 min., N = 64;
• long: T = 12 hours, N = 32;
• infinite: T = 21 days, N = 16;

Before the introduction of the N upper bounds,
the CR3x+1 jobs used to be ordinarily submit-
ted to the infinite queues only, with CPU time
in the 4–6 day range, whereas use of the other
queues was limited to the recovery purposes
which are described in Section IV below. Under
the new policy, both infinite and long queues
are ordinarily made use of, whereas use of the
short queues is confined to running recovery job
collections.

III. UNCERTAINTY AND PARTIAL FAILURES

Practical problems with Grid computing of
our concern mainly fall into three categories:

1) uncertainty about availability of resources
(CPU’s in the CR3x+1 application case),

2) occasional failures/delays of running jobs,
3) unreliability of job status information.
Two problems surface in the first category: 1)

the fact that the number of Free CPU’s reported
by the Grid Information Service (BDII) is not
always faithful, hence CPU availability may
only be confirmed by the successful outcome
of actual submission attempt, and 2) uncertainty
about persistence of availability of an allocated

CPU, for the whole duration of job execution;
this problem is obviously significant mainly for
jobs requiring several days of CPU time.

Problems in the second category are mostly
due to hardware or system failures at specific
Worker Nodes (WN) in the Grid computing
elements (CE) hosting them.

If the extent of problems of either category
is fairly limited, the job control and recov-
ery techniques described below prove effective.
Problems in the third category present the most
challenging difficulties; they give rise to the
core of a future research direction, as it is
mentioned in Section VII.

IV. RECURSIVE PARALLELIZATION

Job control and parallelization prove effec-
tive to cope with the first two aforementioned
problem kinds, for:

small is easier (to get Done (with Success) ;)

that is: if a job fails, rather than restarting it,
reassign its computational task to a collection
of parallel jobs; if these are small enough,
then many more CPUs are available in the
COMETA Grid, under the policies mentioned in
Section II. Furthermore, short jobs have much
higher chances to succeed anyway.

The basic CR search algorithm deployed on
the COMETA Grid is easily amenable to a
simple kind of parallelization, based on search
space partitioning, where independent, noncom-
municating processes explore separate intervals.
They produce CR candidates, while a merge
process combines their outcomes together with
previously found CR’s, as depicted in Figure 1.

Fig. 1. Simple structure of CR parallel search

Each parallel process explores a given inter-
val Ik of the search space, referred to as its
search slice, and yields a set of CR candidates

3

SCOLLO: RESULTS AND PROGRAMMING TECHNIQUES FROM THE CR3X+1 PROJECT

(CRC) in that slice, that consists of the lowest
elements in delay classes that happen to be
populated in the explored slice. Thus, if all
CR’s below a given integer M are known,
the new CR’s above M and below N >M
can be determined by partitioning this search
interval into any convenient number of slices,
then running the parallel search processes on
them, and finally selecting the best (i.e. lowest)
CRC found for each delay class that is not
populated by any number below M .

It is apparent that the algorithm depends
neither on the size of the search interval nor
on the slice size, which are just parameters of
its execution. This fact may be conveniently ex-
ploited to effectively manage the fairly frequent
case that some of the running processes fail to
complete their search. When a process failure is
detected at a time when most of the other pro-
cesses have completed their search, the Grid re-
allocation mechanism would entail doubling the
total waiting time for the parallel search com-
pletion. This can be avoided by conveniently
subslicing the missing slice and launching a
parallel search on it, thus by straightforward
exploitation of a space-time tradeoff.

Recursive parallelization simply is the iter-
ated application of this mechanism to missing
search intervals because of job failure or ex-
cessive delay. A search taking a few days by a
single job will take a few hours by a collection
of, say, 32 or even 16 parallel jobs, and if some
of these fail, by recursive parallelization the
missing tiny bits of the planned recovery will
only take a few minutes to be filled up.

A. Parallel subslicing

The first implementation of recursive paral-
lelization for the CR3x+1 application exploited
the representation of the search space partition-
ing in the application parameter structure. The
chosen representation obeys to an ergonomic
principle, that is: keep typical parameter values
small, despite of the fairly large size of numbers
at stake. This rule should help one to avoid,
as well as to more easily detect, typing errors
in the provision of actual parameter values

to application instances (to be) submitted for
execution. The rule is easily enforced by using
(integer) binary logarithms for actual parameter
specification. An instance of the CR3x+1 search
program is thus parameterized as follows:

findCR a s c b z

with the following terminology and meaning of
the displayed parameters:
a: search basespace
s: search subspace
c: search slice
b: search subspace size
z: search slice size

which specifies the actual search subspace
[M,N], with M = 2a+s·2b, N = 2a+(s+1)·2b-1,
and therein the (c+1)-th 2z-size search slice,
that is the interval [M+c·2z , M+(c+1)·2z-1],
under the following, fairly obvious constraints
on parameter values: a > 0, 0 < b ≤ a,
0 < z ≤ b, 0 ≤ s < 2a−b, 0 ≤ c < 2b−z .

Subspace [M,N] is thus searched by running
the corresponding 2b−z instances of findCR
which only differ in their c slice values.

Now, suppose the job running the k slice
instance fails. Then one may parallelize the
search on the missing slice by viewing the slice
interval as a subspace, and thereby subslicing
the slice. The appropriate parameters of the
parallelized subslicing search

findCR a′ s′ c′ b′ z′

are determined by a straightforward linear trans-
formation of those of the parent search, for
the given k and for a chosen subslice size
z′ < z, with c′ ranging through the whole
allowed range: a′ = a, s′ = s·2b−z+k, b′ = z.

The CPU time bounds put on the three queue
types mentioned in Section II, together with
measured execution times of the findCR pro-
gram made it convenient to adopt a 2-level
subslicing scheme, with the following size pa-
rameter values for the different queue types:
• infinite: b = 50, z = 44;
• long: b′ = 44, z′ = 40;
• short: b′′ = 40, z′′ = 34.

4

FINAL WORKSHOP OF GRID PROJECTS, ”PON RICERCA 2000-2006, AVVISO 1575”

B. Sequential subslicing

If CR’s were the only interesting findings of
the CR3x+1 application, then there would be
little reason to definitely favour smaller slice
sizes to larger ones. The higher success chance
enjoyed by short jobs has tradeoffs in the rel-
atively higher turnaround time (it usually takes
20 minutes to get back the outcome of a 10-
minute CPU time job), and in the larger number
of output files generated thereby. However, the
parallel processes displayed in Figure 1 produce
CR candidates, and while most of them turn
out not to be CR’s after the merge process
execution, they are all potentially interesting
findings, by the following fact.

The curious reader who has had already a
first go through the CR tables in the Appendix
may have wondered what’s behind the rarity of
“surprise!” occurrences in the righmost column.
In other words, the puzzling question is: How
does it happen that most of the CR’s found by
this search were already known to be good CR
candidates, for the respective delay classes? The
answer is found in the existence of approximate
search algorithms, which nonexhaustively ex-
plore selected portions of the search space for
such candidates, using knowledge of good CR
candidates—not necessarily CR’s, though. The
outcomes of such an algorithm were communi-
cated to the author by Eric Roosendaal [6], and
the rarity of surprises in the Appendix testifies
to the strength of the findings by that algorithm.
Conversely, the CR candidate outcomes of the
CR3x+1 search in the COMETA Grid may be
given as new inputs to Roosendaal’s algorithm,
which may thus find new, stronger candidates.

Now, since not only CR’s but also CR candi-
dates are an interesting outcome of the CR3x+1
search, the desirability of a uniform subslicing
scheme comes to play. For, a CR candidate
produced by a slice search process is such if
it is the best candidate for its delay class in the
slice searched. So, the wider the slice size, the
smaller the number of CR candidates found by
the CR3x+1 application. Furthermore, the move
to ordinary use of long queues, in addition to
infinite ones, under the new resource allocation

policy mentioned in Section II above, calls for
adoption of the aforementioned 2-level sub-
slicing scheme regardless of parallelization, if
uniform selection of CR candidates is desired—
that is to say, all of them ought to be best
candidates in slices of the same size.

The implementation of this requirement in
the CR3x+1 application adjoins sequential sub-
slicing to (recursive) parallel subslicing, simply
by stipulating that 1) all findCR executions have
the same values of size parameters, viz. those
of the lowest level, yet 2) each script run by a
job submitted to a long or infinite queue, loops
through a finite sequence of such executions,
so as to fully search the relevant, higher-level
(sub)slice. A second implementation of parallel
subslicing is also required, for, according to
the first clause, no parameter transformation is
applicable to size parameters of findCR calls,
but only to the “address” parameters s and c,
for a given basespace a. As a matter of fact, the
linear transformation specified in the previous
subsection now applies to parameters of the
scripts where those calls occur, and it is im-
plemented inside those scripts in the sequential
subslicing case.

V. WIDENING THE APPLICABILITY CLASS

It is apparent that the parallelization and
subslicing techniques exposed above do not
depend on any particular feature of the CR
search algorithm, nor of its implementation in
the COMETA Grid Infrastructure, but only on
(the chosen representation of) the search space
partitioning. One is thus presented with an inter-
esting reusability problem: to abstract from the
specific (3x+1) Problem at hand, to make the
aforementioned Grid programming techniques
applicable to a wider problem class. Here are a
few examples of problems in this class:
• search of unknown prime numbers;
• search of unknown twin prime pairs;
• CR search for classes of (consecutive)

prime gaps (this problem is connected to
the Goldbach conjecture).

An informal characterization of the applica-
bility class prescribes:

5

SCOLLO: RESULTS AND PROGRAMMING TECHNIQUES FROM THE CR3X+1 PROJECT

1) applicability of the parallel search struc-
ture depicted in Figure 1, where the CR
and CRC outputs are meant to be those
of the problem at hand, and

2) hierarchical partitioning of the search
space, with address and size parameters
of its search intervals like those specified
in the CR3x+1 application case.

The latter prescription does not require the
logarithmic base of the representation to be
2 (any higher integer may do as well, 2 just
happens to be the smallest suitable one), nor the
depth of the subslicing hierarchy to be 2—this is
just convenient in the CR3x+1 application case
because of the queue management policy in the
COMETA Grid Infrastructure, together with the
distribution of CPU time performance exhib-
ited by CR3x+1 search processes. A toplevel
overview of this distribution is presented next.

VI. CR3X+1 SEARCH PERFORMANCE

Early performance measurements for the
CR3x+1 application are reported in [7], giving
average CPU time and standard deviation statis-
tics of CR search in basespaces 55 and 56, thus
for numbers below 257. Here we present similar,
follow-up data for basespaces 57 and 58, which
were fully covered, and for the explored portion
of basespace 59 to date, that comprises its first
24 (out of 512) 250-size subspaces. Table I
summarizes the aforementioned statistics, by
similar conventions as in Table II of the cited
paper, that we recall here for the sake of self-
containedness.

Each row refers to a group of search sub-
spaces processed by the same program version
and with the same optimization parameter val-
ues. The program version is displayed in the
first column. The next two columns tell which
search intervals do the statistics refer to, by
giving the basespace in the second column and
the explored interval of its 250-size subspaces in
the third column. The average CPU time and its
standard deviation are measured in seconds and
computed over the 64 244-size toplevel slices of
each subspace; their ranges are reported in the
fourth and fifth column, respectively.

TABLE I
CPU TIME PERFORMANCE STATISTICS

v a s average s.d.

6.03 57 0–9 [343189–365047] [26793–41979]
6.04 57 10–33 [337754–382158] [24252–54268]
6.05 57 34–43 [348373–365971] [31443–42787]
6.06 57 44–78 [338352–415004] [24788–117136]
6.07 57 79–127 [333970–391010] [24300–73351]
6.08 58 0–18 [362263–384922] [26441–52488]
6.09 58 19–68 [358482–402003] [27861–68733]
6.10 58 69–69 [368772–368772] [29518–29518]
6.11 58 70–138 [337881–407845] [23206–50585]
6.12 58 139–194 [360797–422676] [24684–81774]
6.13 58 195–198 [398003–413196] [24648–45265]
6.14 58 199–255 [384373–423242] [8476–45754]
7.01 59 0–0 [423735–423735] [13246–13246]
7.02 59 1–23 [396300–421982] [8134–40764]

VII. CONCLUSION AND FUTURE RESEARCH

The outcomes of a 17-month computational
effort have been reported, whereby a tenfold
widening of the previously explored search
space has been achieved and the list of known
3x+1 Class Records has been expanded by 156
new entries. The core software of the CR3x+1
application, which has delivered these results
by implementing an optimized parallel search
algorithm on the COMETA Grid Infrastructure,
has reached maturity and has proven highly
stable (it will be made freely available as soon
as its documentation will be completed). On
the contrary, the job control and management
scripts whereby care is taken of the actual
deployment of the application over the highly
dynamic configuration of the Grid, has under-
gone unrelating evolution, primarily to cope
with changes both in the Grid management
software and in the resource allocation policies
thereby adopted.

Further evolution of job control and manage-
ment is a future research direction, aimed at
full automation of these tasks for the CR3x+1
application, and in perspective for any suitable
program in the wider class characterized in
Section V, in spite of the problems mentioned
in Section III—especially the third kind thereof.

6

FINAL WORKSHOP OF GRID PROJECTS, ”PON RICERCA 2000-2006, AVVISO 1575”

APPENDIX

Tables II–IV list the 105 Class Records found
after those published in [7], thus starting from
March 2008 until the end of February 2009,
together with their discovery dates. Commas
are inserted in the CR values in these tables,
to improve readability. Notes in the rightmost
column apply to a few of these CR’s: two of
them also are Delay Records (marked by “DR”),
whereas the three CR’s marked by “surprise!”
are those which turned out to be lower than the
best candidate known, for that delay class, until
the CR discovery.

ACKNOWLEDGMENT

This work makes use of results produced by
the PI2S2 Project managed by the Consorzio
COMETA, a project co-funded by the Italian
Ministry of University and Research (MIUR)
within the Programma Operativo Nazionale “Ri-
cerca Scientifica, Sviluppo Tecnologico, Alta
Formazione” (PON 2000-2006). More infor-
mation is available at http://www.pi2s2.it and
http://www.consorzio-cometa.it.

REFERENCES

[1] J. Lagarias, The 3x+1 problem and its generalizations,
Amer. Math. Monthly 92 (1985) 3–23,
http://www.cecm.sfu.ca/organics/papers/lagarias.

[2] J. Lagarias, The 3x+1 Problem: An annotated bibli-
ography (1963–2000), preprint on arXiv, v. 9, http:
//arxiv.org/abs/math/0309224v9.

[3] J. Lagarias, The 3x+1 Problem: An Annotated Bib-
liography, II (2001-), preprint on arXiv, v. 2, http:
//arxiv.org/abs/math/0608208v2.

[4] A. Falzone, Known limitations on PI2S2 infrastructure,
Consorzio COMETA, PI2S2 Project, Catania (Italy), 22
September 2008, https://grid.ct.infn.it/twiki/bin/view/
PI2S2/KnownLimitationsonPI2S2Infrastructure.

[5] E. Roosendaal, On the 3x+1 problem, http://www.ericr.
nl/wondrous.

[6] E. Roosendaal, personal communication.
[7] G. Scollo, Looking for Class Records in the 3x+1

Problem by means of the COMETA Grid Infrastruc-
ture, in: R. Barbera (Ed.), Proc. Symp. “Grid Open
Days at the University of Palermo”, Palermo (Italy),
6–7 Dec. 2007, Consorzio COMETA, Catania (2008),
pp. 255–263.

[8] A. Sortino, Metodi di controllo dei job nelle griglie
computazionali, Graduation Thesis, University of Cata-
nia, CdL Informatica Applicata (2008).

TABLE II
CLASS RECORDS BY THE COMETA SEARCH

date delay CR note

07/03/2008 2027 145456,961990,848420
07/03/2008 2102 148413,243647,555247
07/03/2008 2071 151176,074945,747355
07/03/2008 2009 152252,737489,082415 surprise!

10/03/2008 2053 154716,354113,071847
10/03/2008 2252 157348,943716,351847
10/03/2008 2084 157901,726856,603887
14/03/2008 2159 162714,511297,434783
15/03/2008 2097 166349,144342,759649
15/03/2008 2066 166685,766959,953535
23/03/2008 2079 178296,989423,512571
23/03/2008 2017 181276,570919,731903
23/03/2008 2048 181616,130563,790600
28/03/2008 2110 184220,042842,339239
30/03/2008 2092 187142,787385,604604
31/03/2008 2136 190259,568858,878791 surprise!

31/03/2008 2061 190398,201108,018553
31/03/2008 2030 193620,340831,833371
03/04/2008 2105 197154,541443,270695
05/04/2008 2074 200584,113101,451643
06/04/2008 2118 203172,693893,734335
06/04/2008 2056 206288,472150,762462
12/04/2008 2255 209798,591621,802462 DR#132

12/04/2008 2087 210535,635808,805182
16/04/2008 2162 218142,178682,751135
16/04/2008 2100 221798,859123,679531
18/04/2008 2069 222247,689279,938046
25/04/2008 2051 232074,531169,607771
26/04/2008 2250 236023,415574,527771
26/04/2008 2082 236852,590284,905831
26/04/2008 2126 240797,266837,018471
29/04/2008 2157 244071,766946,152175
01/05/2008 2095 249523,716514,139473
01/05/2008 2064 250028,650439,930303
09/05/2008 2139 253679,425145,171721
13/05/2008 2108 262872,721924,360926
13/05/2008 2245 265526,342521,343743
13/05/2008 2077 267445,484135,268857
18/05/2008 2059 275051,296201,016617
18/05/2008 2152 275061,764347,852959
19/05/2008 2214 277152,210816,179199
19/05/2008 2121 277960,972098,942063
19/05/2008 2258 279731,455495,736617 DR#133

20/05/2008 2134 285389,353288,318187

7

SCOLLO: RESULTS AND PROGRAMMING TECHNIQUES FROM THE CR3X+1 PROJECT

TABLE III
CLASS RECORDS BY THE COMETA SEARCH (CONT’D)

date delay CR note

23/05/2008 2103 295731,812164,906041
23/05/2008 2072 296330,252373,250729
26/05/2008 2116 304759,040840,601503
31/05/2008 2147 308903,330041,223847
31/05/2008 2054 309432,708226,143694
31/05/2008 2253 314697,887432,703694
06/06/2008 2129 321063,022449,357961
11/06/2008 2160 325429,022594,869566
11/06/2008 2098 332698,288685,519297
11/06/2008 2067 333371,533919,907070
22/06/2008 2173 342838,805696,652711
25/06/2008 2111 350496,962565,814567
29/06/2008 2248 354035,123361,791657
29/06/2008 2080 355278,885427,358747
30/06/2008 2093 358949,884773,873129
30/06/2008 2124 361195,900255,527707
05/07/2008 2155 366107,650419,228263
05/07/2008 2062 366735,061601,355489
10/07/2008 2261 372975,273994,315489 DR#134

18/07/2008 2137 380519,137717,757582
24/07/2008 2106 394309,082886,541390
24/07/2008 2075 395107,003164,334305
24/07/2008 2243 398289,513782,015615
30/07/2008 2119 406345,387787,468670
30/07/2008 2181 407039,301558,612711
03/08/2008 2150 412592,646521,779439
03/08/2008 2212 415728,316224,268799
04/08/2008 2256 419597,183243,604924
11/08/2008 2132 428084,029932,477281
12/08/2008 2163 433905,363459,826089
12/08/2008 2101 433924,493696,872063
17/08/2008 2070 444495,378559,876092
23/08/2008 2114 457138,561260,902255
25/08/2008 2145 463354,995061,835771
30/08/2008 2251 472046,831149,055542
02/09/2008 2127 481594,533674,036942
03/09/2008 2189 484213,647044,074527
07/09/2008 2158 488143,533892,304350
07/09/2008 2096 489496,481087,649823
07/09/2008 2220 492715,041450,985243
07/09/2008 2264 497300,365325,753985 DR#135

16/09/2008 2171 502013,107133,492583 surprise!

17/09/2008 2140 507358,850290,343442
01/10/2008 2202 509154,959181,631323
19/10/2008 2078 522719,142645,844807

TABLE IV
CLASS RECORDS BY THE COMETA SEARCH (CONT’D)

date delay CR note

24/10/2008 2109 525745,443848,721851
29/10/2008 2246 531052,685042,687486
24/11/2008 2277 539483,373894,066267 DR#136

29/11/2008 2122 541793,850383,291561
07/12/2008 2153 549161,475628,842395
14/12/2008 2215 554304,421632,358398
22/12/2008 2259 559462,910991,473233
31/12/2008 2135 570778,706576,636374
31/12/2008 2197 571753,422216,761887
05/01/2009 2073 576770,710941,544863
06/01/2009 2166 578540,484613,101451
06/01/2009 2104 578565,991595,829417
12/01/2009 2228 583958,567645,612139
26/01/2009 2272 589393,025571,263983
03/02/2009 2241 597434,270673,023423
10/02/2009 2148 601314,192936,703339

8

