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1 Personal data

Born in Palermo, Italy, on January 11, 1958.
Full professor of Numerical Analysis, Faculty of Science, University of Catania, Italy

Office: Department of Mathematics and Informatics
University of Catania
Viale Andrea Doria 6
95125 Catania, Italy

Tel.: +39-095-7383039
Fax: +39-095-330094
email: russo@dmi.unict.it
www: http://www.dmi.unict.it/~russo
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2 Education and employment

2000-present Full professor of Numerical analysis, University of Catania.

2001-2006 Member of the editorial board of SIAM J. Numer. Anal.

1992-2000 Associate professor of Numerical Analysis and Applied Mathematics, Faculty of Science, University
of L’Aquila, Italy.

1990-1992 Researcher in Mathematical Physics, Faculty of Science, University of L’Aquila, Italy.

1987-1990 Post-doctoral position at the Courant Institute of Mathematical Science, New York University.

1987 Philosophy Doctor in Phyisics, University of Catania, Italy. Supervisor, prof. A.M.Anile.

1982-1983 Post graduate research in Solid State Physics, Physics Institute, University of Catania (supervision
prof. E.Rimini).

1982 Laurea degree, Magna cum Laude, in Nuclear Engineering, Politecnico di Milano, Milano, Italy.

3 Teaching activity

3.1 Courses, for each year

1990-91 Teaching assistence (in Italian Esercitazioni) in Classical Mechanics for students in Physics;

1991-92 Teaching assistence in Classical Mechanics for students in Physics;

1992-93 one year course on Approximation Methods (lectures and exercises) for students in Computer Science
and Mathematics.

1993-94 one year course on Approximation Methods (lectures and exercises) for students in Computer Sci-
ence and Mathematics, one six-month course of Basic Numerical Analysis (only lectures) for students in
Computer Science;

1993-94 one year course on Approximation Methods (lectures and exercises) for students in Computer Sci-
ence and Mathematics, one six-month course of Basic Numerical Analysis (only lectures) for students in
Computer Science;

1994-95 one year course on Approximation Methods (lectures and exercises) for students in Computer Sci-
ence and Mathematics, one six-month course of Basic Numerical Analysis (only lectures) for students in
Computer Science;

1995-96 one year course on Approximation Methods (lectures and exercises) for students in Computer Sci-
ence and Mathematics, one six-month course of Basic Numerical Analysis (only lectures) for students in
Computer Science

1996-97 two six-month courses in Numerical Analysis for students in Mathematics (lectures and exercises) and
one six-month course in Numerical Analysis I for students in Computer Science;

1997-98 two six-month courses in Approximation Methods (I and II) for students Informatics and Mathematics,
one six-month course in Numerical Analysis II (only lectures) for students in Informatics and Mathematics,
one six-month course in Basic Numerical Methods II for Diplima in Material Science.

1998-99 two six-month courses in Approximation Methods (I and II) for students Informatics and Mathematics,
one six-month course in Numerical Analysis II (only lectures) for students in Informatics and Mathematics,
one six-month course in Basic Numerical Methods II for Diploma in Material Science.
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1999-2000 two six-month courses in Approximation Methods (I and II) for students Informatics and Math-
ematics, one six-month course in Numerical Analysis II (only lectures) for students in Informatics and
Mathematics, two six-month course in Basic Numerical Methods (I and II) for Diplima in Material Science.

2000 Short course on Numerical Methods (30 hours) for the students of Scuola Superiore per la Formazione
d’Eccellenza (SSC), University of Catania.

2000-2001 One year course in Numerical Analysis (lectures and exercises) for students in Mathematics.

2001-2002 One year course in Numerical Analysis (lectures and exercises) for students in Mathematics.

2002 Short course on Numerical Methods (30 hours) for the students of Scuola Superiore per la Formazione
d’Eccellenza (SSC), University of Catania.

2002 Six-month (50 hour) course on Analysis, design, and didactic simulation in Mathematics, II, in the
framework of the courses for high school teachers Scuola Interuniversitaria Siciliana di Specializzazione
per l’Insegnamento nella Scuola Secondaria (SISSIS).

2002-2003 One year course in Numerical Analysis (lectures and exercises) for students in Mathematics. One
six-month course in Numerical Analysis II for students in Informatics.

2003 Short course on Numerical Methods (30 hours) for the students of Scuola Superiore per la Formazione
d’Eccellenza (SSC), University of Catania.

2002 Three-month (25 hour) course on Topics in Numerical Analyis, in the framework of the courses for high
school teachers (SISSIS).

2003-2004 One six-month course in Numerical Analysis (lectures and exercises) for students in Mathematics
and Informatics.

2004 Short course on Numerical Methods (30 hours) for the students of Scuola Superiore per la Formazione
d’Eccellenza (SSC), University of Catania.

2004 Three-month (25 hour) course on Topics in Numerical Analyis, in the framework of the courses for high
school teachers (SISSIS).

2004 Four month course in Numerical Methods in Engineering, Math#371 (two sessions) at the University of
Michigan, Ann Arbor, Michigan.

2004-2005 Six-month course on Computer programming and numerical methods, for the students of Mathe-
matics.

2005 Short course on Numerical Methods (30 hours) for the students of Scuola Superiore per la Formazione
d’Eccellenza (SSC), University of Catania.

2005 Short course (12 hours) on numerical methods for partial differential equation, for PhD students in
Engineering.

2005 Three-month (25 hour) course on Topics in Numerical Analyis, in the framework of the courses for high
school teachers (SISSIS).

2005-2006 Six-month course on Computer programming and numerical methods, for the students of Mathe-
matics.

2005-2006 One six-month course in Numerical Analysis (lectures and exercises) for students in Mathematics.

2006 Short course on Numerical Methods (30 hours) for the students of Scuola Superiore per la Formazione
d’Eccellenza (SSC), University of Catania.
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2006 Three-month (25 hour) course on Topics in Numerical Analyis, in the framework of the courses for high
school teachers (SISSIS).

2006 Short course (12 hours) on numerical methods for partial differential equation, for the PhD program in
Mathematics for Technology.

2006-2007 One six-month course in Approximation Methods (lectures and exercises) for students in Mathe-
matics.

2006-2007 One six-month course in Numerical Analysis II (lectures and exercises) for students in Mathematics.

2006-2007 One six-month course in Numerical Analysis (lectures and exercises) for students in Mathematics.

2007 Short course on Numerical Methods (30 hours) for the students of Scuola Superiore per la Formazione
d’Eccellenza (SSC), University of Catania.

2007 Three-month (25 hour) course on Topics in Numerical Analyis, in the framework of the courses for high
school teachers (SISSIS).

2007-2008 One six-month course in Numerical Analysis (lectures and exercises) for students in Mathematics.

2008 Short course on Computational Mathematics (30 hours) for the students of Scuola Superiore per la
Formazione d’Eccellenza (SSC), University of Catania.

2008 Three-month (25 hour) course on Topics in Numerical Analyis, in the framework of the courses for high
school teachers (SISSIS).

2008-2009 One six-month course in Numerical Analysis (lectures and exercises) for students in Mathematics.

2009 Three-month (25 hour) course on Topics in Numerical Analyis, in the framework of the courses for high
school teachers (SISSIS).

2009-2010 One six-month course in Numerical Analysis (lectures and exercises) for students in Mathematics.

2010 Short course on Computational Mathematics (30 hours) for the students of Scuola Superiore per la
Formazione d’Eccellenza (SSC), University of Catania.

2010-2011 One six-month course in Numerical Analysis (lectures and exercises) for students in Mathematics,
and one six-moth master course on numerical methods for ordinary and partial differentiale equations for
students in Mathematics.

2011 Short course on Computational Mathematics (30 hours) for the students of Scuola Superiore per la
Formazione d’Eccellenza (SSC), University of Catania.

2011-2012 One six-month course in Numerical Analysis (lectures and exercises) for students in Mathematics,
and one six-moth master course on numerical methods for ordinary and partial differentiale equations for
students in Mathematics.

2012 Short course on Numerical Methods for Ordinary and Partial Differential Equations (30 hours) for the
students of Scuola Superiore per la Formazione d’Eccellenza (SSC), University of Catania.

4 Scientific activity

4.1 Experience abroad

1987-1990 Post doctoral position, Courant Institute of Mathematical Sciences, New York University, New York.

1987 October: visiting by the Fachbereich Mathematik, Universität Kaiserslautern.
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1991-1992 October 1991 - January 1992, and August-September 1992: post-doctoral position, Department of
Mathematics, University of California, Los Angeles, invited by Prof. Caflisch. January 1992: (one week)
Institute for Advanced, Study, Princeton, NJ, invited by Prof. J. Strain. July 1992: visiting, Fachbereich
Mathematik, Universität Kaiserslautern, invited by Prof. H. Neunzert.

1993 July-August: visiting, Department of Mathematics, University of California, Los Angeles. August: De-
partment of Mathematrics, University of Wyoming, Laramie, WY, USA, invited by del Prof. T. Mathew.
September-October: visiting, Fachbereich Mathematik, Universität Kaiserslautern.

1994 July-August: visiting, Department of Mathematics, University of California, Los Angeles.

1995 Febbraio-Marzo: Institute for Advanced Study di Priceton, NJ, invited by Prof. David Levermore.
July-August: visiting, Department of Mathematics, University of Michigan, invited by Prof. P. Smereka.
October: visiting, Fachbereich Mathematik, Universität Kaiserslautern.

1996 July-August: visiting, Department of Mathematics, University of Michigan.

1997 July-August: visiting, Department of Mathematics, University of Michigan. September: two-week visit,
l’Université Paris VI, invited by Prof. B. Perthame.

1998 January: visiting , Department of Mathematics, University of California, Los Angeles. February: visiting,
Université Paul Sabatier, Toulouse, France, invited by Prof. Pierre Degond. July-August: visiting, De-
partment of Mathematics, University of Michigan; Department of Mathematics, University of California,
Los Angeles; Department of Mathematics, University of Wyoming.

1998-99 October 1998-February 1999: visiting , Department of Mathematics, University of Michigan.

1999 August-September: visiting , Department of Mathematics, University of Michigan.

2001 July-August: Department of Mathematics, University of Michigan; Department of Mathematics, Univer-
sity of California, Berkeley (one week), invited by Prof. Strain.

2002 May: Department of Mathematics, University of Michigan.

2003 August: Department of Mathematics, University of Michigan.

2004 September-December: visiting professor, Department of Mathematics, University of Michigan.

2005 February, June, September (one week each time): invited by Prof. Ernst Hairer, Department of Mathe-
matics, University of Geneva, Switzerland.
July: Department of Mathematics, University of Michigan.

2006 March (two weeks): invited by Prof. Kazuo Aoki, Department of Aeronautics and Astronautics, Faculty
of Engineering, Kyoto University, Kyoto, Japan.
August: Department of Mathematics, University of Michigan.

2007 February-March (one month): visiting professor, Department of Mathematics, University of Lyon, France,
invited by Prof. Francis Filbet.
August: Department of Mathematics, University of Michigan.

2008 June (one week): visiting, Department of Mathematics, University of Michigan.

2009 August (one month): visiting professor, Department of Mathematics, University of Michigan.

2010 August (one month): visiting professor, Department of Mathematics, University of Michigan.

2011 August (three weeks): visiting professor, Department of Mathematics, University of Michigan.

2012 August (three weeks): visiting professor, Department of Mathematics, University of Michigan.
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2013 October-December (four months): Gehring professor, Department of Mathematics, University of Michi-
gan.

2015 July (three weeks): visiting professor, Institute de Mathematiques de Bordeaux, France.

4.2 Conferences

Prof. Russo participated to several conferences and summer schools.
The list of invited talks follows.

1. Invited: “A particle method for collisional kinetic equation”, 1988 AMS SIAM Summer Seminar, Colorado
State University, Fort Collins, Colorado, 18-29 Luglio, 1988.

2. Seminar: “A Lagrangian Scheme for Collisional Kinetic Equations”, Numerical Analysis Seminar, Courant
Institute of Marhematical Sciences, New York, 11 Novembre 1988.

3. Invited: “Implicit Particle Methods for the Heat and Navier-Stokes Equations”, International Conference
on “Preconditioning techniques on large sparse linear systems”, Cortona, Italy, September 28–October
2,1992.

4. Invited: “Fast Triangulated Vortex Methods for the 2D Euler Equations”, Eutomech 305, Ercoftac work-
shop on “Dynamics and Geometry of Vortical Structures”, Cortona, June 28–July 2, 1993.

5. Minisymposium: “Free Lagrangian Vortex Methods for Incompressible Euler and Navier-Stokes Equa-
tions”, 1993 SIAM Annual Meeting, Philadelphia, PA, July 12-16, 1993.

6. Invited: “Kinetic Theory of Bubbly Flow”, Workshop on “Exotic application of kinetic theory”, Kaiser-
slautern, September 27–29, 1993.

7. Invited: “Kinetic Theory for Bubbly Flow”, International Conference on “Nonlinear Equations in Many-
Particle Systems”, Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach, Germany, November
28–December 3, 1993.

8. Minisymposium: “Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation”, 1994 SIAM
Annual Meeting, San Diego, CA, July 25-29, 1996.

9. Invited: “Schemi uniformemente accurati per sistemi iperbolici con rilassamento”, Giornate di studio su
problemi iperbolici, Milano, Italy, October 6–7, 1994.

10. Invited: “A Lagrangian Numerical Method for Fluid-Membrane Interaction in 2D and 3D”, Forum on
Vortex Mathods for Engineering Applications, Albuquerque, New Mexico, February 22–24, 1995.

11. Invited: “Kinetic Theory of Bubbly Flow”, French workshop “Couplage Equations”, Saint Malo, March
20–21, 1995.

12. Invited: “Metodi numerici basati su una formulazione Hamiltoniana per il trattamento della interazione
fluido-membrana in 2D e 3D”, Giornate di studio su problemi differenziali iperbolici, Bologna, 9–10 Novem-
bre 1995.

13. Minisymposium: “High Order Methods for Balance Laws”, 1996 SIAM Annual Meeting, Kansas City,
Missouri, July 22-26, 1996.

14. Invited: “A Vlasov-Boltzmann Equation for Bubbly Flow”, Analytische und numerische Approximation-
smethoden für Probleme der Plasmaphysik, der Physik verdünnter Gase und von Halbleitern, Mathema-
tisches Forschungsinstitut Oberwolfach, Oberwolfach, Germany, May 12–18, 1996.

15. Minisymposium: “Metodi Numerici per Modelli Idrodinamici dei Semiconduttori”, III Congresso Nazionale
della SIMAI, Salice Terme (Pavia), May 27-31, 1996.
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16. Minisymposium: “Metodi Numerici per Sistemi Iperbolici con Rilassamento”, III Congresso Nazionale
della SIMAI, Salice Terme (Pavia), 27-31 Maggio 1996.

17. Invited: “High order methods for balance laws”, workshop on Numerical Methods for Kinetic Equations,
Weierstrass-Institut für Angewandte Analysis und Stochastik, Berlin, September 1–5, 1997.

18. Minisymposium: “On the impulse formulation of the Euler equations”, IX International Conference on
Waves and Stability in Continuous Media, Bari, Octber 6–11, 1997.

19. Invited: “High order central schemes for hyperbolic systems of conservation laws”, IPERAQ97, V Incontro
Nazionale sui Problemi di tipo Iperbolico, L’Aquila, November 11–13, 1997.

20. Invited: “High order central schemes for hyperbolic systems of conservation laws”, International school
on ”Problemes non lineaires appliques 1998, Systemes hyperboliques: Noveaux Schemas et nouvelles
applications”, INRIA Rocquencourt, France, March 16–19, 1998.

21. Invited: “Hydrodynamic models for semiconductor device simulations”, Workshop on ”Hyperbolic aspects
of moment closure problems”, FORTH, Heraklion, Crete, Greece, April 1–4, 1998.

22. Invited: “Hydrodynamic models for semiconductor device simulations”, First European Symposium on
Applied Kinetic Theory, Toulouse, May 6–7, 1998.

23. Invited: “Kinetc Theory of Bubbly Flow”, IV Congresso Nazionale SIMAI, Giardini di Naxos (ME), Italy,
June 1–5, 1998.

24. Invited: “An Implicit Monte Carlo Method for Rarefied Gas Dynamics”, Fifth International Workhop on
Mathematical Aspects of Fluid and Plasma Dynamics, Wailea, Maui, Hawaii, June 28–July 3, 1998.

25. Plenary: “Schemi centrali per leggi di bilancio”, IPERPV98, VI Incontro Nazionale sui Problemi di Tipo
Iperbolico, Pavia, Italy, October 1–3, 1998.

26. Invited: “Implicit Monte Carlo Methods for Rarefied Gas Dynamics”, workshop on “Analytical techniques
and asymptotic methods for kinetic problems”, Vienna, October 5–8, 1998.

27. Minisymposium: “Impulse formulation of the Euler equations and fluid-membrane interaction”, Interna-
tional Conference on Industrial and Applied Mathematics (ICIAM) ’99, Edimburgh, July 5–9, 1999.

28. Minisymposium: “Spectral methods for the Boltzmann equation”, ICIAM ’99, Edimburgh, July 5–9, 1999.

29. Invited: “Time relaxed Monte Carlo methods for the Boltzmann equation”, International Congress on
“Nonlinear Equations in Many-Particle Systems”, Mathematisches Forschungsinstitut Oberwolfach, Ober-
wolfach, Germany, December 5–11, 1999.

30. Invited: “Numerical methods for the Boltzmann equation”, International Workshop for numerical methods
for Kinetic and Hyperbolic Equations, Ferrara, December 17–18, 1999.

31. Plenary: “Central schemes for balance laws”, HYP2000, Eighth International Conference on Hyper-
bolic Problems, Theory, Numerics, Applications, Otto-von-Guericke-Universität Magdeburg, February
28–March 3, 2000.

32. Invited: “Central schemes for balance laws”, HCL2000, TMR Workshop on Numerical Methods for Hy-
perbolic Conservation Laws, Valencia, Spain, May 10–12, 2000.

33. Minisymposium: “Implicit-Explicit Runge-Kutta schemes for stiff systems of partial differential dqua-
tions”, WCNA2000, World Congress of Nonlinear Analysis, Catania, Italy, July 19–26, 2000.

34. Invited: “Implicit-Explicit Runge-Kutta schemes for stiff systems of partial differential equations”, final
meeting of the European Network for Training, Mobility, and Research on Nonlinear Hyperbolic Problems,
September 11–13, 2000, Ecole Normale SupÃ c©rieure, Paris.
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35. Invited: “Implicit-Explicit schemes for balance laws”, TMR workshop on “Advances in Mathematical
Semiconductor Modeling”, Pavia, Italy, September 22–23, 2000.

36. Minisymposium: “Central Schemes for balance laws”, 11th ECMI Conference, Torre Normanna, Altavilla
Milicia (Palremo), Italy, September 26–30, 2000.

37. Plenary: “Central schemes for balance laws”, IPERBS 2000 Problemi di Tipo Iperbolico VIII Incontro
Nazionale, Brescia, Italy, November 30–December, 2000.

38. Invited: “Metodi numerici per equazioni iperboliche e cinetiche”, Convegno del Gruppo Nazionale per
Informatica Matematica, Bertinoro, December 11–13, 2000.

39. Invited lecture: “Central schemes for systems with source and for two fluid flows”, THREE-DAY WORK-
SHOP on “Nonlinear Hyperbolic Systems of Conservation Laws”, ETH Zürich, January 24-26, 2001.

40. Invited lecture: “Central WENO schemes for conservation laws”, THREE-DAY WORKSHOP on “Non-
linear Hyperbolic Systems of Conservation Laws”, ETH Zürich, January 24-26, 2001.

41. Summer School: “Central Schemes and Systems of Balance Laws”, series of lectures for the Summer School
on Hyperbolic Partial Differential Equations, Technical University of Hamburg-Harburg, Hamburg, March
2001.

42. Invited: “Central schemes for balance laws”, WASCOM 2001, Porto Ercole (Grosseto), Italy, June 3–9,
2001.

43. Minisymposium: “IMEX Runge-Kutta schemes for hyperbolic systems with relaxation”, 2001 SIAM An-
nual Meeting, San Diego, California, July 3–13, 2001.

44. Invited: “Time Relaxed Monte Carlo Schemes for the Boltzmann Equation”, Granada Euroconference on
Asymptotic Methods and Applications in Kinetic and Quantum Kinetic Theory, September 17–21, 2001.

45. Invited: “Spectral methods for kinetic equations”, TMR Workshop Numerical and asymptotic methods
for kinetic equations, Universität Saarlandes, Saarbruecken, November 29–December 1, 2001.

46. Invited: “Well balanced central schemes on staggered grid”, JournÃ c©es Savoisiennes de mathÃ c©matiques
appliquÃ c©es, EQUATIONS DE SAINT VENANT, ThÃ c©orie et applications, Chambery, France, May
16–17, 2002.

47. Invited: “Level set methods for the evolution of faceted crystals”, Conference on “Fronts, Fluctuations, &
Growth Conference”, Michigan Center for Theoretical Physics University of Michigan, Ann Arbor, May
20–25, 2002.

48. Minisymposium: “Numerical methods for crystal growth”, AMS-UMI Joint International Meeting, June
12-16, 2002.

49. Invited: “Spectral methods for the time dependent, space non-homogeneous Boltzmann equation”, 2nd
International Workshop on Kinetic Theory & Applications, Karlstad University, September 1–3, 2002.

50. Summer School: “Numerical methods for Conservation Laws”, series of lectures for the XXVII Summer
School on Mathematical Physics, Ravello, Italy, September 9-21, 2002.

51. Talk in a summer school: “Spectral Methods for the Boltzmann Equation”, given at the XX School
of Computational Mathematics: Computational Aspects in Kinetic Models, Piano di Sorrento, Napoli
(Italy), September 22-28, 2002.

52. Invited: “Central Schemes for Balance Laws with Application to Shallow Water Equations”, Symposium
on Trends and Applications of Mathematics to Mechanics, STAMM2002, Maiori, September 29-October
4, 2002.
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53. Session: “Numerical methods for balance laws and kinetic equations”, “Around HYperbolic and Kinetic
Equations”, First annual meeting of the HYKE network, Vienna, Austria, February 24–28, 2003.

54. Invited: “Hydrodynamical models for semiconductor device simulation”, workshop on“Analysis and Nu-
merics for Modeling Semiconductor Devices and Biological Channels”, CSCAMM, Niversity of Maryland,
College Park, MD, May 19–23, 2003.

55. Invited: “High-order central Runge-Kutta schemes for conservation laws”, international workshop on
“Very High-Order Numerical Schemes for Conservation Laws”, Newton Institute, Cambridge, UK, May
27–30, 2003.

56. Invited: “Time Relaxed Monte Carlo Methods: effective time discretization for large range of mean free
path”, international workshop on “Direct Simulation Monte Carlo: The Past 40 Years and the Future”,
Milano, Italy, June 2–5, 2003.

57. Invited: “Variable grid methods for kinetic equations”, 3-rd Workshop on Kinetic Theory and Applica-
tions, Karlstad University, Sweden, 15–17 June 2003.

58. Invited: “Implicit-Explicit Runge-Kutta schemes and applications to hyperbilic systems with relaxation”,
international workshop on “Advances and challenges in time integration of PDE’s”, Brown University,
Providence, RI, August 18–20, 2003.

59. Minisymposium: “Finite difference staggered central schemes for conservation laws, Icosahom 2004, Brown
University, June 2004.

60. Invited: “Kinetic Monte Carlo methods for strained epitaxial growth”, Workshop on Issues on computa-
tional transport in meso and nano scales, March 4 & 5, 2005, Center for Numerical Analysis, Institute
for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, Texas,
USA.

61. Invited seminar: ”Computation of Strained Epitaxial Growth in Three Dimensions by Kinetic Monte
Carlo”, Center for Scientific Computation and Mathematical Modeling, University of Maryland, College
Park, March 9, 2005.

62. Invited: “Kinetic Monte Carlo methods for strained epitaxial growth”, First Mediterranean Conference
in Applied Mathematics, Tozeur, Tunisia, March 23-25, 2005.

63. Invited: ”High Order Finite Volume Schemes for Balance Laws with Stiff Source”, Workshop on Founda-
tions of Numerical PDEs, July 7 - July 9, 2005, Foundations of Computational Mathematics (FoCM2005),
Universidad de Cantabria in Santander, Spain.

64. Invited: “Finite volume shock capturing schemes for balance laws”, workshop on New trends on shock
wave theory for hyperbolic dissipative systems, Royal Palace Hotel, Messina, June 17–18, 2005.

65. Minisymposium: ”Kinetic Monte Carlo Simulations of Heteroepitaxial Growth in Three Dimensions”,
Elastic effects in Epitaxially Grown Thin Films, 2005 SIAM Annual Meeting, July 11–15, 2005, Hilton
New Orleans, New Orleans, LA, USA.

66. Invited: ”Kinetic Monte Carlo Simulation of Elastic Effects in Heteroepitaxial Growth”, SEMIC2006,
Recent Advances in Modeling and Simulation of Semiconductor Devices and Circuits, Vienna University
of Technology, Technische Universität Wien, February 16-17, 2006.

67. minisymposium: “Introduction to Level Set Methods”, minisymposium M27, VIII SIMAI Conference,
Baia Samuele (RG), Italy, May 22–26, 2006.

68. Invited: ”Time relaxed Monte Carlo methods for the Boltzmann equation”, RGD25, 25 th International
symposium on Rarefied Gas Dynamics, Saint Petersburg, Russia, July 15–21, 2006.
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69. Invited: “Central Runge-Kutta finite volume schemes for balance laws”, IPERPD2006 - 12th Meeting on
Hyperbolic Equations, Padova, Italy, September 13-15, 2006.

70. Invited: “A Multigrid-Fourier Method for the Computation of Elastic Fields with Application to Het-
eroepitaxy”, International Workshop on Kinetic Theory and Applications, Karlstad University, June 10-
12, 2007.

71. Minisymposium: High-order well-balanced central schems on staggered grids, with application to shallow-
water equations, IC/MP253/025: High-order shock capturing methods for non-linear hyperbolic partial
differential equations, ICIAM 2007, Zürich, 16–20 July 2007.

72. Minisymposium: ADER RungeÂ–Kutta methods for conservation laws, IC/MP840/025: High-order meth-
ods for wave propagation and flow problems in complex geometries, ICIAM 2007, Zürich, 16–20 July 2007.

73. Minisymposium: High order implicit semilagrangian WENO schemes for the BGK model of rarefied
gas dynamics, Minisymposium MS6, 7th International Conference on Spectral and High-Order Methods
(ICOSAHOM’07) June 18-22, 2007, Beijing.

74. Invited: “A multigrid-Fourier method for energy computation in strained epitaxial growth”, presented
at the international workshop “Facets of Heteroepitaxy: Theory, Experiment, and Computation”, Banff
International Research Center, Banff, Canada, February 10–15, 2008.

75. Minisymposium: “High Order Well Balanced Schemes for Systems of Balance Laws”, [MS062] Numerical
Modelling of Hydrodynamic Geophysical Flows. Honouring Fausto Saleri, ECCOMAS 2008, 30 June, 4
July 2008, Venice, Italy.

76. Invited: “High order semilagrangian schemes for the BGK equation”, presented at the International
workshop on “Numerics for kinetic equations”, Oberwolfach, November 16-22, 2008.

77. Invited: “Semilagrangian schemes for the BGK Model of the Boltzmann Equation”, Quantum and Kinetic
Transport: Analysis, Computations, and New Applications, Workshop I: Computational Kinetic Transport
and Hybrid Methods, Institute for Pure and Applied Mathematics (IPAM), UCLA, Los Angeles, March
30 - April 3, 2009.

78. Minisymposium: “Moving boundary problems for the BGK model of rarefied gas dynamics”, PhysCon09,
4th International Scientific Conference on Physics and Control www.physcon2009.diees.unict.it September
1 Â– 4, 2009, FacoltÃ di Ingegneria, UniversitÃ degli Studi di Catania, Italy.

79. Invited: “High order well-balanced schemes for balance laws”, at NumHyp2009, Numerical approximations
of hyperbolic systems with source terms and applications, Castro Urdiales, Spain, September 7-11, 2009.

80. Invited: “High order well balances schemes for hyperbolic systems with source”, Intensive Research Month
on Hyperbolic Conservation Laws and Fluid Dynamics, Parma, February 15-19, 2010.

81. Emerging Topics in Dynamical Systems and Partial Differential Equations, DSPDEs’10, Barcelona, Spain,
May 31- June 4, 2010: invited talks at two minisymposia: High order semilagrangian methods for kinetic
equations, and IMEX schemes for hyperbolic systems with stiff relaxation

82. Invited: “Implicit-Explicit Runge-Kutta schemes for hyperbolic systems with stiff relaxation in the hyper-
bolic and diffusive limit”, CICAM5, Fifth China-Italy Colloquium on Applied Mathematics, Capo Mulini
(Catania), Italy September 27-30, 2010.

83. Invited lecture: “Deterministic methods for the Boltzmann equation”, in Models and Computational
Methods for Rarefied Flows, von Karman Institute, Rhode-St-GenÃ¨se, Belgium January 24-28, 2011.

84. Invited: “Implicit-Explicit Runge-Kutta schemes for hyperbolic systems with stiff relaxation in the hy-
perbolic and diffusive limit”, SAMHYP2011, Numerical methods for hyperbolic equations: recent trends
and future directions, ETH Zürich, February 18-19, 2011.
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85. Invited: “High order semilagrangian schemes for the BGK model”, Workshop on Kinetic Theory and
Computation, Kyoto, MArch 21-25, 2011.

86. Invited speaker, Sevilla Numerica meeting, Sevilla (Spain) from 20 to 24 June 2011.

87. Invited speaker: Workshop ”Nonlinear Hyperbolic Systems of Balance Laws in Extended Thermodynamics
and Kinetic Theory”, Cortona, Italy, September 4-9, 2011.

88. Invited speaker: workshop ”Vlasov Models in Kinetic Theory”, Institute for Computational and Experi-
mental Research in Mathematics (ICERM), Brown, RI, September 19 - 23, 2011.

89. Invited speaker: workshop ”Recent advances on theory and applications of Semi-Lagrangian methods”,
Rome, December 5-6, 2011.

90. Plenary speaker, ICOSAHOM 2012, International Conference on Spectral and High Order Methods, June
25-29, 2012, at Hotel Ramada Plaza (Gammarth, Tunisia) http://icosahom.enscbp.fr

91. Plenary speaker, HYP2012, 14th International Conference on Hyperbolic Problems: Theory, Numerics
and Applications, Padova (Italy), June 24-29, 2012. http://www.hyp2012.eu

92. Invited talk, I3MS Seminar Series 2013, RWTH Aachen University, June 10, 2013 http://www.aices.

rwth-aachen.de/news-events/ims/seminar-series-ss-2013/ Title of the talk: Ghost-Point Finite
Difference Level Set Methods on Cartesian Mesh for Elliptic and Hyperbolic Problems.

93. Invited talk: INDAM Workshop on ÒMathematical Paradigms of Climate ScienceÓ Roma, June 24-28,
2013 Istituto Nazionale di Alta Matematica INDAM.

94. Invited speaker, Conference on ”Mathematical topics in Kinetic Theory”, University of Cambridge, 17th-
21st June 2013 http://math.univ-lyon1.fr/homes-www/filbet/nusikimo/CBG2013/. Title of the talk:
On semilagrangian methods for kinetic equations.

95. Invited talk, Applied Interdisciplinary Mathematics, Department of Mathematics, University of Michi-
gan, Ann Arbor, Michigan, September 20, 2013. http://www.math.lsa.umich.edu/seminars_events/

events.php?eventdefid=3&dt_begin=2013-07-01&dt_end=2014-06-30. Title of the talk: Ghost point
finite difference level set methods on Cartesian mesh for elliptic and hyperbolic problems.

96. Invited talk, Differential Equation Seminar, Department of Mathematics, University of Michigan, Ann Ar-
bor, Michigan, October 17, http://www.math.lsa.umich.edu/seminars_events/events.php?eventdefid=
7&dt_begin=2013-07-01&dt_end=2014-06-30. Title of the talk: Implicit-Explicit schemes for hyperbolic
systems with diffusive relaxation.

97. Invited talk, Numerical Analysis Seminar, Department of Mathematics, North Carolina State University,
October 27, 2013, http://www.math.ncsu.edu/events Title of the talk: On semilagrangian methods for
kinetic equations.

98. Invited talk, Mathematics Colloquium, Fall 2013, room: PGH 646, Department of Mathematics, University
of Houston, Houston, Texas, November 6, 2013. Title of the talk: Ghost point finite difference level set
methods on Cartesian mesh for elliptic and hyperbolic problems.

99. Invited talk, Joint CSCAMM/KI-Net Seminar, Center for Scientific Computation and Mathematical Mod-
eling (CSCAMM), University of Maryland, College Park, Nov. 20, 2013 http://www.cscamm.umd.edu/

seminars/fall13/. Title of the talk: On semilagrangian methods for kinetic equations.

100. Invited talk on “Wavepacket transform method for the Schroedinger equation near the semiclassical limit”,
Asymptotic and multiscale computational methods in quantum dynamics, Feb 7 - 14, 2014, University
of Wisconsin-Madison, Department of Mathematics, http://www.ki-net.umd.edu/content/kit?event_
id=198.
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101. Invited talk on “Implicit-Explicit schemes for hyperbolic systems with diffusive relaxation”, Asymptotic-
Preserving Methods for Kinetic Equations, Feb 3 - 6, 2014, North Carolina State University, Department
of Mathematics, http://www.ki-net.umd.edu/content/kit?event_id=182.

102. Invited talk at the international workshop “Cartesian Grid, Level-set & Immersed Boundary”, Bordeaux,
France, March 25–27, 2014.

103. Invited talk on “High order semi-implicit schemes for evolutionary nonlinear partial differential equa-
tions with applications to nonlinear diffusion relaxation problems and to kinetic equations”at the 6th
International Workshop on Kinetic Theory & Applications, Karlstad University, May 12-14, 2014 http:

//www.math.kau.se/kinetic/workshop14/default.htm

104. Invited talk at the international on “High order semi-implicit schemes for evolutionary non linear partial
differential equations” at the “Workshop on PDEs: Modelling, Analysis and Numerical Simulation, PDE-
MANS 2014” Granada, Spain, September 15-19, 2014 http://ilex.ugr.es/PDE-MANS/.

105. Invited talk at the International Workshop Analysis and Numerical approximation of PDEs, ETH, Zürich,
08-10 September 2014, organized on occasion of the sixtieth birthday of Prof. Eitan Tadmor, http:

//www.sam.math.ethz.ch/woanapde/program.php.

106. Invited talk on “Semilagrangian schemes for kinetic equations”, at the International Workshop “Numerical
methods for PDEs: optimal control, games and image processing”, in honor of the sixtieth birthday of
Prof. Maurizio Falcone, Rome, December 4-5, 2014, http://www1.mat.uniroma1.it/ricerca/convegni/
2014/Maurizio60/

107. Invited talk on “Semi-implicit IMEX schemes for evolutionary non linear partial differential equations”,
Asymptotic Preserving and Multiscale Methods for Kinetic and Hyperbolic Problems, Madison, Wisconsin,
May 4-8, 2015.

108. Invited talk on “Ghost point finite difference level set methods on Cartesian mesh for elliptic and hyperbolic
problems”, at the national conference “Calcolo Scientifico e Modelli Matematici: alla Ricerca Delle Cose
Nascoste Attraverso Le Cose Manifeste”, Genova, June 3-5, 2015.

109. Invited talk on “Semi-implicit IMEX schemes for evolutionary non linear partial differential equations”,
Institut de Mathématique de Bordeaux, July 15, 2015.

110. Invited talk on “Semi-implicit IMEX schemes for evolutionary non linear partial differential equations” at
the workshop “Numerical Aspects of Hyperbolic Balance Laws and Related Problems”, Ferrara, December
17-19, 2015.

111. Plenary speaker at WONAPDE 2016, Fifth Chilean Workshop on Numerical Analysis of Partial Differen-
tial Equations, Universidad de Concepci—n, Concepción, Chile, January 11-15, 2016.

4.3 Conference organization

Prof. Russo organized several international workshops, conferences, and research periods.

1. International workshop on “Mathematical Methods for Semiconductors”, L’Aquila 3–5 May 1995 (together
with Prof. P.Marcati, University of L’Aquila.)

2. Mimisymposiym “Metodi Numerici per Fenomeni di Propagazione”, IV Congresso Nazionale SIMAI, Gi-
ardini di Naxos (Messina), 1-5 June, 1998.

3. International workshop“Numerical methods for Hyperbolic and Kinetic Equations”, Department of Math-
ematics, University of Catania, February 8-10, 2001.
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4. Minisymposium “Numerical methods for hyperbolic systems with source terms”, presso il 2001 SIAM
Annual Meeting, Town and Country Hotel, San Diego, California, July 9-13, 2001 (joint with Prof.
Pareschi, University of Ferrara.)

5. National workshop “IPERCT2001, Problemi di Tipo Iperbolico”, Santa Tecla Palace Hotel, Acireale (CT),
Italy, November 22-24 2001.

6. September 2002, XX Summer School of Computational Mathematics, “Computational aspects in kinetic
theory”, Piano di Sorrento, Napoli, Italy, September 22–28, 2002.

7. International conference (together with L.Pareschi and G.Toscani) “Modeling and Numerics of Kinetic
Dissipative Systems”, May 31 - June 4, 2004, Lipari, Italy.

8. Minisymposium (with A.Majorana) on ”Mathematical and computational aspects of kinetic models” at 5th
International ISAAC Congress, July 25-30, 2005, Department of Mathematics and Informatics, University
of Catania Catania, Sicily, Italy.

9. Two minisymposia: Multiscale evolutionary problems, and ”shallow water models: numerical methods
and applications” (in collaboration with prof. R. Fazio), at the ”VIII SIMAI Conference”, Baia Samuele
(Ragusa, Italy), 22-26 May 2006.

10. Minisymposium on ”Numerical methods for conservation laws”, ECMI 2006, July 10–14 2006, University
of Madrid Carlos III, Madrid, Spain.

11. Minisymposium on ”Stiff problems”, SCICADE 2007, Saint Malo, France, 9-13 July 2007.

12. Member of the scientific committee of the conference “Modeling and computational methods in fluid
dynamics and material science: towards the challenge of the nanoscales”, Bressanone, Italy, December
19–22, 2007.

13. Minisymposium: M27 on Optimization problems in industry (coorganized with Giuseppe Nicosia, Uni-
versity of Catania), SIMAI 9th Congress, Rome, September 15-19, 2008.

14. Minisymposium: M23: Level Set Methods and Related Problems (coorganized with Roberto Ferretti,
University of Rome 3), SIMAI 9th Congress, Rome, September 15-19, 2008.

15. Member of the Scientific Commettee of Iperba09: XIII Incontro Nazionale sui Problemi di Tipo Iperbolico,
Bari, February 11-13, 2009.

16. C.I.M.E. Summer School Multiscale and Adaptivity: Modeling, Numerics and Applications, CIME-EMS
Summer School in applied mathematics July 6 - July 11, 2009 - Cetraro (CS) Lecturers: Silvia Bertoluzza,
Bjorn Engquist, Ricardo Nochetto, Alfio Quarteroni, Kunibert Siebert, Andreas Veeser. For more infor-
mation see http://php.math.unifi.it/users/cime/.

17. Minisymposium on “stiff problems”, ICNAAM conference, Crete, September 17-23, 2009.

18. INdAM two month intensive period on “Analytical and Numerical Problems in Fluid Dynamics and
Applications”, April 12-June12, 2010 (see http://www.dmi.unict.it/INDAM2010/index.html): focused
period with about ten lecturers giving short courses, and more than twenty speakers giving invited talks.

19. Minisymposia MSP40 “Numerical methods for hyperbolic systems in non-conservative form and environ-
mental applications”, and MSP22 “Mathematical models and methods for volcano physics”, SIMAI 2010,
Cagliari, June 21, 2010 – June 25, 2010.

20. Member of the Scientific Commettee of IPERME2011, workshop on hyperbolic equations, Messina, Febru-
ary 16-18, 2011.
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21. Chair ECMI 2014, The 18th European Conference on Mathematics for Industry, Taormina, June 9-13,
2014 (http://www.taosciences.it/ecmi2014/)

22. Chair, SIMAI 2014, Taormina, July 7-10, 2014 (http://www.taosciences.it/simai-2014/)

23. Chair, NumHyp2015, “Numerical approximations of hyperbolic systems with source terms and applica-
tions”, Cortona, June 14-20, 2015 (web page at www.dmi.unict.it/~russo/NumHyp2015).

24. Member of the Scientific Committee of IperGSSI2015, 16th Italian meeting on Hyperbolic Equations,
L’Aquila, October 22-24, 2015.

4.4 Summer Schools

Prof. Russo has been one of the main lecturers in several summer schools. Among these we recall
July 1999, “Numerical methods for kinetic equations”, CEMRACS courses, INRIA, Rocquencourt, France.
March 2001, “Central schemes and Systems of Conservation Laws”, Summer School on Hyperbolic Partial

Differential Equations, Technische Universitaet Hamburg-Harburg.
September 2002: Ravello summer school on Mathematical Physics, one week short course on “Numerical

methods for Conservation Laws”.
June 2004: Summer school on “Methods and Models of Kinetic Theory”, one week short course on numerical

methods for the Boltzmann equation, Porto Ercole, Grosseto, Italy, June 4–10, 2004.
November 2007: Short course on “High order shock capturing schemes for balance laws”, in the summer

school Advanced School on Numerical Solutions of Partial Differential Equations New Trends and Applications,
Centre de Recerca Matematica, University of Barcelona, Spain, November 15 to 21, 2007.

February 2015: PhD course (26 hours, three weeks) on numerical methods for systems of balance laws, PhD in
Mathematics, Grans Sasso Science Institute, L’Aquila (http://www.gssi.infn.it/education/mathematics-education/
courses-maths-education)

4.5 Referee activity

Since 2002 he is a member of the scientific commettee of the journal “Le Matematiche”, edited by the University
of Catania.

He has been referees of papers submitted to the following journals

1. SIAM Journal of Numerical Analisys

2. SIAM Journal of Applied Mathematics

3. SIAM Journal of Scientific Computing

4. Journal of Computational Physics

5. Mathematical Models and Methods in Applied Sciences

6. Computers and Fluids

7. Journal of Difference Equations and Applications

8. COMPEL

9. Transport Theory and Statistical Physics

10. Mathematical Models and Numerical Analysis

11. Numerical Methods for Partial Differential Equations

12. Journal of Computational Electronics
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13. Communications in Mathematical Sciences

14. Journal of Scientific Computing

15. Journal of Computation and Applied Mathematics

16. Calcolo

17. Le Matematiche

18. Kinetic and Reated Models

19. Communications in Computational Physics

20. Applied Numerical Mathematics

He has been reviewer of several PhD thesis.

4.6 Editorial Board

G.Russo has been associate editor of SIAM J. Numer. Anal. from 2001 to 2006.
He is presently member of the Editorial Board of “Le Matematiche”, a general mathematical journal pub-

lished by the University of Catania.

4.7 Scientific Committees

Prof. Russo is presently a member of the Council of the European Consortium of Mathematics in Industry
(ECMI).

He belongs to the board of SIMAI, the Italian Society of Applied and Industrial Mathematics.

He has been in the Scientific Committee of several conference; in particular, he has been in the scientific
board of the the biannual italian conference on hyperbolic problems several times.

Prof. Russo has been member of several committees for university positions. In particular we recall the
following.

PhD defence in Italy ten times, 1997, 1998, twice in 2003, 2006, twice in 2007, 2009, 2010, 2011.

PhD defence in Sweeden once, (Karlstad, 2008).

PhD defence in France once, (Lyon, 2012).

Researcher position three times, 1995, 1998, 1999.

Confirmation associate professors once, in 2002.

Confirmation researchers once, in 1994.

Foreigner habilitation twice, for the french Habilitation a diriger des recherches

Full professorship once, in 2005.
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4.8 Research projects

Bilateral project USA-Italy duration: three years (1996-98), financed by Italian Consiglio Nazionale delle
Ricerche American National Science Foundation. Title of teh project: “Numerical and analytical methods
for the simulation and control of fluids”. Universities involved: University of L’Aquila, University of Rome,
“La Sapienza”, University of California, Los Angeles. Principal investigators: Giovanni Russo (University of
L’Aquila) and Russel E. Caflisch (UCLA).

National project 40% (now PRIN) G.Russo has been Scientific Responsible of local units in several
occasions: 1994, 1999 (contribution of the Ministry of Education [MURST]: 28 million lira), 2001 (MURST
contribution: 59 million lira), 2004 (MURST contribution 36,700 Euros).

Vigoni program 1998-99 For collaboration between Italian and German Universities. Joint project between
University of L’Aquila (G.Russo) and Universität des Saarlandes (prof.S.Rjasanow).

GNIM project 2000 National project on Numerical methos for hyperbolic and kinetic equations.

INDAM project 2004 and 2005 National project on Numerical methods for multiscale evolutionary prob-
lems (14,500 Euros each year).

INTAS 2000 Principal investigator of INTAS project (868) for sponsoring research in former soviet countries.
Title of the project: “Conservation laws of mechanics of continua”. Duration: 2 years. Total financial support:
60,000 Euros (80% of which goes to former soviet institutions). Universities involved: University of L’Aquila
(then Catania after G.Russo moved to Catania), Italy, Ecole Polytechnique, France, Lavrentyev Institute of
Hydrodynamics, and Sobolev’s Institute od Mathematics Novosibirsk, Russia.

LIMA project 2005-2007 Born in collaboration with LIMA S.R.L., an industrial partner from San Daniele
del Friuli, Italy, the project was aimed to the collaboration between university and industry, for the construction
of a prototypal software that assists the surgeon in the bone prosthesys transplant. Partners: University of
Catania (Department of Mathematics and Computer Science, Department of Mechanical Engineering), Vittorio
Emanuele hospital (Catania), Consorzio Catania Ricerche (Catania), LIMA group SRL, Fraunhofer ITWM
(Kaiserslautern).

POKER project 2008-2010 Born in collaboration with Infracom Italia S.P.A., University of Catania (De-
partment of Mathematics and Computer Science), and Fraunhofer ITWM (Kaiserslautern), the research project
has the objective of constructing a prototypal software that assists small investors proposing portfolio options
tailored to them.

Galileo 2008/2009 Galileo project for the collaboration between Italy and France. Title of the project:
MONUMENT (MOdellizzazione NUmerica in MEms ed in Nano Tecnologie). Duration: one year. Italian P.I.:
Giovanni Russo, University of Catania. French P.I.: Francis Filber, Université Claude Bernarde, Lyon. Research
groups involved: Department of Mathematics and Informatics, University of Catania; MOX, Polytechnic of
Milano; Department of Mathematics, Université Claude Bernarde, Lyon. Budget: 10800 Euros.

Azioni integrate Italia-Spagna 2009 Title of the project: “Metodi numerici per sistemi iperbolici in forma
non conservativa, con applicazioni ambientali”. Duration of the project: two years. Italian P.I.: Giovanni Russo,
Spanish P.I., Carlos Pares, Universidad de Malága. Universities involved: University of Catania, University of
Trento, Polytechnic of Torino. The budget is 10,800 Euros.
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Lava project LAVA is a project that the Civil Protection commissioned to the National Institute for Geo-
physics and Volcanology (INGV). The duration of the project is two years (2008-2010). Prof. Russo is respon-
sible of Research Unit n.8, in charge of “Simulation of lava flows”. Budget of the unit: 48,000 Euros.

PRIN 2009 In July 2011 the National Project “Innovative Numerical Methods for Hyperbolic Problems
with Applications to Fluid dynamics, Kinetic Theory and Computational Biology” was accepted and funded by
Italian Ministry of Education, University and Research (MIUR). The project, coordinated by Giovanni Russo,
is composed by three research units, located respectively in Catania, Milano, and Ferrara. It lasts two years,
with a total budget of 165,391 Euros, of which 115,774 coming from MIUR.

ModClim The project MODCLIM, MODeling CLinic in Industrial Mathematics, is a European consortium of
nine university devoted to formation and education of (master and PhD) students on several topics of Industrial
Mathematics. The project organizes events of the two years 2015-2016. University of Catania is one of the nine
partners, and Prof. Russo is the scientific responsible for the Catania node. More details can be found on the
web page of the project http://modclim.ulpgc.es.

ModCompShock Within scope of Horizon 2020 the project ModCompShock, Modelization and Computation
of Shocks and Interfaces, starting in October 2015, is a four-year project, which will form a Network of leading
research institutes and universities through whole Europe. It is a ITN-ETN Marie Curie program, whose main
aim is the formation and education of PhD students in the subject of the project. The coordinator of the
Project is Prof. Makridakis, from University if Sussex. Eight main nodes participate to the network. One of
the nodes is University of Catania, and the scientific leader of Catania node is Prof. Russo. The total budget
for the European Project is 3,918,484.14 Euros. The budget for the University of Catania is 315,408.28 Euros.

4.9 PhD Programs

2002–2008, G.Russo has been coordinator of the PhD program in “Mathematics for Technology”, University of
Catania.

In 2009 the three PhD programs in “Mathematics for Technology”, “Mathematics for Engineering”, and
“Mathematics for Decisions in Economics and in Finance”, of the University of Catania, merged into a single
PhD program in Applied Mathematics, still coordinated by G.Russo.

In 2010 the PhD program in “Applied Mathematics” and the PhD program in “Mathematics” merged into
a single PhD program in “Pure and Applied Mathematics”, coordinated by G.Russo.

In 2013, because of economical restrictions and because of the changes in the organizationL rules of PhDs, the
PhD program in Pure and Applied Mathematics of the University of Catania merged with the PhD program
in Computer Science of the same university, and with other PhD program of the other two major Sicilian
universities, forming a single PhD program in Mathematics and Computer Science, of a convention of the three
universities of Catania, Messina and Palermo. The coordination of such PhD program has been assigned to
Prof. Russo. For more information about the PhD program see the link http://web.dmi.unict.it/Ricerca/

Dottorato%20in%20Matematica%20e%20Informatica

5 Scientific production

In this document I will try to summarize my research activity so far, and to briefly describe some of the present
research project I am involved at present. The numbering of the papers refer to the list of publications, presented
in a different pdf document.

From 1982 to 2015 I worked on several research fields, published about one hundred papers and conference
proceedings in international journals, and several chapters in books.
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5.1 h-index

According to google scholar my citations and h-index are as follows (as of Oct 10th 2015)

All Since 2010
Citations 3972 1765
h-index 35 25
i10-index 71 46

According to the ISI-web of knowledge my h-index is approximately 22 (it is difficult to compute the exact
value because “russo g*” is very common in Italy)

The main research topics I worked on are the following.

1. Experimental and theoretical study of laser annealing induced by picosecond laser pulses

2. Asymptotic methods in wave propagation

3. Particle methods

4. Computational fluid dynamics

5. Kinetic models for bubbly flow

6. Hydrodynamical models of semiconductors

7. Numerical methods for kinetic equations

8. Numerical methods for balance laws

9. Mathematical modeling and simulation of crystal growth

10. High Frequency Waves

11. Complex networks

A brief description of the contribution of the author in the various fields is provided here, starting from the
current research interest.

5.2 Current research projects

I am continuing working on some of the research field in which I have been working during my career, whose
work is reported in detail later. In this section I will mainly concentrate in describing my main current research
activity.

Semilagrangian schemes for kinetic equations, Refs. [115, 128] In particular, I am continuing my
research on semi-Lagrangian methods for kinetic equations, in collaboration with Dr. Santagati and Prof.
Filbet, and possibly with a young PhD student. The emphasis is to extend the method to treat problems with
moving boundaries, in more space dimensions, and with more general boundary conditions than the ones treated
in paper [115]. Another line of research in this direction consists in exploring the schemes that are obtained
when the following restriction on the grid spacing is satisfied: ∆v∆t = s∆x, where s is an integer. In this
case no interpolation is needed in the semi-Lagrangian method, and one could construct a high order scheme
which resembles a lattice-Boltzmann scheme, but that can be used to solve the kinetic equation, not only the
Navier-Stokes equation. On a more theoretical level, paper [128], recently accepted on SINUM, deals with the
proof of convergence of the semilagrangian scheme introduced in the PhD thesis of my former PhD student
P.Santagati, for the BGK model.

18



Well balanced schemes, Ref. [131] In the field of shock capturing schemes for balance laws, I am working on
the construction of high order well-balanced schemes for hyperbolic systems with source terms and on treatment
of dry states in shallow water equation, the latter research in collaboration with Gabriella Puppo. Another topic
I am working, in collaboration with the group of Prof. Carlos Parés from Malaga, is the development of central
schemes applied for problems which do not admit a conservation form (see paper [131], recently accepted);
several problems of interest for application, such as multilayer shallow water systems, of shallow water with
sedimentation, are described by hyperbolic equations which do not admit a conservative form (at least not in
the correct physical variables), and therefore one cannot use the standard theory of conservation laws to define
weak solutions (which arise naturally, because of the non linearity of the system). The theory of Dal Maso, Le
Floch and Murat, based on the choice of a family of paths joining states across a discontinuity, can be used to
define weak solutions in such cases. The group of Malaga constructed numerical schemes making use of such
theory. In [131] we coupled central schemes with the path conservative schemes, thus exploiting the advantages
of central schemes in this context.

Parabolic relaxation, Ref. [129, 130, 135] For problems with stiff terms, a research in collaboration
mainly with Dr. Sebastiano Boscarino, an assistant professor from my Department, and with various external
collaborators (Pareschi, LeFloch, Torrilhon) is conducted to develop numerical methods that are able to capture
the so called diffusion limit, which is the scaling one uses when interested in the long time behavior of the solution
of a hyperbolic system with relaxation, in which one is interested in the small diffusive effect. In paper [129]
we construct a method for hyperbolic systems with diffusive relaxation that, in the limit of zero relaxation
time, becomes a consistent implicit discretization of the limit diffusion equation, thus overcoming the classical
parabolic CFL condition. The paper [130] deals with the construction and analysis of IMEX-Runge-Kutta
schemes for hyperbolic systems with parabolic relaxation, in which the flux term is treated explicitly. The
task is non-trivial because of the divergence of the characteristic speeds. It is shown that if the IMEX scheme
satisfies some additional conditions, then it is Asymptotic Preserving, i.e. it is able to capture the solution of
the limit parabolic equation. When the limit diffusive equation is non-linear, new difficulties appear, because
the schemes for the solution of the hyperbolic systems are based on an effective solver of the limit equation.
This problem is treated in the paper [?], recently submitted, in which a suitable modification of the IMEX
schemes derived in the two papers previously mentioned allows the construction of very effective solvers for
such hyperbolic systems with non-linear parabolic diffusion limit.

Ghost point methods [122, 132] Among my new research interests, I mention the developments of numer-
ical methods for treating problems with moving boundaries, using discretization on regular grid. In the case
of fixed boundaries, the domain is identified by a time independent level set function. The numerical value of
the unknowns have to be defined on the grid points inside the domain, and on those outside of the domain,
near the boundary (ghost points). The equation of motion is used to evolve the unknowns inside the domain,
while boundary conditions are used to define the value of the unknown at the ghost points. This procedure
can be extended to domain with moving boundary, in which case the domain will be described by a time
dependent level set function. In case the function is not known a priori (free boundary problem), a suitable
evolution equation of level set type is used to evolve the level set function, and therefore to change the domain.
As a starting point, multigrid solvers for elliptic problems in arbitrary domains embedded in a Cartesian gris
have been developed [122, 132]. The research is conducted with my former student Armando Coco. Three
new ingredients are proposed in paper [132]: i) a systematic technique to impose various types of boundary
conditions (Dirichlet, Neumann, mixed, Robin) to high order (although only second order is implemented); ii)
a relaxation technique is proposed as a multigrid smoother, which is based on relaxing the equation and the
boundary condition by suitable time dependent equations; iii) the transfer operators are constructed by taking
into account the smooth property of the error and the lack of smoothness of the residue. Several tests cases
show the robustness, efficiency and accuracy of the method.

We plan to apply this approach to several context, namely gas dynamics in domain with moving objects
(research conducted in collaboration with Alina Chertock, from North Carolina State, Alexander Kurganov,
Tulane University, and Armando Coco), or shallow water equation in a domain with moving objects. The latter
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research is conducted together with Dr. Edie Miglio, from Polytechnic of Milan, Italy. Another application I
have in mind is the numerical simulation of lava flow, which I describe below.

Numerical simulation of lava flow [123, 124, 127] In the region near Catania there is a great attention to
monitor the activity of mount Etna, the largest active volcano in Europe. An important aspect, for the obvious
application for the civil protection, is the possibility of being able to predict with some detail the regions covered
by lava flow as a consequence of an eruption. One of the research project I am involved in concerns exactly
this issue (see Section 4.8) in my CV. Lava can be modeled as a strongly viscous non Newtonian incompressible
fluid, and it evolution can be described by the numerical solution of Navier-Stokes equations for such a fluid,
with free boundary. The equations are strongly coupled with the equation for the temperature, because the
rheological properties of the lava depends on the temperature (and on the shear stress). When lava flows on
a sloping side of the volcano, subject to gravity, the surface which is exposed to air dissipates heat, the main
contribution being due to radiation. When the lava cools down, a crust is formed on the surface, preventing
new melted lava from being exposed to air. The mechanism by which the crust forms depends on the flow rate.
In any case, the main effect is that a tube of lava forms, and the lava may flow inside the tube to distances
much larger than expected if this crust formation is not taken into account. During its evolution the lava may
carry with itself debris or pieces of crust.

Several techniques are possible for the numerical simulation of such complex flow. Among the various
possibilities, we chose two complementary alternatives. The first one consists in the use of purely Lagrangian
methods, based on Smoothed Particle Hydrodynamics (SPH). Such approach has the advantage of not requiring
a (possibly moving) grid, and it is rather natural for treating free boundaries and complex geometries. In
collaboration with researchers from INGV (the Italian National Institute of Geophysics and Volcanology), and
with my post-doctoral fellow Giuseppe Bilotta, we are developing an SPH method for the numerical simulation
of lava flow on a complex geometry, possibly in presence of debris, which are treated as solid objects carried by
the fluid. Right now there is a recently published paper on the topic [124], dealing with the use of moving least
square techniques (MLS) to improve the performance of SPH methods. In the paper [127], sensitivity analysis of
the main parameters determining the region invaded by the lava has been considered. The parameters considered
are the solidification temperature of the lava, and the effusion temperature, and the water concentration. It
is shown that the latter is the most critical parameter in determining the rheology, and therefore the final
displacement of the lava. Other papers in press deal with different aspects of the problem. In order to avoid
the burden of the elliptic solver for the pressure, in the present code the lava is treated as weakly compressible,
with a fictitious sound speed being chosen to be about ten times the maximum fluid speed. The code is then
completely explicit in time. It is our intention to perform a comparison of the weakly compressible approach
with the fully incompressible approach employed by other authors. In order to reduce computer time, the codes
are implemented on GPU architecture, obtaining two orders of magnitude speed-up with respect to a single
core computer. Results on the GPU implementation of SPH are reported in [123].

The second approach we are exploring consists in discretizing the incompressible Navier-Stokes equation
with a free boundary problem in primitive variables on a fixed Cartesian grid, describing the evolution of the
free surface by a level set equation. This approach is very promising, mainly because in this case there would
be no difficulty in treating some terms implicitly (for example the pressure term or the diffusion terms). In
addition to having the possibility of comparing results obtained with completely different methods, we hope
that with this latter approach it will be easier to describe the phenomenon of crust formation.

A preliminary work in this direction is almost ready for publication. It is a paper on a novel technique to
solve Poisson equation with mixed or Robin conditions, on a regular grid in an arbitrary domain described by
a level set function [132], using Jacobi iteration accelerated by multigrid.

High frequency waves [133, 134] I am presently working on numerical methods for high frequency waves
or for the solution of the Schrödinger equation (SE) near the semiclassical limit. The research is conducted
in collaboration with prof. Peter Smereka, University of Michigan. We started considering the Schrödinger
equation. The methods we are looking for should become almost as efficient as the description in term of the
so called Gaussian beams (GB), when the solution is well represented as a superposition of such GB’s, but they
should be much more flexible than GB, in the sense that they provide a numerical methods for the solution of
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(SE), whose accuracy depends on the discretization parameters (size of the grid in space, and time step), while
GB provide an asymptotic method, whose accuracy improves as the non-dimensional Plank’s constant becomes
smaller and smaller. The objective is reached by a transformation, called Wave Packet Transform, which maps
the original Schrödinger equation in another Schrödinger equation more amenable to numerical solution. A
first paper, presenting the formulation and numerical tests in one space dimension, has been recently accepted
([133]), while a second paper, dealing with the more interesting case of multidimensional problems, has been
recently submitted ([133]).

Complex Networks [125, 126] In the last few years, under the influence of my colleague Vito Latora, now
at the Department of Mathematics, Queen Mary University, London, I started being interested in Complex
Networks. Complex networks are the backbone of a complex systems, and they are able to describe the gross
features of a huge variety of systems, ranging from computer network to social networks. The mathematical
structure of a network is a graph, which in turn is defined by means of its adjacency matrix. After several
discussions, we decided to start writing a textbook together [141], in which my main contribution is to take care
of the mathematical and algorithmical aspects of the treatment of complex networks (graph theory, algebraic
description of sparse graphs and related numerical linear algebra, algorithms for graph exploration and for the
computation of the so-called centrality measures, and so on.)

Being involved in writing the book has been an excuse to learn about this fascinating subject, and collaborate
with Latora and his group on problems related to them. Of the various problems connected to complex network,
we started interacting on problems related to eigenvector centrality, which is related to the celebrated Page
Rank that Google used to select the most interesting pages among the many (even thousands or million) pages
containing a given string. The research, conducted in collaboration with R.Criado from the Universidad Rey
Juan Carlos de Madrid, Spain, produced the paper [125], published this year on Scientific Reports.

A second paper, dealing with time dependent networks, recently appeared on Chaos [126]. For such net-
works, the tools usually adopted for static graphs are not always appropriate. Even straightforward techniques,
consisting for example in considering the static graph obtained by aggregating all the links as if they occurred
at the same time, does not provide satisfactory answers to simple problems, such as the ability of transmitting
a message from one note to another. In the paper the notion of connectedness (and the associated notion of
component) is extended to time-varying graphs, represented as time-ordered sequences of graphs defined over a
fixed set of nodes. As a practical example, we have performed a temporal component analysis of time-varying
graphs constructed from three data sets of human interactions. The results show that taking time into account
in the definition of graph components allows to capture important features of real systems.

5.3 Previous research activity

Experimental and theoretical study of laser annealing induced by picosecond laser
pulses [13, 14, 15, 16, 17]

This topic was the subject of the master thesis and of the first year of research activity, during 1982-83. The
research was carried on with the experimental group of prof. Emanuele Rimini, from the Physics Department of
the University of Catania. Papers [13, 14, 15, 16, 17] are on this subject. The first two are experimental papers
conducted in collaboration with the CISE Laboratory of Milano, on the impurity redistribution if implanted
Silicon after laser pulse irradiation with pulses of the duration of few hundreds of picoseconds, the third one
is a review paper on the subject, and in the fourth one G.Russo contributed with the numerical simulation of
charge dynamics under picosecond laser pulse irradiation, with a model developed by Lieitoila and Baeri.

Asymptotic methods in wave propagation [18, 19, 20, 21, 26, 28, 39, 22, 24, 25, 27,
30, 33]

This topic was the subject of the graduate research studies of Giovanni Russo for his PhD in Physics, conducted
under the supervision of prof. Angelo Marcello Anile, at the University Catania. The two main field of
research consisted in the development of approximate asymptotic methods for the propagation of shock waves
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(papers [18, 19, 20, 21, 26, 28, 39], and in the study of shock wave stability on various contexts (papers
[22, 24, 25, 27, 30, 33]).

An asymptotic method for the propagation of weak shock waves, called Generalized Wavefront Expansion
(GWE), was derived and analyzed in [18, 19, 20, 21]; the results obtained by the analytical methods were
compared with the numerical solutions obtained using the shock capturing methods available at that time,
and applied to gas dynamics. The connection between GWE and the theory of weakly non-linear high fre-
quency waves, developed during that period by J.K.Hunter and J.B.Keller, was established in the paper [39].
Approximate methods for a different kind of shocks, called step shocks, was considered in [21].

Probably the major contribution of the research during the PhD has been the study of shock wave stability,
and its application to astrophysics. Several kinds of stability of plane shocks were available in the literature,
such as corrugation stability, linear stability, stability against reflection of acoustic waves on a shock, and so on.
Most of them were developed and applied in the context of shock waves for the Euler equations of classical gas
dynamics. The various stability conditions are expressed by a relation that has to be satisfied by the equation
of state of the gas relating, for example, the pressure to the density and internal energy. In a series of papers,
the various kinds of stability have been considered for the relativistic Euler equations, and the conditions on the
equation of state of the relativistic gas has been established [22, 24, 25], and applied to the study of shock wave
stability for relativistic gas of interest in astrophysics, such as compact objects (white dwarfs and neutron stars)
[27]. New application to classical gases have been presented in [33] and the definition of corrugation stability
has been applied to shock waves in MHD in [30]. Most of the results published in the papers appear in the PhD
thesis [1].

Particle methods (Ref.[29, 31, 32, 34, 35, 36, 37, 42])

During his PhD and subsequently during his post-doctoral position at the Courant Institute of Mathematical
Sciences, G.Russo worked on particle methods applied to various kinds of transport equations. Particle methods
were very popular at that time. In plasma physics they were the main tool for the simulation of charge transport,
and in fluid dynamics the vortex-blob method appeared to be very appealing for the solution of the inviscid
incompressible Euler equation, because it did not introduce any spurious numerical viscosity. The first two
papers on particle methods, [29, 31] are mainly of theoretical value. It is shown that in a space homogeneous
linear collisional kinetic equation, is possible to give a particle approximation, in which all the particles have
the same mass. The collision term has the effect of changing the momentum of each particle. A technique
based on weak convergence of measures is used to prove the convergence of the particle method to the exact
solution of the linear transport equation. In paper [32] this idea of approximating a source by a flux is further
investigated and applied to the one dimensional heat equation. It is shown that a pure particle approximation is
possible of the heat equation, with accuracy and stability properties very similar to the classical finite difference
scheme for the one dimensional heat equation. A second order linearly implicit scheme is proposed. In paper
[35] the ambitious program of replacing a diffusion term in a convection-diffusion equation by a drift term
obtained by a suitable discretization of the osmotic velocity is considered. An innovative technique based on
the approximation of the gradient operator on unstructured grids is introduced, and the results of the technique
are favorably compared with other particle approximations of convection-diffusion equation, obtained by using a
smooth kernel. The main motivations for using particle methods for convection-diffusion equation is that when
the viscosity vanishes, the methods smoothly become a particle method for a convection equation, providing
an exact measure-value solution of the equation (solution along the characteristics). Applications have been
presented at various conferences [34, 36, 37]. A deterministic vortex method for the numerical solution of the
incompressible Navier-Stokes equation in two space dimensions has been presented in [42]. The equations are
written in the vorticity formulation, and the flow field is approximated by a superposition of vortex-blobs. Each
vortex is convected by a velocity reconstructed from the vorticity distribution by the Biot-Savart law, while the
vorticity itself (or, better, the circulation) is diffused by solving a diffusion equation in which the Laplacian is
a approximated on the unstructured free Lagrangian grid of the particles (a Voronoi diagram, updated at each
time step, has been used). The resulting scheme has the following remarkable properties: i) as the viscosity
vanishes the scheme reduces ti the classical vortex-blob method for the incompressible Euler equations, ii) the
method provides the exact evolution law of the total circulation (at variance with the random vortex method,
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that introduces strong statistical fluctuations in the total circulation).

Computational fluid dynamics [44, 45, 51, 63, 56]

Several methods have been proposed and analyzed for the numerical solution of incompressible Euler equation.
In particular, in paper [44], a vortex methods has been proposed for the numerical solution of the two dimensional
incompressible Euler equations. The method works as follows. At a given time the vorticity field is approximated
by a piecewise liner reconstruction obtained on the Delaunay triangulation associated to the vortex points.
The velocity at each vortex location is then computed by integrating the Biot-Savart kernel on the piecewise
vorticity. The convergence of such method on a fixed topology triangulation was previously proved by T.Chacon
and T.Hou in 1990. The novelty of the approach in the present paper were the use of Delaunay triangulation,
and the use of the fast-multipole method, suitably adapted on a piecewise linar distribution, to speed up the
velocity computation. The system of ordinary differential equations for the vortex location is then solved by a
suitable ode solver. Another advantage of approximating the vorticity on a triangulation is the great flexibility
in grid adaptation, that allows to evolve both smooth distribution as well as vortex patches. Several numerical
tests have been performed that show the effectiveness of the approach.

In the other papers, the so called impulse formulation of incompressible fluid dynamics has been considered.
The impulse field p provides an alternative way describe the evolution of incompressible Euler and Navier-
Stokes equations in two and three space dimensions. In the case of the Euler equations, for example, the
impulse equations are written as ∂p/∂t − u × (∇ × p) = ∇Λ, where u is the divergence free projection of
p, and Λ is an arbitrary gauge, that may be suitably chosen in order to simplify the treatment. In [63] the
impulse formulation of the Euler equation is revised, pointing out the physical and geometrical implication
of the most commonly chosen gauges, and some of the difficulties encountered when the impulse variable is
directly used in a numerical method. In paper [51] an application of the impulse formulation in the study of the
interaction between an incompressible inviscid fluid and an elastic membrane in two and three space dimensions
is presented. The numerical results are then compared with the linear theory, in the case of small amplitude
oscillations.

Recently, a new interest in computational fluid dynamics arose, mainly in conjunction with environmental
applications (see the section 5.2 on the current research projects).

Kinetic models for bubbly flow [46, 47, 93]

The goal of the papers is to derive the equations describing collective motion of spherical identical bubbles in an
inviscid incompressible liquid. The first paper deals with the kinetic regime, while the second paper deals with
the fluid dynamic limit. The starting point is the dynamics of a collection of N spheres in a perfect fluid. Once
the position and velocity of all the spheres are known at a given instant of time, one can in principle compute
the motion of the fluid in the region occupied by the fluid. Without external forces, the total kinetic energy
of the fluid is equal to the Lagrangian of the system, and can be computed, in principle, as a function of the
coordinates of the spheres and their velocities. Because of this, the equation of motion of the spheres are given
by Euler-Lagrange equation. In the case the volume fraction ε of the sphere is very small, one can develop an
asymptotic theory in such a parameter. The expansion in the small parameter is equivalent to an expansion of
the velocity field into dipole fields (the velocity field induced by a single sphere in motion in an infinite fluid is
a dipole field). This allows some analytical manipulation of the problem. In particular, to the first order in the
small parameter, it is possible to write explicitly the expression of the Hamiltonian of the system. From the
Hamiltonian, one can use a standard approach, based on the Liouville equation and on the BBGKY hierarchy
describing the evolution of m−particle distribution function to derive a self-consistent Vlasov-Poisson type
equation for the one particle distribution function using the assumption of molecular chaos (Stosszahlansatz).
Some of the properties of the equations are discussed in the paper, including onset of instability for the initial
value problem, and construction of suitable particle schemes for the numerical solution of the equations.

In the first paper the binary collisions among the spheres were neglected, and only the mean field term
induced by the dipole field was considered. In the second paper, on the contrary, one considers that the effect
of the collisions is dominant, and relaxes the distribution to a Maxwellian. Under such an assumption, taking
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moments of the kinetic equations, one obtains a closed set of fluid dynamics equations describing the evolution
of mass, momentum, and energy density of the distribution.

Later, several researchers, including Benoit Perthame, and Vladimir Teshukov, extended the theory in several
directions. In particular, Vladimir Teshukov showed that the kinetic equation of bubbly flow in one space
dimension can be interpreted as an infinite-dimensional hyperbolic system, and the instability of the solution
for some initial value problem is interpreted as the lack of hyperbolicity of the system. The collaboration with
the group of prof. Teshukov lead to a few papers, one of which related to the theory of bubbly flow [93].

Hydrodynamical models of semiconductors [38, 43, 57, 59, 69, 72, 75, 10]

The work on semiconductor modeling dealt both with the analysis of the properties of some hydrodynamical
model for semiconductor device simulation, and on the numerical solution of the equations. Several mathe-
matical models are possible for the description of charge transport in semiconductors. The choice of the model
depends on the level of physical detailed needed in the treatment, and in the computational resources available.
Up to about twenty five years ago, the so-called drift-diffusion model was more than appropriate to describe
charge transport in devices in which the typical characteristic lengths were well above the micron. When the
technology allowed the production of smaller devices, such models became inappropriate to describe some effects
(for example inertial effects of the carriers). A more detailed treatment of the charge transport dynamics is given
by a kinetic description: the charges (electrons and holes) are described by a density function in phase space,
that satisfies a complicated integro-differential equation, describing the interaction between the charges and
the lattice (manly scattering with phonons) and the influence of the self-consistent electric field. Such kinetic
models provide a very accurate physical description of charge transport in sub-micron channel devices, and,
with suitable modifications, are able to take into account quantum effects (semiclassical description). Kinetic
models are however very demanding from a computational point of view, mainly because of the dimensionality
of the problem (in the full three dimensional case the density function depends on seven independent variables:
three space coordinates, three momentum coordinates, and time). An intermediate level of description is given
by the so-called hydrodynamical models. Such models are usually derived by taking some moments of the
kinetic equations, and closing the hierarchy of equations using suitable mathematical techniques (for example
Maximum Entropy Theory or Extended Thermodynamics).

In papers [38] and [43] an analysis is provided of an hydrodynamical model describing charge transport in
a one dimensional model of a diode. In particular, in [43] a qualitative analysis of the solution of the equation
is performed using techniques from the mathematical theory of ordinary differential equations. A comparison
is then performed between the solution of the invistid model and the solution of a regularized viscous model.

Numerical solution of hydrodynamical models presents several computational challenges, because such sys-
tems have the structure of hyperbolic quasilinear systems of balance laws, with possibly stiff source terms, and
with a term containing the electric field, coupled to the balance equations via a self-consistent Poisson equation.

One additional difficulty is that the characteristic structure of the hyperbolic part (eigenvalues and eigen-
vectors of the Jacobian matrix) is not explicitly known, and, of course, the solution of the so called Riemann
problem, is not known for such systems. This motivates the use of shock-capturing numerical methods that do
not require the knowledge of (exact or approximate) Riemann solvers.

The research developed in the context of semiconductor modeling motivated the research for the development
of high order shock capturing central schemes, with or without stiff source terms (see section on numerical
methods for balance laws).

In paper [69] the one dimensional equations of the hydrodynamical model have been solved by central finite
volume scheme, which is the generalization of the well-known Nessyahu-Tadmor second order central scheme
on staggered grid. The hydrodynamical model in one space dimension is described by a set of five pde’s for the
balance of density, momentum, energy, stress (a scalar in one dimension) and heat flux, coupled with the Poisson
equation. Numerical simulations of a typical junction diode are performed, and the results are compared with
those obtained by a sophisticated Monte Carlo code (Damocles, developed at the IBM T.J.Watson Research
Center), which is physically much more accurate, but computationally extremely expensive.

Paper [72] deals with the numerical solution of a reduced hydrodynamical model, coupled with the Poisson
equation. The second order of accuracy of the scheme has been tested with tests performed on smooth solution,
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and the reliability of the model has been assessed by a detailed comparison with sophisticated Monte Carlo
simulation.

Paper [75] deals with the comparison between two different methods for the numerical solution of the
hydrodynamical models of semiconductors. In particular, solutions obtained by a finite volume central scheme
are compared with solutions obtained by a kinetic scheme. The cross-validation of different schemes is important
in such problems, since exact solutions are not known. The excellent agreement between the two different
approaches is a good indication of the reliability of the two methods.

Numerical methods for kinetic equations [40, 41, 7, 79, 11, 64, 70, 67, 76, 82, 71,
86, 89, 9, 95, 109, 115, 100, 101, 107]

Together with the development of numerical methods for balance laws, this is one of the main research areas
of G.Russo. The numerical solution of kinetic equations presents several difficulties, such as the dimensionality
of the problem, the complexity of the collision integral in the case of the Boltzmann equation of rarefied gas
dynamics, the stiffness of the collision term when the system is close to the fluid regime, just to mention some
of them.

Conference proceedings [40] and [41] were a first attempt to deal with the stiffness of the collision term of
a kinetic equation near the fluid dynamic limit. The research was conducted while G.Russo was a post-doc at
UCLA, working with prof. R.Caflisch. A similar problem has been treated in the context of hyperbolic systems
with stiff relaxation terms, leading to one of the most cited papers of G.Russo [49].

References [7, 79, 11] are lecture notes prepared for short courses on the numerical solution of the Boltzmann
and related equations, delivered at several summer schools. They were all prepared in collaboration with Prof.
Lorenzo Pareschi, from the University of Ferrara. In particular, the last one gives a nice overview of deterministic
and Monte Carlo methods for the numerical solution of the Boltzmann and related equations, including the
most recent developments at the time of publication.

Spectral methods for the numerical solution of the Boltzmann and Fokker-Planck-Landau equations are
considered in a series of papers. In paper [64] a method is presented for the space homogeneous Boltzmann
equation. Under the assumption that the distribution function decays fast in velocity, the equation is first
periodized in velocity space; then, by taking the Fourier transform, the evolution equation is converted into an
infinite set of equations for the Fourier coefficients. The truncation of the Fourier series gives a spectral-Fourier
method for the Boltzmann equation. The computational complexity for the computation of the right-hand side
of the equation is quadratic, because of the quadratic nature of the Boltzmann equation. However, there are
two great advantages of this approach: first the Fourier coefficients that describe the collision operator can be
computed at the beginning of the time integration, by integrating over the angles, and in many interesting cases
have an explicit analytical expression (this makes the computational complexity lower than other deterministic
schemes available at the time of the publication of the paper, in which also the angles in the collision integral
have to be discretized), and the method presents a spectral accuracy, providing extremely accurate solutions
with a reasonable number of Fourier modes (if the solution itself is quite smooth, which unfortunately is not
always the case). The large accuracy of the scheme makes it a good choice when a very accurate solution is
requires in special cases, for example when one wants to formulate conjectures on some properties of the solution
in special cases.

The scheme does not preserves momentum and energy exactly, but it preserves them with spectral accuracy.
Not even positivity is preserved, although the violation of positivity of the solution is extremely small. With a
suitable modification, the spectral method may be made positive using suitable filtering techniques in Fourier
space [70], however this is done at the cost of losing spectral accuracy.

The spectral method has been extended to space non homogeneous problems in [86]. A fractional-step
method is used for the time discretization: the convection step is solved by a Positive-Flux Conservative method,
derived by Filbet in his PhD thesis, which is third order accurate in space, and the collision term is treated
by the spectral method introduced in [64], where the space homogeneous Boltzmann equation is solved in each
space cell. The accuracy in time is second order, obtained by using the classical symmetric Strang-splitting.
An interesting feature of the splitting approach is that in this way the code is easily parallelizable: during the
convection step each velocity is independent and parallelization is possible in velocity space, while during the
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collision step, each space cell is independent, and parallelization is possible in physical space.
A spectral method can be effectively used to compute the right-hand side of the Fokker-Planck-Landau

equation. This is done in the two papers [67, 76]. By periodizing the FPL equation in velocity, and taking the
Fourier transform, because of the very special structure of the equation, the right-hand side can be computed
as the sum of seven convolutions, making the computa ∆v is the grid size in velocity space.

In addition to deterministic methods, Monte Carlo methods have been considered. MC methods are ex-
tensively used in rarefied gas dynamics. In fact, they are the most suitable methods for general purpose RGD
computation, in presence of complex geometries, especially if the system is quite far from local thermodynamical
equilibrium. Near local thermodynamical equilibrium (fluid regime) MC methods are usually not very effective:
the main effect of collision is to relax the distribution function toward a Maxwellian, and the small deviation
from equilibrium are hard to observe because they are masked by the large statistical noise intrinsic in the MC
method.

The problem of designing a Monte Carlo method which is effective even near the fluid regime is treated in
paper [82]. The method is based on a formal expansion in time of the numerical solution of a Boltzmann-type
equation, called Wild sum, in which the solution at time t+ ∆t is written as a series of positive terms. Because
of the positivity of the terms, the series has a natural probabilistic interpretation, that leads to a Monte Carlo
scheme. Furthermore, by truncating the series, and replacing the reminder by a local Maxwellian, one obtains
a scheme that is able to work even in the fluid dynamic regime: in such a case the scheme becomes a sort
of Monte-Carlo kinetic scheme for the underlying compressible Euler equation of a monoatomic gas, in which
particles are sampled from a Maxwellian with the moment computed with the local distribution of particles,
and then are convected by free flow during one time step. This approach, called Time-Relaxed Monte Carlo
(TRMC) had several extensions, mainly by Pareschi and his students, in particular in the direction of removing
the fluctuations by exploiting the fact that near the fluid dynamic regime the behavior of the system approaches
a continuous equation that can be solved by a deterministic scheme.

Some variation of TRMC has been compared with other Monte Carlo methods developed by the group of
Prof. Ivanov in Novosibirsk ([100, 101]) and with other methods for the numerical solution of the Boltzmann
equation, as is done in [109]. In this paper, the numerical solution of the Boltzmann equation is compared also
with real experiments conducted on an expansion of gas in a shock tube, using Argon.

A different problem has been considered in paper [89]. In this paper a non linear differential equation of
degree four is considered, describing the so called Hele-Shaw cells. Making use of the positivity of the solution
and the conservation of the L1 norm of the solution, which are guaranteed by the special nature of the equation,
in the paper a novel discretization of the equation is proposed, which has a kinetic interpretation. A Monte
Carlo method is then adopted to approximate the solution of the kinetic equation and therefore of the fourth-
order equation. The scheme preserves some of the properties of the original equation (positivity, L1 norm
preservation).

One of the drawbacks of most deterministic schemes for kinetic equation is that a grid in velocity space that is
adequate in a region in space may be not adequate in a different region. Usually in space homogeneous equations
this problem does not appear. There are, however, cases in which the kinetic equation does not conserve energy,
and the distribution function approaches a Dirac mass concentrated at the origin (homogeneous cooling). This
is the case, for example, of the Boltzmann equation for granular gases. In paper [95] an automatic rescaling
technique is proposed that is able to capture the long time behavior of such space homogeneous solutions. The
technique is based on a change of coordinates in velocity space. The grid is rescaled by the thermal speed,
i.e. the square root of the temperature. An evolution equation for the latter is then derived, and the coupled
system describing the evolution of the temperature and the rescaled distribution function is solved numerically
by a spectral method, suitably adapted to the problem (a drift term appears in the equation because of the
change of coordinates). An application of a similar technique is proposed in [107], in which the semiconductor
Boltzmann transport equation (BTE) is first rewritten in a rescaled energy variable, discretized in the new
variable, and finally the coupled system (BTE and temperature) is solved numerically. Because of the more
efficient discretization, this approach is able to provide an overall more efficient scheme, in spite of the additional
drift term that appears in the equation written in the rescaled variables.

More recently, deterministic semi-Lagrangian schemes have been derived for the numerical solution of the
BGK model of the Boltzmann equation. In a paper, still in preparation, [?], a large time step, high order
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accurate semi-Lagrangian scheme on a regular grid, for the numerical solution of the BGK model is presented.
High order accuracy is obtained by using WENO reconstruction in space, and high order implicit Runge-Kutta
along the characteristics. Due to a special property of the BGK operator, the implicit step can be explicitly
solved. Because of the implicit nature of the time solver, the method is able to treat the problem even in the
fluid dynamic regime, when the relaxation time vanishes, although in this case the method reduces to first order
in time. Some of the results presented in the paper are contained in the PhD thesis of Pietro Santagati, who
obtained his PhD in 2007, under the supervision of G.Russo.

Theoretical results about the scheme, including a convergence proof, will be presented in a forthcoming
paper, still in preparation [128].

A similar semi-Lagrangian, large time step method has been used in [115], in which the BGK equation has
been solved on a fixed grid in space in a region that depends on time (piston problem). Reflecting boundary
conditions on the piston are used to define the value of the distribution function at ghost cells. A comparison
between the results obtained by this method and the numerical solution of the Euler equation of gas dynamics
is performed for a very small Knudsen number (fluid regime).

Numerical methods for balance laws

The research in this field had three main objectives:

1. construction of high order finite volume and finite difference shock capturing schemes for conservation
laws which do not rely on Riemann solvers

2. development of high order schemes for balance laws with stiff source terms

3. shallow water equations and well balanced schemes for hyperbolic systems with source

The first and second topic were originally motivated by the application to the hydrodynamical model of semi-
conductors. In such models, in fact, the characteristic structure is not know, and therefore it is very difficult
to use schemes that require the solution of the Riemann problem. Furthermore, such systems may contain
stiff source terms that are better treated by an implicit scheme. Several other mathematical models, such as
discrete velocity models from kinetic theory, have the structure of a hyperbolic system with relaxation: when a
small parameter (that can be interpreted as a relaxation time) vanishes, the source term becomes an algebraic
relation between the variables, and the original hyperbolic system with source relaxes to a hyperbolic systems
with a smaller number of unknowns. The original motivation to work on such problems was to develop efficient
schemes for kinetic equations that work also in the fluid regime.

The third topic was motivated first by the construction of well balanced central schemes for shallow water
equations, and later by the desire of construct high order well-balanced finite volume schemes for generic systems
of balance laws.

High order schemes for conservation laws [61, 62, 65, 66, 68, 84, 91, 103, 60, 8, 12, 99, 80, 121]

Central schemes on staggered grids have two great advantages: the staggering process avoids the need of Riemann
solvers, and it increases the resolution for the same order of accuracy and grid size. The first advantage is shared
by standard non staggered schemes, when a numerical flux function that does not require Riemann solver is
used, for example the local Lax-Friedrichs flux. The second advantage in some cases may compensate the
disadvantages introduced by the staggering (for example it is slightly more cumbersome to assign boundary
conditions in a scheme on staggered grids).

The first paper on high order central schemes is [61]. In this paper a general technique is introduced to
extended the second order central scheme by Nessyahu and Tadmor to arbitrarily high order finite volume
central schemes on staggered grid. A fourth order scheme was presented in the paper. Two main ingredients
were used. First, Essentially Non Oscillatory reconstruction (ENO), introduced by Osher and coworkers, and
adapted to the central context, allowed to compute point-wise values at the center of the cell, and the staggered
cell average. The use of a staggered grid avoids the need of a Riemann solver. Second, the integral of the flux
is computed by Simpson’s rule, and the approximation of the flux on the nodes is obtained by Runge-Kutta
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schemes with the aid of so called Natural Continuous Extension (or dense output). In a next paper, [62], the
use of Weighted ENO reconstruction (WENO), originally introduced by Liu, Osher and Chan in the context
of upwind schemes, and suitably adapted here to the central context, allowed the computation of fourth order
schemes (CWENO schemes) with a more compact stencil than the one required by the ENO reconstruction.
Numerical experiments on the TVD (Total Variation Diminishing) property of the recently developed CWENO
schemes was presented at the ICOSAHOM conference in Israel in 1998 [65]. A third order CWENO scheme in
two space dimensions were presented in [66], and a version with a more compact stencil was presented in [68].
A fourth order CWENO scheme in two space dimensions was presented in [84].

In my opinion, the best paper on high order central schemes for conservation laws is the one developed with
Pareschi and Puppo on Central-Runge-Kutta schemes (CRK) [91]. It introduces a new technique to construct
high order central schemes on staggered grids. The method is based on integrating the evolution equation for
the staggered cell average for one time step, by an ingenious use or a Runge-Kutta approach: the numerical
solution is computed for the staggered cell averages, so that the resulting scheme is conservative, while the so
called stage values are computed (point wise) along the center of the non staggered cell, by a scheme which
is not necessarily in conservative form, since these values are used to evaluate the flux when constructing the
(conservative) numerical solution. In addition, the schemes obtained in this fashion have a simpler structure than
previous central schemes. For high order schemes, this simplification results in higher computational efficiency.
In this work, schemes of order 2 to 5 are proposed and tested, although central Runge–Kutta schemes of any
order of accuracy can be constructed in principle. The application to systems of equations is carefully studied,
comparing algorithms based on a component wise extension of the scalar scheme with those based on projection
along characteristic directions.

In paper [103] conservative finite difference shock capturing scheme, originally developed by Osher and Shu
on non staggered grids, are extended to staggered grids. The finite difference approach has some advantages
over finite volume: it is simpler and more efficient in several space dimensions, and it is more natural for systems
with a source term, if high order accuracy is desired (it has however the drawback of being less flexible in terms
of space discretization).

Paper [60] deals with the development of efficient shock capturing schemes, having in mind applications to
magneto-hydro-dynamics. When developing high order schemes, a numerical flux function that is often used
is an improvement of the local-Lax-Friedrichs (LLF) flux, which involves the use of the absolute value of the
Jacobian matrix of the system (while the simple LLF flux uses the spectral radius of the matrix), which in turn
requires the diagonalization of the matrix. An intermediate approach is obtained by approximate the absolute
value of a matrix by a function of the matrix that approximates the absolute value. The use of such numerical
flux function provides a resolution which is better than the one obtained by LLF flux, and it is much simpler
than the use of the absolute value of the matrix.

Several lecture notes have been written on the topic of shock capturing schemes for conservation laws.
Among these we recall the chapters written for books: [8] and [12], for lectures given respectively at a summer
school in Hamburg in 2001 and a summer school in Barcelona in 2007, both on numerical methods for balance
laws.

Paper [99] deals with the application of (WENO) reconstructions to a class of semi-Lagrangian schemes for
first order time-dependent Hamilton–Jacobi equations. In particular, we derive a general form of the scheme,
study sufficient conditions for its convergence with high-order reconstructions, and perform numerical tests to
study its efficiency. In addition, we prove that the weights of the WENO interpolants are positive for any order.

In this section I include two papers on numerical methods for problems with moving boundaries. The first
one is [80], in which a central scheme for the solution of one dimensional gas dynamics in Lagrangian coordinates
was presented, which was able to deal with a system with two fluids separated by an interface. More recently,
in paper [121], a second order boundary condition on a moving piston is presented, and the results of the piston
problem are compared with those obtained by a moving mesh methods in Eulerian coordinates.
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Numerical schemes for hyperbolic systems with stiff relaxation [49, 50, 77, 55, 78, 88, 98, 106,
105, 103, 110, 113]

Motivated by the goal of finding efficient schemes for kinetic equations that are able to capture the fluid dynamic
limit without resolving the small collision mean free time, this research lead to some of the most cited papers
of G.Russo.

In paper [49], which turned out to be the most cited paper, the authors study the problem of developing
high-resolution shock-capturing numerical schemes for hyperbolic systems with relaxation. In such systems
the relaxation time may vary from order one to much less than unity. When the relaxation time is small,
the relaxation term becomes very strong and highly stiff, and under resolved numerical schemes may produce
spurious results. Usually one cannot decouple the problem into separate regimes and handle different regimes
with different methods. Thus it is important to have a scheme that works uniformly with respect to the
relaxation time. Using the Broadwell model of the nonlinear Boltzmann equation, a second-order scheme that
works effectively, with a fixed spatial and temporal discretization, for all ranges of the mean free path is derived.
Formal uniform consistency proof for a first-order scheme and numerical convergence proof for the second-order
scheme are also presented. Later, the scheme for the time evolution was recognized to be an Implicit-Explicit
Runge-Kutta scheme applied to a hyperbolic system with stiff relaxation. Notice that the paper of Ascher,
Ruuth and Spiteri on IMEX schemes for pde’s appeared the same year.

The accuracy of the methods was restricted to second order in time. A third order accurate shock capturing
finite volume scheme that made use of an extrapolation technique was presented in [50]. Later, more effective
ways to obtain higher order finite difference schemes using IMEX are considered.

In paper [77] and in the proceeding paper [55] a second order central scheme on staggered grids for hyperbolic
systems with stiff relaxation is presented. The scheme guarantees second order accuracy both in the non stiff
regime and in the very stiff regime, with a small degradation of the accuracy for the intermediate cases.

In a series of papers, Pareschi and Russo studied high order shock capturing finite difference methods based
on IMEX time discretization for the numerical solution of hyperbolic systems with relaxation. IMEX time
discretization is a natural thing to do when dealing with hyperbolic systems with relaxation. In fact, the
hyperbolic term is usually not stiff (if one wants to resolve all the waves of the system), and it does not need
to be treated implicitly, while the relaxation term may be very stiff, and an explicit treatment would impose a
restriction on the time step which is much more severe than the standard CFL condition.

In [78] new IMEX Runge-Kutta schemes are introduced, analyzed, and compared with existing IMEX
schemes. A stability analysis that generalized the A-stability or Runge-Kutta schemes is performed. The
treatment is restricted to systems of ordinary differential equations. In the conference proceeding [88] IMEX-
Runge Kutta schemes are presented for the numerical solution of hyperbolic systems with stiff relaxation.
Such schemes are constructed by combining explicit Strongly-Stability-Preserving schemes (SSP), which are
commonly used for the time discretization of high order semidiscrete finite difference shock capturing schemes,
with L-stable schemes for the relaxation part, which are stable enough to give the proper asymptotic limit, in
the case of infinite stiffness. The properties of such IMEX-SSP schemes and of several other new schemes are
analyzed in paper [98], and the effectiveness of the schemes was tested by applying them to various hyperbolic
systems with relaxation, including the Broadwell model of the Boltzmann equation, shallow water equation
with friction, hydrodynamical models for granular gases, and traffic flow models.

Paper [106] deals with the numerical solution of some parabolic integro-differential equations used in finance.
They are models of option pricing generalizing the Black-Scholes equation, when the processes which generate
the underlying stock returns may contain both a continuous part and jumps. Due to the non-local nature of
the integral term, unconditionally stable implicit difference schemes are not practically feasible. IMEX schemes
seem to provide a very effective way to treat such problems.

In two papers in collaboration with G.Puppo, IMEX schemes are coupled with staggered finite difference
and finite volume schemes. The first one, [105], is an extension of [103] to problems with stiff source, i.e. it
presents a construction of high-order shock-capturing finite-difference schemes on staggered grids for hyperbolic
systems with a stiff source term, obtained using IMEX time discretization. In paper [110] Central Rungr-Kutta
and IMEX schemes are combined to provide the first general purpose high order shock capturing finite volume
scheme for hyperbolic systems with stiff source term
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Paper [113] deals with the problem of developing IMEX schemes which are uniformly accurate in the stiffness
parameter, and applying them to hyperbolic systems with stiff relaxation. The problem of the uniform accuracy
of IMEX schemes for systems of ordinary differential equation has been the topic of the PhD thesis of Dr.
Sebastiano Boscarino, who obtained his PhD in 2006 under the supervision of G.Russo. In that thesis many
ideas from implicit schemes applied to stiff systems and to differential-algebraic systems have been applied to
the analysis of IMEX schemes. Even if the IMEX scheme preserves the theoretical order of accuracy p in the
limit of infinite stiffness, a strong degradation of the accuracy for intermediate values of the stiffness parameter
is observed. The analysis of this effect is conducted by performing an asymptotic expansion in the stiffness
parameter. To the various orders, one obtains a hierarchy of differential-algebraic systems of increasing index.
The formal expansion can be performed both for the exact solution of the differential system, and for numerical
solution obtained by the IMEX method. The lack of matching of the terms at positive orders in ε is the cause
of the degradation of the accuracy. The uniformity of the accuracy can be improved by matching some terms
of the exact and numerical solution in the expansion in ε. This matching leads to new “order conditions” that
have to be satisfied in addition to the classical order condition for IMEX schemes. In the paper in question, the
new conditions, derived in the PhD thesis of Boscarino, have been applied to derive novel schemes that show a
more uniform accuracy for hyperbolic systems with stiff relaxation, than the schemes known in the literature.

Shallow water equations and well-balanced schemes [23, 81, 96, 92, 114, 119, 120]

Some papers deal with the numerical solution of shallow water equation, and with the problem or constructing
well-balanced schemes.

In an early paper, [23], several numerical schemes available at the time were tested with the purpose of
computing the time at which shallow water waves break on a sloping beach. The most effective way was to use
methods based on characteristics.

A numerical scheme is called well-balanced if it is able to maintain stationary states at a discrete level. This
property is very important when one is interested in observing a solution which is a small perturbation of a
stationary one. If a scheme is not well-balanced, spurious artifacts, of the order of the truncation error, may
mask the small signal one is interested in.

At the hyperbolic conference in Magdeburg in 2000 [81] G.Russo presented the first well-balanced second
order central scheme on staggered grid, two years earlier than a work that introduced well-balanced schemes
for non-staggered central schemes using essentially the same ingredients. The scheme preserved only equilibria
at rest, i.e. solutions for which the water flux is zero.

At a conference in Chambery in 2002, G.Russo presented a well-balanced staggered central scheme that
preserves also non stationary equilibria, and which works for Saint-Venant model in the case of channels with
variable cross section. The results have been published in [96].

For many years, well-balanced schemes were restricted to second order. Recently, several authors presented
various techniques to construct high order, well balanced schemes. At the hyperbolic conference in Maryland, in
2008, G.Russo presented a general technique, developed in collaboration with Alexander Khe, to construct high
order, well balanced schemes for systems with source, and applied it to one dimensional shallow water equations
[114]. The technique is based on the use of equilibrium variables in the reconstruction step. In this formulation,
the method is based on an analytical knowledge of the mapping between conservative and equilibrium variables.
A more robust method, which is based on the numerical reconstruction of local equilibrium stares, has been
presented at the international workshop NumHyp2009 held in Castro Urdiales in September 2009, and is being
published in [119].

Finally, in paper [120] a well balanced scheme for Saint-Venant equations that includes the friction term
with the bottom is presented.

Paper [92] deals with inifinite-layer formulation of shallow water. This constitute a generalization of standard
Saint Venant equation for shallow water, and applies when the effect of the vorticity cannot be neglected.
The system describing infinite-layer shallow water is an integrodifferential system, that has the mathematical
structure of a hyperbolic system of infinite dimension. The goals of the paper were: to study a class of exact
solution for such system, to propose a numerical methods for the approximation of it solutions, and to compare
the solution of the infinite-layer model with the solution of classical Saint-Venant equations, to assess the validity

30



of the latter.

Numerical simulation of crystal growth

This research has been conducted in collaboration with Prof. Peter Smereka, from the University of Michigan.
The goal is to develop models and methods for effective simulation of crystal growth, under various regimes.
In paper based on macroscopic description of crystal growth, level set techniques have been used, while more
microscopic modeling of epitaxial growth is obtained using Kinetic Monte Carlo techniques. The first paper
on crystal growth is [73], in which the co-called van der Drift model for crystal growth is considered here. We
present a new method for simulating van der Drift growth, both for single crystals and polycrystals. In the
simulation of polycrystals, each grain is described by a level set function, which is defined only in a narrow
band around the zero level set, defining grain boundary. In this way the total memory occupation is simply
proportional to the total grid size. The computational domain of each grain is updated dynamically at each time
step using a signed distance function. In a subsequent paper [90] the methods has been applied to the simulation
of polycrystal, allowing to predict several macroscopic parameters of the polycrystal, such as morphology and
surface roughness. The prediction of the model are in good agreement with experimental results.

In [74] we pointed out that the usual schemes based on PDE for the construction of signed distance function
does not maintain the zero level set. After several iterations the error accumulates, and the zero level set
suffers a spurious drift. We observed that this is due to the lacking of strict unwinding across the interface, and
proposed a simple technique to fix this problem. First and second order accurate schemes were presented. In
spite of its relative simplicity, this paper was a rather successful one, and became the second most cited paper
of G.Russo.

In the next papers simulation of epitaxial growth has been considered.
In paper [94] the authors consider mathematical model for epitaxial growth, which is called island dynamics,

which is a macroscopic model, in which the island formed over a substrate as a consequence of attachment
after chemical vapor deposition, grows according to a velocity which is computed by solving a suitable Stephan
problem. The level set defining the island is then moved according to such velocity. A hybrid model is considered
in the paper: the velocity is computed by solving a pde, and then its value is interpreted as attachment
probability, and particles are attached (or detached in case of negative velocity) with a rate proportional to the
velocity itself. This approach provides some of the effects which are due to the statistical fluctuation of the
problem, and which is impossible to observe with the macroscopic model. This idea, however, has not being
pursued further, since at the end the method was not faster than the purely microscopic Kinetic Monte Carlo.

The goal of paper [102] is to construct an effective Kinetic Monte Carlo method for the simulation of
etheroepitaxy. When depositing atoms of one species on atoms of a (not so) different species, say Germanium
on Silicon, epitaxy is still possible since the external electronic structure of the two atoms is rather similar,
and their size is not so different. However, lattice spacing in Germanium is about 4% greater, therefore when
Ge atoms are forced to stay on the smaller Si substrate, the deposited layers are affected by compression
stress. The overall effect is that the simple planar configuration, which is thermodynamically favorable in
homogeneous epitaxy, is no longer the one that minimizes total energy (bond enerdy + elastic energy), and
after a few monolayer the formation of mounds is observed experimentally. In KMC simulation, single adatoms
are deposited one at time. Once the atoms reach the substrate they hop, with a rate that is approximately
given by an attempt frequency times a Boltzmann factor that takes into account the energy barrier needed
to perform the hop. In the computation of such energy barrier, necessary to perform KMC, the bottleneck
is the computation of the elastic energy, since removing a single atom has a global change in the equilibrium
configuration of the lattice. In this paper we introduce a very effective way to compute the elastic energy of
a configuration. The novelty of the method is that the contribution of the lattice is taken into account semi-
analytically by decomposing the displacement of substrate atoms into Fourier modes, which can be computed
analytically. The problem is transformed into large sparse symmetric positive definite linear system, which
is then solved by conjugate gradient method. In a subsequent paper, [104], the method is made much more
efficient by a non trivial use of a multigrid approach. The resulting scheme was orders of magniture faster than
other schemes adopted, for example, by the group of UCLA interested in etheroepitaxy, and at the end this
group decided to incorporate our method into their simulator.
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Other papers

G.Russo worked on a few other topics which are not directly related with what has been described before.
In [52] a domain decomposition method for the solution of parabolic problems is presented, which may be

considered analogue to the classical ADI methods or fractional step methods for the solution of a large sparse
linear system in several space dimensions, which are obtained when using an implicit scheme for the solution of
the heat equation. Usually, the elliptic operator is fractioned along the coordinate axes, leading to sequence of
tridiagonal systems (if the grids are uniform and the operator has no mixed second derivatives). In this paper
a partition of unit is used, which is based on a domain decomposition, and it is applicable also to non uniform
grids, and to operators containing mixed derivatives. For such methods, theoretical estimates of the truncation
error are performed, and a comparison is made, both theoretical and numerical, between the new approach and
the traditional ones.

Paper [87] deals with maximum norm stability and accuracy of a finite difference discretization of parabolic
equations on overset non matching space time grids in space time. The resulting global discretization yields
a large system of coupled equations, which is solved by Schwarz iterative procedure. The analysis employs
contraction mapping arguments.

In [53] an optimization problem is considered. The goal is to construct a numerical approximation of a
function which is implicitly defined by an integral equation. The minimization problem is treated by looking
for a function of a suitable form, depending (nonlinearly) on five fitting parameters. The solution found in the
paper is simpler and much more accurate than the one determined by other authors in a previous paper which
the present paper refers to.

Paper [112] is the outcome of a project with an industrial partner, aimed to the development of a prototype
software, KneeMech, developed to assist the surgeon by simulating the structural strain and stress distribution
in a bone-prosthesis system of a knee, under various load conditions. The project saw a collaboration between
the LIMA group S.R.L. and the University of Catania. The objective was to provide a tool that is able to
simulate the stress distribution in the prosthesis and in the bones as a result of the implantation of a knee
prosthesis. The result depends on a large set of parameters, such as the mechanical properties of the bone
and the geometry of the cut. The initiative was so complex that several groups were involved in the project:
the LIMA S.R.L., two Departments of the University of Catania (Department of Mathematics and Computer
Science and Department of Mechanical Engineering). The research was carried on with the help of a foreign
partner, the Fraunhofer Institute ITWM from Kaiserslautern, with the group conducted by Dr. Heiko Andrä.
The Vittorio Emanuele hospital in Catania, Sicily, was involved in the project, providing CAT scan of the bones,
and consulting about the surgical process. The bone is modeled as a five parameter viscoelastic material, which
were determined by fitting the measured response using the analytical solution of the relaxation predicted by the
model. A three dimensional geometric model of the bone was constructed by the image processing group from
several 2D section images obtained from CAT scan. The geometrical data were integrated with the mechanical
properties of the bone, obtaining a complete 3D description of the object. A great care has been used in the
modeling of the bone-prosthesis contact: a highly accurate multi-scale modeling provides the determination of
effective parameters to be used in the numerical simulation. The final problem is discretized using finite element
on a tetrahedral mesh, obtained from the voxel representation of the bone. For the prototype, only an elastic
model has actually been implemented. The final large sparse linear system is then solved by preconditioned
conjugate gradient method. Once the displacement vector and stress tensor have been computed, the results
can be displayed on arbitrary cross section of the bone (see screen shot figure).

An important aspect of the package is the possibility of performing uncertainty analysis, to establish the
range of variation of the results upon uncertainty in the knowledge of some parameters, such as, for example,
Young modulus of the bone. A suitably adapted affine arithmetic technique has been used for such purpose.
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Lecture notes and book chapters:

[7] L.Pareschi, G. Russo, “An introduction to Monte Carlo methods for the Boltzmann equation”, CEMRACS
1999 (Orsay), 35–76 (electronic), ESAIM Proc., 10, Soc. Math. Appl. Indust., Paris, 1999

[8] G. Russo, “Central schemes and systems of balance laws”, in Hyperbolic partial differential equations
(Hamburg, 2001), 59–114, Vieweg, Braunschweig, (2002).

[9] F. Filbet, G. Russo, “Accurate Numerical Methods for the Boltzmann Equation”, in Modelling and Copu-
tational Aspects of Kinetic Equations, Edito da P. Degond, L. Pareschi, G. Russo, Birkhäuser, capitolo 4,
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