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Abstract. We investigate the application of weighted essentially nonoscillatory (WENO) re-
constructions to a class of semi-Lagrangian schemes for first order time-dependent Hamilton–Jacobi
equations. In particular, we derive a general form of the scheme, study sufficient conditions for its
convergence with high-order reconstructions, and perform numerical tests to study its efficiency. In
addition, we prove that the weights of the WENO interpolants are positive for any order.
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1. Introduction. In this paper we treat a class of high-order, large time-step
Godunov schemes for time-dependent Hamilton–Jacobi equation of first order. Al-
though several extensions are possible, we will focus on the model problem{

vt + H(∇v) = 0 in R
N × R,

v(x, 0) = v0(x) in R
N(1.1)

and assume that the function H is smooth and strictly convex.
Many approximation schemes have been proposed for (1.1), but only a relatively

recent part of the existing literature is devoted to high-order schemes. Within this
rapidly growing research line, we quote the pioneering works by Osher and Sethian
[23], Osher and Shu [24], Abgrall [1], [2] and, among more recent contributions, Lin and
Tadmor [20], and Bryson and Levy [6]. Weighted essentially nonoscillatory (WENO)
schemes were introduced by Liu, Osher, and Chan in [22], extensively studied and
improved in [18], [16], and applied to Hamilton–Jacobi (HJ) equations in Jiang and
Peng [17], Zhang and Shu [29], and Bryson and Levy [7].

On the other hand, large time-step, characteristics-based schemes for hyperbolic
PDEs have been first proposed by Courant, Isaacson, and Rees in [8]. At the moment,
they have gained a considerable popularity in the Numerical Weather Prediction com-
munity (where they are also known as semi-Lagrangian (SL) schemes). In the field of
HJ equations, such schemes have been first applied to stationary Bellman equations
related to optimal control problems (see [10] and the review [9]) and later to time-
dependent equations for which the schemes under consideration might be seen (see
[11]) as discrete counterparts of the Lax–Hopf–Oleinik representation formula.

It is well known that solutions of (1.1) should be understood in the viscosity sense
(see [21], [4], [5]), which does not require v to be everywhere differentiable. Moreover,
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singularities in the gradient ∇v usually bring important information in HJ equations
(as an example, in dynamic programming equations, singularities are typically asso-
ciated to switching curves for the optimal control). Therefore, it would be crucial for
the scheme to be accurate in smooth regions, while retaining low numerical dissipation
and a nonoscillatory behavior in the neighborhood of singularities.

A further argument leads us to consider the use of WENO reconstructions in SL
schemes. In fact, the scheme performs at any node and any time step a minimization
which involves several computations of the numerical reconstruction. Its efficiency is,
therefore, critical. Piecewise smooth functions can be effectively reconstructed using
ENO or WENO methods (see [14], [15], [25]). Both techniques tend to choose inter-
polation points on the smooth side of the function; however, ENO schemes compute
twice the required number of divided differences: at each step (that is, at any in-
crease of the polynomial degree) the choice between the two new interpolation points
is made according to the magnitude of the two divided differences obtained with the
two candidate stencils (see [25]). On the other hand, in WENO schemes this process
is performed by weighting the different polynomials, and this allows information from
both sides to be used whenever possible.

The paper is organized as follows. Section 2 reviews the construction and basic
convergence theory of SL schemes for (1.1), section 3 presents a general framework
for the implementation of WENO interpolation as required by the SL scheme, with
the explicit form of the schemes of order 2/3 and 3/5. In section 4 we prove positivity
of the linear and nonlinear weights for any order of the polynomial and give their
explicit form for evenly spaced nodes. In section 5 we derive from the positivity of
the weights a sufficient condition for the convergence of the scheme, whereas section
6 is devoted to numerical tests.

2. Construction of the scheme and basic convergence theory. As it has
been already pointed out, the SL schemes for HJ equations might be interpreted
(see [11]) as discrete versions of the Lax–Hopf–Oleinik representation formula for the
solution, which reads

v(x, t) = inf
α∈RN

{tH∗(α) + v0(x + αt)}(2.1)

(where H∗(α) is the Legendre transform of H(p)). The general form of the scheme is
a discretization of (2.1) on a single time step, namely,

vn+1
j = min

a∈RN
(ΔtH∗(a) + I[V n](xj + aΔt)) ,(2.2)

where V n = {vnj }j∈Z, I[V n](x) is a numerical reconstruction of the approximate

solution at time tn = nΔt for any x ∈ R
N , and vn+1

j approximates v(xj , tn+1). If
the reconstruction I[V n] is of degree r, then the consistency error of the scheme is
estimated by

EΔt,Δx ≤ C
Δxr

Δt
(2.3)

(note that in this situation, the best accuracy of the scheme would, in principle, be
achieved by performing a single time step). If the Hamiltonian H depends also on x,
then the representation formula (2.1) takes a more general form (see [4]) and in the
consistency analysis, there arises a further error term related to the approximation of
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characteristics (see [11] for a complete analysis). More precisely, if characteristics are
approximated with order p, the full consistency estimate reads

EΔt,Δx ≤ C1Δtp + C2
Δxr

Δt
.(2.4)

In this case, both the term Δtp and the need for a global minimum search in (2.2)
make it unfeasible to perform a single time step when approximating the solution
at a fixed time T . Note that according to (2.4), the scheme is consistent provided
Δxr = o(Δt) and that the highest consistency rate is achieved for

Δt ∼ Δx
r

p+1 .

We briefly review here the convergence theory developed in [13] for the scheme
(2.2). Assume that (1.1) is posed on R and discretized on an infinite uniform grid
with nodes xj = jΔx (j = 0,±1,±2, . . .). Also assume that the Hamiltonian function
H is a W 2,∞ function and that

H ′′(p) ≥ mH > 0.(2.5)

The key assumption is that for any Lipschitz continuous function v(x), once
defined the sequence V = {vj}j = {v(xj)}j , the interpolation operator I[V ] satisfies,
for some constant C < 1,

I[V ](xk) = v(xk) , |I[V ](x) − I1[V ](x)| ≤ C max
xk∈U(x)

|vk+1 − 2vk + vk−1|,(2.6)

where by I1[V ] we denote the P1, i.e., piecewise linear, interpolation on the sequence
V , and by U(x) = (x − h−Δx, x + h+Δx) the stencil of the reconstruction I[V ](x).
For example, a quadratic Lagrange reconstruction can be performed taking one node
on the left and two nodes on the right of the point x (in this case, h− = 1, h+ = 2),
or two nodes on the left and one on the right (and in this case, h− = 2, h+ = 1). In a
second order ENO reconstruction (see [25]), both cases are possible depending on the
solution (and thus, h− = h+ = 2). A third order Lagrange reconstruction is typically
performed using two nodes on the left and two on the right, so that h− = h+ = 2.
In the third order ENO case, h− = h+ = 3 and so forth. It is proved in [13] that
condition (2.6) is satisfied for Lagrange and ENO reconstructions up to the fifth order
if the reconstruction stencil includes the interval [xj , xj+1].

Under such assumptions it is possible (see [13]) to prove the following.
Theorem 2.1. Consider the scheme (2.2) applied to (1.1) with N = 1. Assume

that (2.5), (2.6) hold, that Δx = O(Δt2), and that v0 is Lipschitz continuous. Then,
the numerical solution V n = {vnj }j (with vnj defined by (2.2)) satisfies

‖I[V n] − v(nΔt)‖∞ → 0

(where v is the solution of (1.1)) for 0 ≤ n ≤ T/Δt as Δt → 0.

3. A general form of WENO interpolation. Although the construction of
a WENO interpolation is a well-established matter, we will give here some details of
the procedure, since it is usually treated and used in a different framework. In this
section, we will not assume a uniform mesh spacing.

To construct a WENO interpolation of degree 2n − 1 on the interval [xj , xj+1],
we start from the Lagrange polynomial built on the stencil S = {xj−n+1, . . . , xj+n}
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and written in the form

Q(x) =

n∑
k=1

Ck(x)Pk(x),(3.1)

where the “linear weights” Ck are polynomials of degree n−1 and the Pk are polyno-
mials of degree n interpolating V on the stencil Sk = {xj−n+k, . . . , xj+k}, k = 1, . . . , n
(note that all the stencils Sk overlap on the interval [xj , xj+1], and that the depen-
dence on j has been dropped in this general expression). The nonlinear weights are
then constructed so as to obtain an approximation of the highest degree if suitable
smoothness indicators βk give the same result on all stencils. This leads us to define

αk(x) =
Ck(x)

(βk + ε)2
(3.2)

(with ε a properly small parameter, usually of the order of 10−6), and then the
nonlinear weights as

wk(x) =
αk(x)∑
l αl(x)

,(3.3)

where, following [25], the smoothness indicators are typically computed as

βk =

n∑
l=1

∫ xj+1

xj

Δx2l−1(P
(l)
k )2 dx.(3.4)

In the section on numerical tests we shall consider some different expressions for the
smoothness indicators, such as the one proposed in [17], which does not depend on
the first derivative of the function.

Last, the WENO interpolation reads

I[V ](x) =
n∑

k=1

wk(x)Pk(x).(3.5)

Note that usually one is interested in computing the reconstruction in specific
points in the cell. In this case the polynomials Ck take some specific value.

Let us now turn back to the linear weights Ck, which have not been given a
precise expression. Due to (3.1) and to the definition of the polynomials Pk, the Ck

are characterized by the fact that Q(x) should be the interpolating polynomial of
V (x) on the stencil S. Since Pk interpolates V on the stencil Sk, it would be natural
to require that Ck should vanish at the nodes outside Sk, and that in the nodes of S
the nonzero weights should have unit sum. In this way, if Pk is the polynomial that
interpolates the function on Sk, then (3.1) is the polynomial that interpolates V on S.

Taking into account that the number of nodes belonging to S but not to Sk is
precisely n, we thus infer that the linear weights must necessarily have the form

Ck(x) = γk
∏

xl∈S\Sk

(x− xl) = γkC̃k(x)(3.6)

with γk to be determined in order to have unit sum. Note that the conditions

n∑
k=1

Ck(xi) = 1(3.7)
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for each xi ∈ S apparently constitute a set of 2n equations in n unknowns. Actually,
the correct perspective to look at these conditions is the following. The left-hand
side of (3.7) is a polynomial of degree n− 1 (computed at xi), and on the right-hand
side we have the polynomial p(x) ≡ 1. Therefore, imposing that the two polynomials
coincide on more than n − 1 points is equivalent to impose that they are identical.
Now, it is easy to show that the monic polynomials C̃k, k = 1, . . . , n, are independent
and form a basis of the space Pn−1 of polynomials of degree n− 1. Condition

n∑
k=1

Ck(x) = 1 ∀x ∈ R(3.8)

uniquely determines the constants γk as a polynomial identity.
Condition (3.8) can be conveniently satisfied by imposing it on a suitable set of

points. Consider first the node xj−n+1. Then, using (3.6) into (3.1), we note that,
among all the linear weights computed at xj−n+1, the only nonzero weight is C1, so
that

Q(xj−n+1) = C1(xj−n+1)P1(xj−n+1) = C1(xj−n+1)vj−n+1(3.9)

and this implies that C1(xj−n+1) = 1 and allows us to compute γ1. On the other
hand, in the following node xj−n+2, the nonzero weights are C1 and C2, and with a
similar argument we obtain the condition

Q(xj−n+2) = C1(xj−n+2)P1(xj−n+2) + C2(xj−n+2)P2(xj−n+2)(3.10)

= [C1(xj−n+2) + C2(xj−n+2)]vj−n+2,

which implies that C1(xj−n+2) + C2(xj−n+2) = 1, whence γ2 can be computed. Fol-
lowing this guideline, we finally obtain the set of conditions

k∑
i=1

Ci(xj−n+k) = 1 (k = 1, . . . , n),(3.11)

that is, more explicitly,

k∑
i=1

γi
∏

xl∈S\Si

(xj−n+k − xl) = 1 (k = 1, . . . , n),(3.12)

which is a linear triangular system in the unknowns γi.
Although the construction outlined in this section does not require a constant

space step, the problem of giving an explicit expression to the coefficients γi is consid-
erably easier in the case of constant Δx. This case will be treated in detail in section
4, along with the study of sign for the linear weights. In the next subsections we give
two examples of this construction (on a uniform mesh), including the expressions for
the smoothness indicators (3.4). The resulting schemes will be used in the section on
numerical tests.

3.1. Second–third order WENO interpolation. To construct a third order
interpolation we start from two polynomials of second degree, so that

I[V n](x) = wLPL(x) + wRPR(x),(3.13)
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where PL(x) and PR(x) are second order polynomials constructed, respectively, on
the nodes xj−1, xj , xj+1 and on the nodes xj , xj+1, xj+2. The two linear weights CL

and CR are first degree polynomials in x, and according to the general theory outlined
so far, they read

CL =
xj+2 − x

3Δx
, CR =

x− xj−1

3Δx
,(3.14)

and the expressions of αL, αR, wL, and wR may be easily recovered from the general
form.

According to (3.4), the smoothness indicators have the explicit expressions

βL =
13

12
v2
j−1 +

16

3
v2
j +

25

12
v2
j+1 −

13

3
vj−1vj +

7

6
vj−1vj+1 − 19

3
vjvj+1,(3.15)

βR =
13

12
v2
j+2 +

16

3
v2
j+1 +

25

12
v2
j −

13

3
vj+2vj+1 +

7

6
vj+2vj − 19

3
vjvj+1.(3.16)

3.2. Third–fifth order WENO interpolation. To construct a fifth order in-
terpolation we start from three polynomials of third degree:

I[V n](x) = wLPL(x) + wCPC(x) + wRPR(x),(3.17)

where the third order polynomials PL(x), PC(x), and PR(x) are constructed, respec-
tively, on xj−2, xj−1, xj , xj+1, on xj−1, xj , xj+1, xj+2, and on xj , xj+1, xj+2, xj+3. The
weights CL, CC , and CR are second degree polynomials in x, and have the form

CL =
(x− xj+2)(x− xj+3)

20Δx2
, CC =

(x− xj−2)(x− xj+3)

10Δx2
,(3.18)

CR =
(x− xj−2)(x− xj−1)

20Δx2
,

while the smoothness indicators βC and βR have the expressions

βC =
61

45
v2
j−1 +

331

30
v2
j +

331

30
v2
j+1 +

61

45
v2
j+2 −

141

20
vj−1vj +

179

30
vj−1vj+1(3.19)

+
293

180
vj−1vj+2 − 1259

60
vjvj+1 +

179

30
vjvj+2 − 141

20
vj+1vj+2,

βR =
407

90
v2
j +

721

30
v2
j+1 +

248

15
v2
j+2 +

61

45
v2
j+3 −

1193

60
vjvj+1 +

439

30
vjvj+2(3.20)

− 683

180
vjvj+3 − 2309

60
vj+1vj+2 +

309

30
vj+1vj+3 − 553

60
vj+2vj+3,

and βL can be obtained using the same set of coefficients of βR in a symmetric way
(that is, replacing the indices j − 2, . . . , j + 3 with j + 3, . . . , j − 2).

It is interesting to check that, due to their structure, the linear weights are always
positive in the interval [xj , xj+1] for n = 2, 3. This also means that pointwise the
linear combination (3.5) is in fact a convex combination, and this has important
consequences at the level of convergence analysis. We will prove in the next section
that this property holds for linear weights up to an arbitrary order.
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4. On the positivity of the weights in WENO reconstruction. We prove
in this section that the positivity result for the weights in WENO interpolation, ob-
tained in the previous section by direct computation up to third–fifth order, actually
holds in general. In addition, we give an explicit expression for the linear weights in
the case of evenly spaced nodes.

It is worth pointing out that this result of positive sign for the linear and nonlin-
ear weights is not in contrast with the well-known situation in which the weights may
change sign (see [26]). In fact, this latter situation may occur in the case of recon-
structions based on cell averages instead of pointwise values such as the interpolation
procedure above.

We first give a general proof of positivity for the linear weights Ck(x).
Theorem 4.1. Let {xi} be a family of consecutively numbered points of R.

Then, once the Lagrange polynomial Q(x) of a given function f(x) built on the sten-
cil S = {xj−n+1, . . . , xj+n} is written in the form (3.1), the linear weights Ck(x)
(k = 1, . . . , n) are nonnegative for any x ∈ (xj , xj+1). Moreover,

∑
k Ck(x) ≡ 1.

Proof. Let us denote by Q(l,m)(x) (with j − n + 1 ≤ l ≤ j < j + 1 ≤ m ≤ j + n
and m− l ≥ n) the interpolating polynomial constructed on the stencil {xl, . . . , xm},
so that

Q(x) = Q(j−n+1,j+n)(x)(4.1)

and, moreover,

Pk(x) = Q(j−n+k,j+k)(x).(4.2)

We will also write a generic Q(l,m)(x) as

Q(l,m)(x) =
∑
k

C
(l,m)
k (x)Pk(x),(4.3)

where the summation may be extended to all k = 1, . . . , n by setting C
(l,m)
k = 0

whenever the stencil of Pk is not included in {xl, . . . , xm}. Therefore, the final linear
weights will be

Ck(x) = C
(j−n+1,j+n)
k (x).(4.4)

We proceed by induction on the degree of Q(l,m), given by i = degQ(l,m) = m− l,
starting with i = n up to i = 2n − 1. First we prove that the claim of the theorem
extends to all polynomials Q(l,m)(x) defined in (4.3). The claim is obviously true for

Q(j−n+k,j+k)(x) by (4.2). In this case the coefficients C
(l,m)
k = 1, C

(l,m)
s ≡ 0, s �= k.

Then, we assume the claim is true for the set of linear weights C
(l,m)
k (x) of a generic

Q(l,m)(x) such that m− l = i and add a node to the right (adding a node to the left
leads to an analogous computation). By inductive assumption we have, for any l and

m such that l ≤ j < j + 1 ≤ m and m − l = i, that (4.3) holds with C
(l,m)
k (x) ≥ 0.

On the other hand, by elementary interpolation theory arguments (Neville’s recursive
form of the interpolating polynomial),

Q(l,m+1)(x) =
xm+1 − x

xm+1 − xl
Q(l,m)(x) +

x− xl

xm+1 − xl
Q(l+1,m+1)(x).(4.5)

Note that degQ(l,m) = degQ(l+1,m+1) = i, and that both fractions which multiply
Q(l,m)(x) and Q(l+1,m+1)(x) are positive as long as x ∈ (xj , xj+1). Therefore, using
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(4.3) into (4.5), we get

Q(l,m+1)(x) =
∑
k

[
xm+1 − x

xm+1 − xl
C

(l,m)
k (x) +

x− xl

xm+1 − xl
C

(l+1,m+1)
k (x)

]
Pk(x).(4.6)

The term in square brackets is C
(l,m+1)
k (x) and it is immediate to check that it is

nonnegative. Iterating this argument up to Q(j−n+1,j+n)(x) completes the proof of
nonnegativity for all the linear weights Ck(x).

Last, setting f(x) ≡ 1, we also have Q(x) ≡ 1 and, for any k, Pk(x) ≡ 1. Plugging
these identities into (3.1) we obtain

∑
k Ck(x) ≡ 1.

We turn now to the problem of giving an explicit expression to the linear weights
in the situation of evenly spaced nodes. The expression of the weights for the linear
scheme is

Ck = γk
∏

xl∈S\Sk

(x− xl).

First observe that the polynomial Ck(x) does not change sign in the interval [xj , xj+1].
More precisely, the sign of it, in this interval, is given by sign(γk)(−1)n+k. Therefore,

Ck(x) > 0 ∀x ∈ [xj , xj+1] ∀k, n ⇔ signγk = (−1)n+k.(4.7)

For simplicity, set j = n in the definition of the stencil S, so that S = {x1, . . . , x2n}.
Let us introduce the integer stencils

S̃ = S/Δx, S̃k = Sk/Δx.

Then the polynomials Ck can be written as

Ck(Δxξ) = γ̃k
∏

l∈S̃\S̃k

(ξ − l),

where γ̃k = γkΔxn−1. The nondimensional constants γ̃k satisfy the condition

k∑
i=1

γ̃i

2n∏
l=1

l �∈(i,...,i+n)

(i− l) = 1.

Introducing now the matrix

aki =

∏2n
l=1(k − l)∏i+n
l=i (k − l)

=
(k − 1)!(2n− k)!

(n + i− k)!(k − i)!
(−1)n+i,(4.8)

the system can be written as

k∑
i=1

akiγ̃i = 1.

Let μi ≡ (−1)n+iγ̃i. Then, such constants satisfy the triangular system

k∑
i=1

|aki|μi = 1,(4.9)
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and according to (4.7) Ci(x) > 0, x ∈ [xn, xn+1] if and only if μi > 0.
The solution to system (4.9) can be explicitly given. In fact, we will prove now

that

μi =
n!(n− 1)!

(n− i)!(i− 1)!(2n− 1)!
(i = 1, . . . , n).(4.10)

Actually, plugging (4.10) and (4.8) into (4.9) we obtain the set of conditions that
we want to check:

k∑
i=1

(k − 1)!(2n− k)!n!(n− 1)!

(n + i− k)!(k − i)!(n− i)!(i− 1)!(2n− 1)!
= 1.

These relations can be rearranged in the form

(k − 1)!(2n− k)!

(2n− 1)!

k∑
i=1

(
n

k − i

)(
n− 1
i− 1

)
= 1,

and, hence, rewriting the first term and shifting the summation index as j = i− 1,

k−1∑
j=0

(
n

k − 1 − j

)(
n− 1
j

)
=

(
2n− 1
k − 1

)
,

which is in turn a special case of the identity1 (see [3])

N∑
j=0

(
n

N − j

)(
m
j

)
=

(
n + m
N

)

with N = k − 1 and m = n− 1.
We also prove here that the μi are inverse of integers. In fact, note first that by

(4.10), μi = μn−i+1, so that it suffices to prove the claim for i ≤ (n+ 1)/2. Then, we
rewrite the μi as

μi =

⎧⎪⎪⎨
⎪⎪⎩

n!

(2n− 1)!
if i = 1,

(n− i + 1) · · · (n− 1)n(n− 1)!

(i− 1)!(2n− 1)!
if i > 1.

(4.11)

While the claim is obvious if i = 1, if i > 1, we derive from (4.11)

μi =
(2n− 2i + 2) · · · (2n− 2)

2i−1(i− 1)!(n + 1) · · · (2n− 1)
.

Now, if i ≤ (n+1)/2, then 2n−2i+2 ≥ n+1 and, therefore, any term of the product
(2n−2i+2) · · · (2n−2) can be simplified with a term of the product (n+1) · · · (2n−1).
This completes the proof of the claim.

We report in Table 1 the value of 1/μi for values of n up to n = 8.

1We thank professor Corrado Falcolini for bringing this result to our attention.
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Table 1

Values of 1/μi for the first 8 values of n.

n 1/μi

1 1
2 3, 3
3 20, 10, 20
4 210, 70, 70, 210
5 3024, 756, 504, 756, 3024
6 55440, 11088, 5544, 5544, 11088, 55440
7 1235520, 205920, 82368, 61776, 82368, 205920, 1235520
8 32432400, 4633200, 1544400, 926640, 926640, 1544400, 4633200, 32432400

5. A sufficient condition for convergence. We briefly check here that the
convergence theory developed in [13] may be applied to the scheme under considera-
tion. To this end, we work in the framework of Theorem 2.1 and prove the following.

Theorem 5.1. Assume that V = {vj}j = {v(xj)}j with v(x) a Lipschitz contin-
uous function. Then, if I[V ] is computed by (3.5), assumption (2.6) is satisfied for
n ≤ 5.

Proof. First, the condition

I[V ](xk) = v(xk)(5.1)

is clearly satisfied since (3.5) is built as an interpolation. Concerning the second part
of (2.6), namely,

|I[V ](x) − I1[V ](x)| ≤ C max
xk∈U(x)

|vk+1 − 2vk + vk−1|(5.2)

with C < 1, this condition is satisfied for all the polynomials Pk(x) if n ≤ 5, as
proved in [13], since all the stencils Sk include the interval [xj , xj+1]. Although the
structure under consideration for I[V ] is not globally polynomial, it is easy to see
from (3.2), (3.3) that once x is given, since all the linear weights Ck are nonnegative
by Theorem 4.1, then the right-hand side of (3.5) is in fact a convex combination of
the polynomials Pk. Therefore,

min
k

Pk(x) ≤ I[V ](x) ≤ max
k

Pk(x)(5.3)

and, therefore, the constant C appearing in (2.6) is the same as obtained in [13]
for polynomials of degree n. That is, (2.6) is satisfied with C < 1 up to WENO
interpolations of fifth–ninth order.

Remark. The positivity of the linear weights, obtained in the framework of WENO
reconstructions, also allows to prove a further result related to Lagrange reconstruc-
tions. Actually, the bound (5.3) does not require I[V ] to be in the form (3.5), but it
also applies to the form (3.1). Therefore, (2.6) is also satisfied for Lagrange recon-
structions up to the ninth order, at least if the reconstruction stencil is symmetrical,
which corresponds to odd orders of interpolation. Moreover, in the case of even (up
to the eighth) orders, an analogous result can be obtained. More precisely, if a sixth
order interpolation is performed using the nodes xj−3, . . . , xj+3, the linear weights
have the expressions

C1(x) =
(x− xj+2)(x− xj+3)

30Δx2
,
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C2(x) = − (x− xj−3)(x− xj+3)

15Δx2
,

C3(x) =
(x− xj−3)(x− xj−2)

30Δx2
,

whereas if an eighth order interpolation is performed using the nodes xj−4, . . . , xj+4,
the linear weights read

C1(x) = − (x− xj+2)(x− xj+3)(x− xj+4)

336Δx3
,

C2(x) =
(x− xj−4)(x− xj+3)(x− xj+4)

112Δx3
,

C3(x) = − (x− xj−4)(x− xj−3)(x− xj+4)

112Δx3
,

C4(x) =
(x− xj−4)(x− xj−3)(x− xj−2)

336Δx3
.

Again, a direct computation shows that Ck(x) > 0 for x ∈ [xj , . . . , xj+1], so that (5.3)
(and hence (2.6)) still holds.

6. Numerical tests. In this section we present the results of several numerical
tests in which we compare the WENO scheme described with P1, P2, cubic Lagrange,
and third order ENO schemes. The WENO schemes considered are of second–third
order and third–fifth order, and the two-dimensional reconstruction has been imple-
mented by a tensor product of one-dimensional interpolations. The minimization step
has been performed by bisection in the one-dimensional case, and by the Powell-like
routine PRAXIS (taken from the NETLIB repository at ftp.netlib.org) in the two-
dimensional examples. In order to evaluate the accuracy of the reconstruction, the
tolerance in the minimization phase has been set to an order of magnitude far lower
than the truncation error, although this may have somewhat slowed down the scheme.
The upwinding along characteristics has been performed by means of a plain Euler
method as in (2.2) (in the situation of H depending on the gradient alone, this choice
has the best accuracy anyway).

Errors have been expressed in terms of the relative discrete L∞ norm, defined as

ε∞,rel =
maxj |vj − v(xj)|

maxj |vj | .

The computation of relative discrete L1 norm of the errors has given similar indications
and is therefore omitted.

Unless otherwise stated, figures showing approximate solutions have been ob-
tained with the WENO 2/3 scheme.

In addition to the usual choice (3.4) as proposed by Shu, which has been denoted
by S in the tables, some different possibility has been considered for the smoothness
indicator. An indicator based on the second derivative alone, that is,

βk =

∫ xj+1

xj

Δx3(P ′′
k )2dx,(6.1)
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has been denoted by D2 in the tables, whereas an indicator which only takes into
account the highest order derivative, namely,

βk =

∫ xj+1

xj

Δx2n−1(P
(n)
k )2dx,(6.2)

has been implemented—it clearly coincides with the indicator D2 for the second–third
order scheme, and has been denoted by D3 for the third–fifth order scheme. Last,
as proposed by Jiang and Peng (see [17]), a smoothness indicator which takes into
account all derivatives but the first, that is,

βk =

n∑
l=2

∫ xj+1

xj

Δx2l−1(P
(l)
k )2dx,(6.3)

has been implemented for the third-fifth order scheme and denoted by D2+D3. Al-
though the creation of singularities in HJ equations is at the level of the gradient, and
therefore it could seem natural to drop first derivatives in the smoothness indicator,
nevertheless, we will show that the use of the full expression (3.4) seems to be the
most robust choice, although it might not be the most accurate one in any situation.
We have summarized in Table 7 a comparison of the WENO schemes (with various
smoothness indicators) with P1, P2, cubic, and third order ENO implementations of
(2.2) on all numerical tests, in the standard setting of a 50 × 50 grid (50 nodes for
test 1), and after the onset of the singularity for tests 1, 2, and 4.

Test 1: One-dimensional periodic solution. This test (also considered in
[6], [20], [17]) deals with the HJ equation{

vt(x, t) + 1
2 (vx(x, t) + 1)2 = 0,

v(x, 0) = v0(x) = − cos(πx),
(6.4)

considered in [0, 2], with periodic boundary conditions. The approximate solution
is computed before the singularity, at T = 0.8/π2, with 4 time steps, and after the
singularity, at T = 1.5/π2, with 5 time steps. Plots of exact vs. approximate solutions
are shown in Figure 1 and relative errors obtained with the Shu smoothness indicator
are compared in Tables 2–3.

Note that according to the consistency estimate (2.3), the convergence rates
should be p = 4 for the WENO3 scheme and p = 6 for the WENO5 scheme, since
the time step has been kept constant. Roughly speaking, this behavior is confirmed
by numerical tests, although with a slight decrease in the convergence rate after the
onset of the singularity. However, note that even in this latter case the computation
of the approximate solution is highly accurate. If the exact solution v is semiconcave
(roughly speaking, this means that it can be written as the sum of a concave and a
W 2,∞ function), this fact can be heuristically explained as follows. At a time step n
and for a given node xj , the reconstruction is performed at an “upwind” point which
in the Lax–Hopf formula would be a minimum of the function

Fn,j(a) = ΔtH∗(a) + v(tn−1, xj + aΔt).

Now, the function to be minimized contains two terms. The first is smooth, due to
the assumptions on H, whereas the second is semiconcave. Their sum is therefore
semiconcave and it is known (see [4]) that minima of semiconcave functions can occur
only at points where the function is at least differentiable. Although the scheme in
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Fig. 1. Approximate vs. exact solution for test 1. N = 50 points have been used. (a) Initial
condition. (b) Solution before singularity. (c) Solution after singularity.
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Table 2

Errors before and after the singularity for test 1, WENO3 scheme.

WENO 3rd order

Before singularity After singularity

N Relative L∞-error L∞ order Relative L∞-error L∞ order

25 2.52× 10−3 2.88× 10−3

50 8.77× 10−5 4.1 5.12× 10−5 5.8

100 1.53× 10−5 2.5 2.19× 10−6 4.5

200 9.63× 10−7 3.9 2.39× 10−7 3.1

Table 3

Errors before and after the singularity for test 1, WENO5 scheme.

WENO 5th order

Before singularity After singularity

N Relative L∞-error L∞ order Relative L∞-error L∞ order

25 1.29× 10−3 3.05× 10−3

50 1.87× 10−5 6.1 5.83× 10−6 9.0

100 9.13× 10−7 4.3 7.25× 10−8 6.3

200 2.01× 10−8 5.5 1.89× 10−9 5.2

fact uses a discretization of the function Fn,j , this analysis seems to give a convincing
explanation of numerical results.

In the summarizing Table 7 we note that the performance of the third order
schemes is similar and that there is an apparent loss of accuracy in the D2 version of
the WENO3 scheme, as well as in the D2+D3 version of the WENO5 scheme.

Test 2: Generation of a two-dimensional singularity. This test refers to
the HJ equation {

vt(x, t) + 1
2 |∇v(x, t)|2 = 0,

v(x, 0) = v0(x) = max(0, 1 − |x|2).(6.5)

The problem is considered in [−2, 2]2. For any positive time, the solution of this test
problem has discontinuous second derivatives along the circle |x| = 1 and generates a
further singularity in the gradient at the origin for t ≥ 1/2.

The exact solution of (6.5) can be explicitly computed and for t ≥ 1/2 reads

v(t, x) =

{
(|x|−1)2

2t if |x| ≤ 1,
0 if |x| ≥ 1.

The solution, computed with Δt = 0.1, is shown in Figure 2 at t = 0 and t = 0.5.
Table 4 shows execution times (on a SUN E 420 R platform) at t = T = 0.5 for
different reconstructions and different smoothness indicators, on a 50 × 50 grid. The
error Table 7 shows that the solution is computed with nearly the same accuracy by
all the schemes, and the use of nonoscillatory interpolation does not seem to give any
advantage (this is related to the lack of uniform semiconcavity of the solution; see
the above discussion of this point). We point out, in any case, that the singularity
in the gradient is well resolved, and that the scheme does not introduce instabilities.
However, looking at Figure 3, in which we zoom the solution close to the x1-x2 plane
for the third order linear, ENO, and WENO schemes, we may see that the plain cubic
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Fig. 2. Approximate solution for test 2. (a) Initial condition. (b) Solution at t = 0.5.

Table 4

Comparison of CPU times for different schemes on test 2.

Scheme CPU

P1 34s

P2 41s

cubic 52s

ENO 3 3m36s

WENO 2/3 S 1m43s

WENO 2/3 D2 1m55s

WENO 3/5 S 3m55s

WENO 3/5 D2 3m55s

WENO 3/5 D3 4m02s

WENO 3/5 D2+D3 4m05s

reconstruction, as expected, introduces a zone of undershoot in the neighborhood
of the circle |x| = 1, where a discontinuity in the second derivative appears. This
artifact is avoided by nonoscillatory schemes, among which, however, the WENO
scheme performs apparently better in terms of CPU time. Also, the behavior of the
scheme is remarkably isotropic, as shown in the scatter plot of Figure 4, in which at
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Fig. 3. Zoom of the approximate solutions for test 2. (a) Linear third order scheme. (b) Third
order ENO scheme. (c) Third order WENO scheme.
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Fig. 4. Scatter plot of the approximate solution for test 2.

any node the numerical solution is plotted as a function of |x| for the cubic Lagrange
reconstruction (ENO and WENO reconstructions give similar results).

Test 3: Uniformly semiconcave solution. This test refers again to the HJ
equation {

vt(x, t) + 1
2 |∇v(x, t)|2 = 0,

v(x, 0) = v0(x) = min(0, |x|2 − 1),
(6.6)

considered in [−2, 2]2, in which the initial condition v0 has been changed to a semi-
concave function.

The exact solution of (6.6) is now uniformly semiconcave for any positive time;
more precisely, it has the explicit form

v(t, x) =

{ |x|2
2t+1 − 1 if|x| ≤ 2t + 1,

0 if|x| ≥ 2t + 1.

The approximate solution is shown in Figure 5 at t = 0 and t = 0.5 with a 50 × 50
nodes computational grid. Table 7 reports a strong reduction of the error with respect
to the previous test. This shows that in the case of semiconcave solutions, numer-
ical schemes can take advantage of higher consistency rates, although the piecewise
quadratic structure of the solution is too simple to be really discriminating in this
respect. Among different smoothness indicators, the best accuracy is achieved by
D2+D3 indicator, whereas other choices yield similar results.

Test 4: Two-dimensional periodic solution. This test (taken again from [6],
[17], [20]) deals with the HJ equation{

vt(x, t) +
(vx1 (x,t) + vx2 (x,t)+1)2

2 = 0,

v(x, 0) = v0(x) = − cos π(x1+x2)
2 ,

(6.7)

considered in [−2, 2]2, with doubly periodic boundary conditions.
In this situation, the structure of the solution is more complex, and we have

tested the various schemes in terms of convergence rate using computational meshes
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Fig. 5. Approximate solutions for test 3. (a) Initial condition. (b) Solution at t = 0.5.

of 25 × 25, 50 × 50, 100 × 100, and 200 × 200 nodes. The approximate solution has
been computed before the singularity, at T = 0.8/π2, with 4 time steps, and after
the singularity, at T = 1.5/π2, with 5 time steps. The Euler method has been used
to approximate characteristics and reconstruction has been performed by the WENO
Shu version. Relative errors are reported in Tables 5–6, whereas Figure 6 shows the
approximate solution plotted at t = 0 and t = T = 1.5/π2.

Error tables confirm the theoretical convergence rate of the schemes in the pres-
ence of a smooth solution, whereas, after the singularity, convergence rate of the
WENO5 scheme is heavily underestimated by the theory (we suppose this might be
due to particular circumstances of the test).

The comparison among the different schemes, in Table 7, shows (at fixed 50× 50
grid and after the singularity) similar performances except for a loss in accuracy of the
WENO3 D2 scheme. At this level the fifth order scheme has no better performance,
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Table 5

Errors before and after the singularity for test 4, WENO3 scheme.

WENO 3rd order

Before singularity After singularity

N Relative L∞-error L∞ order Relative L∞-error L∞ order

25 3.00× 10−3 1.00× 10−2

50 4.66× 10−4 2.6 8.68× 10−5 6.8

100 2.68× 10−5 4.1 9.35× 10−6 3.2

200 1.48× 10−6 4.1 2.97× 10−7 4.4

Table 6

Errors before and after the singularity for test 4, WENO3 scheme.

WENO 5th order

Before singularity After singularity

N Relative L∞-error L∞ order Relative L∞-error L∞ order

25 1.28× 10−3 8.55× 10−3

50 4.89× 10−5 4.3 8.53× 10−4 3.6

100 2.07× 10−6 4.5 2.08× 10−6 8.6

200 2.37× 10−8 6.4 5.34× 10−9 8.6

Table 7

Comparison of relative L∞-error for different schemes on tests 1–4.

Scheme Test 1 Test 2 Test 3 Test 4

P1 5.93× 10−3 3.79× 10−2 1.20× 10−2 1.23× 10−2

P2 2.47× 10−4 1.69× 10−2 5.82× 10−3 7.24× 10−4

Cubic 5.12× 10−5 2.54× 10−2 1.20× 10−2 3.18× 10−4

ENO 3 3.51× 10−5 2.75× 10−2 5.80× 10−4 1.43× 10−4

WENO 2/3 S 5.12× 10−5 2.69× 10−2 1.20× 10−2 8.68× 10−5

WENO 2/3 D2 6.81× 10−4 3.15× 10−2 1.20× 10−2 1.29× 10−3

WENO 3/5 S 5.83× 10−6 2.52× 10−2 3.17× 10−3 8.53× 10−4

WENO 3/5 D2 7.52× 10−6 2.58× 10−2 1.14× 10−3 1.45× 10−4

WENO 3/5 D3 3.00× 10−6 2.97× 10−2 3.34× 10−3 4.13× 10−5

WENO 3/5 D2+D3 6.17× 10−5 2.68× 10−2 8.73× 10−5 1.78× 10−4

although looking at Table 5 we see that it would have a great improvement passing
from 50 to 100 nodes.

Conclusions. We have built a class of WENO large time-step schemes based
on an SL formulation. Under suitable assumptions, convergence of the schemes can
be proved up to the ninth order. Theoretical consistency analysis is generally con-
firmed by numerical experiments, even when singular solutions are taken into account.
Among all the smoothness indicators considered, there has been now and then a con-
siderably better or worse accuracy for some of them. The original Shu indicator,
however, seems to be a robust and accurate choice in all the cases tested.

While this work has been focused on the special case of (1.1), this class of schemes
can be immediately adapted (see the appendix in [4]) to treat dynamic programming
equations of the Bellman type

v + max
a∈A

{−b(x, a) ·Dv − f(x, a)} = 0(6.8)
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Fig. 6. Approximate solutions for test 4. (a) Initial condition. (b) Solution at t = 1.5/π2.

(which leads to a convex Hamiltonian and includes (1.1) as a special case) or, in even
greater generality, of the nonconvex Isaacs type

v + min
a2∈A2

max
a1∈A1

{−b(x, a1, a2) ·Dv − f(x, a1, a2)} = 0,(6.9)

although in such settings no complete theory exists on the high-order case.
The advantage of WENO over ENO reconstructions is apparent in terms of CPU

time, while the accuracy in both cases seems to be comparable with the accuracy of
linear Lagrange reconstructions. WENO techniques can be valuable, however, when
special information associated to singularities (e.g., switching curves for dynamic pro-
gramming equations) requires a nonoscillatory behavior of the approximation scheme.
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