A Nonlocal Formulation of Quantum Maximum Entropy Principle Including Fractional Exclusion Statistics

M. Trovato* and L. Reggiani†

* Dipartimento di Matematica e Informatica, Università di Catania, viale A. Doria 6 - 95125 Catania, Italy
† Dipartimento di Matematica e Fisica ”‘Ennio De Giorgi” and CNISM, Università del Salento Via Arnesano s/n, 73100 Lecce, Italy

16th International Workshop on Computational Electronics
June 4 – 7, 2013 – Nara, Japan
Contents

- Introduction and Motivation
- Theoretical development
- Conclusions
Contents

- Introduction and Motivation
- Theoretical development
- Conclusions
We propose a new definition of Quantum Entropy beyond the Von Neummann Entropy.
- We express the Quantum Entropy in terms of the reduced density matrix.
- We include "ab initio" Quantum Statistics Fermions–Bosons–Exclusons.

We develop a Quantum Maximum Entropy Principle (QMEP) for a proper non-local formulation of theory, by recovering the classic MEP when $\hbar \to 0$.

We determine a closed quantum hydrodynamic system (QHD) for the macroscopic variables used as constraints in the QMEP approach.
We propose a new definition of Quantum Entropy beyond the Von Neumann Entropy.
- We express the Quantum Entropy in terms of the reduced density matrix.
- We include "ab initio" Quantum Statistics Fermions–Bosons–Exclusons.

We develop a Quantum Maximum Entropy Principle (QMEP) for a proper nonlocal formulation of theory, by recovering the classic MEP when $\hbar \to 0$.

We determine a closed quantum hydrodynamic system (QHD) for the macroscopic variables used as constraints in the QMEP approach.
We propose a new definition of Quantum Entropy beyond the Von Neumann Entropy.
- We express the Quantum Entropy in terms of the reduced density matrix.
- We include "ab initio" Quantum Statistics Fermions–Bosons–Exclusons.

We develop a Quantum Maximum Entropy Principle (QMEP) for a proper nonlocal formulation of theory, by recovering the classic MEP when $\hbar \to 0$.

We determine a closed quantum hydrodynamic system (QHD) for the macroscopic variables used as constraints in the QMEP approach.
We propose a new definition of Quantum Entropy beyond the Von Neumann Entropy.
- We express the Quantum Entropy in terms of the reduced density matrix.
- We include "ab initio" Quantum Statistics Fermions–Bosons–Exclusons.

We develop a Quantum Maximum Entropy Principle (QMEP) for a proper nonlocal formulation of theory, by recovering the classic MEP when $\hbar \to 0$.

We determine a closed quantum hydrodynamic system (QHD) for the macroscopic variables used as constraints in the QMEP approach.
We propose a new definition of Quantum Entropy beyond the Von Neumann Entropy.
- We express the Quantum Entropy in terms of the reduced density matrix.
- We include "ab initio" Quantum Statistics Fermions–Bosons–Exclusons.

We develop a Quantum Maximum Entropy Principle (QMEP) for a proper nonlocal formulation of theory, by recovering the classic MEP when $\hbar \to 0$.

We determine a closed quantum hydrodynamic system (QHD) for the macroscopic variables used as constraints in the QMEP approach.
We propose a new definition of Quantum Entropy beyond the Von Neumann Entropy.
- We express the Quantum Entropy in terms of the reduced density matrix.
- We include "ab initio" Quantum Statistics Fermions–Bosons–Exclusons.

We develop a Quantum Maximum Entropy Principle (QMEP) for a proper nonlocal formulation of theory, by recovering the classic MEP when $\hbar \to 0$.

We determine a closed quantum hydrodynamic system (QHD) for the macroscopic variables used as constraints in the QMEP approach.
Theoretical development

- We consider, in the **Fock space** N identical particles
- The statistical operator **density matrix** ρ with $\text{Tr}(\rho) = 1$.
- **Wave field operators** $\Psi(r) = \sum a_j \varphi_j(r)$, $\Psi^\dagger(r) = \sum a_j^\dagger \varphi_j^*(r)$
- The general Hamiltonian with many-body interactions $[\uparrow]$
 \[
 H = \int d^D r \, \Psi^\dagger(r) \left[-\frac{\hbar^2}{2m} \nabla^2 + U(r) \right] \Psi(r) + \\
 \sum_{k=2}^L \frac{1}{k!} \int d^D r_1 \cdots \int d^D r_k \, \Psi^\dagger(r_1) \cdots \Psi^\dagger(r_k) V_k(r_1, \ldots, r_k) \Psi(r_k) \cdots \Psi(r_1)
 \]
- $U(r)$ \Rightarrow one-body external potential
- $V_k(r_1, \ldots, r_k)$ \Rightarrow symmetric k-body interaction potential
- The **Reduced Density Matrix** of single particle
 \[
 \langle r \mid \hat{\rho} \mid r' \rangle = \langle \Psi^\dagger(r') \Psi(r) \rangle = \text{Tr} \left(\rho \Psi^\dagger(r') \Psi(r) \right) \quad \text{with} \quad \text{Tr}(\hat{\rho}) = N
 \]
Theoretical development

- We consider, in the **Fock space** N identical particles
- The statistical operator **density matrix** ρ with $\text{Tr}(\rho) = 1$.
- Wave field operators $\Psi(r) = \sum a_j \phi_j(r)$, $\Psi^\dagger(r) = \sum a_j^\dagger \phi_j^*(r)$
- The general Hamiltonian with **many-body interactions** $H = \int d^Dr \Psi^\dagger(r) \left[-\frac{\hbar^2}{2m} \nabla^2 + U(r) \right] \Psi(r) + \sum_{k=2}^L \frac{1}{k!} \int d^Dr_1 \cdots \int d^Dr_k \Psi^\dagger(r_1) \cdots \Psi^\dagger(r_k) V_k(r_1, \ldots, r_k) \Psi(r_k) \cdots \Psi(r_1)$
 - $U(r)$ \Rightarrow one-body external potential
 - $V_k(r_1, \ldots, r_k)$ \Rightarrow symmetric k-body interaction potential
- The **Reduced Density Matrix** of single particle $\langle r | \hat{\rho} | r' \rangle = \langle \Psi^\dagger(r') \Psi(r) \rangle = \text{Tr} (\rho \Psi^\dagger(r') \Psi(r))$ with $\text{Tr}(\hat{\rho}) = N$
Theoretical development

- We consider, in the **Fock space** N identical particles.
- The statistical operator **density matrix** ρ with $\text{Tr}(\rho) = 1$.
- **Wave field operators** $[\star]$ $\psi(r) = \sum a_j \varphi_j(r)$, $\psi^\dagger(r) = \sum a_j^\dagger \varphi_j^*(r)$
- The general Hamiltonian with many-body interactions $[\dagger]$ $H = \int d^D r \psi^\dagger(r) \left[-\frac{\hbar^2}{2m} \nabla^2 + U(r) \right] \psi(r) + \sum_{k=2}^L \frac{1}{k!} \int d^D r_1 \cdots \int d^D r_k \psi^\dagger(r_1) \cdots \psi^\dagger(r_k) V_k(r_1, \ldots, r_k) \psi(r_k) \cdots \psi(r_1)$
 - $U(r)$ \Rightarrow one-body external potential
 - $V_k(r_1, \ldots, r_k)$ \Rightarrow symmetric k-body interaction potential
- The **Reduced Density Matrix** of single particle $\langle r | \hat{\rho} | r' \rangle = \langle \psi^\dagger(r') \psi(r) \rangle = \text{Tr} \left(\rho \psi^\dagger(r') \psi(r) \right)$ with $\text{Tr}(\hat{\rho}) = N$
Theoretical development

- We consider, in the **Fock space** N identical particles

- The statistical operator **density matrix** ρ with $Tr(\rho) = 1$.

- **Wave field operators** $\Psi(r) = \sum a_j \varphi_j(r)$, $\Psi^\dagger(r) = \sum a_j^\dagger \varphi_j^*(r)$

- The general Hamiltonian with **many-body interactions** $\hat{H} = \int d^D r \, \Psi^\dagger(r) \left[-\frac{\hbar^2}{2m} \nabla^2 + U(r) \right] \Psi(r) + \sum_{k=2}^{L} \frac{1}{k!} \int d^D r_1 \cdots \int d^D r_k \Psi^\dagger(r_1) \cdots \Psi^\dagger(r_k) V_k(r_1, \ldots, r_k) \Psi(r_k) \cdots \Psi(r_1)$

- $U(r)$ \Rightarrow one-body external potential

- $V_k(r_1, \ldots, r_k)$ \Rightarrow symmetric k-body interaction potential

- The **Reduced Density Matrix** of single particle

$$\langle r | \hat{\rho} | r' \rangle = \langle \Psi^\dagger(r') \Psi(r) \rangle = Tr \left(\rho \Psi^\dagger(r') \Psi(r) \right) \quad \text{with} \quad Tr(\hat{\rho}) = N$$
Theoretical development

- We consider, in the **Fock space** N identical particles.
- The statistical operator **density matrix** ρ with $\text{Tr}(\rho) = 1$.
- **Wave field operators** $[\star]$ $\psi(r) = \sum a_j \varphi_j(r)$, $\psi^\dagger(r) = \sum a_j^\dagger \varphi_j^*(r)$
- The general Hamiltonian with **many-body interactions** $[\dagger]$ $H = \int d^D r \, \psi^\dagger(r) \left[-\frac{\hbar^2}{2m} \nabla^2 + U(r) \right] \psi(r) + \sum_{k=2}^L \frac{1}{k!} \int d^D r_1 \cdots \int d^D r_k \psi^\dagger(r_1) \cdots \psi^\dagger(r_k) V_k(r_1, \ldots, r_k) \psi(r_k) \cdots \psi(r_1)$

 - $U(r) \Rightarrow$ one-body external potential
 - $V_k(r_1, \ldots, r_k) \Rightarrow$ symmetric k-body interaction potential

- The **Reduced Density Matrix** of single particle

 $\langle r | \hat{\varrho} | r' \rangle = \langle \psi^\dagger(r') \psi(r) \rangle = \text{Tr} \left(\rho \, \psi^\dagger(r') \psi(r) \right)$ with $\text{Tr}(\hat{\varrho}) = N$
Reduced Wigner function (Klimontovich [2] 1958)

\[
\mathcal{F}_W = \frac{1}{(2\pi \hbar)^D} \int d^D \tau e^{-\frac{i}{\hbar} \tau \cdot \mathbf{p}} \langle \Psi^\dagger (\mathbf{r} - \tau/2) \Psi (\mathbf{r} + \tau/2) \rangle
\]

- Weyl-Wigner transform and Inverse Weyl-Wigner transform

To \(\hat{A}(\hat{r}, \hat{p}) \) correspond \(\Leftrightarrow \) the Phase-Space Function \(\tilde{A}(\mathbf{r}, \mathbf{p}) \)

\[
\mathcal{W}(\hat{A}) = \tilde{A}(\mathbf{r}, \mathbf{p}) \quad \text{and} \quad \mathcal{W}^{-1}(\tilde{A}) = \langle \mathbf{r} | \hat{A} | \mathbf{r}' \rangle
\]

\(\tilde{\varrho}(\mathbf{r}, \mathbf{p}) = \mathcal{W}(\hat{\varrho}) = (2\pi \hbar)^D \mathcal{F}_W(\mathbf{r}, \mathbf{p}) \quad \langle \mathbf{r} | \hat{\varrho} | \mathbf{r}' \rangle = \mathcal{W}^{-1}(\tilde{\varrho}) \)

- Equation of Evolution in the Hartree approximation

\[
i\hbar \frac{\partial}{\partial t} \langle \mathbf{r} | \hat{\varrho} | \mathbf{r}' \rangle = \int d^D \mathbf{r}'' \left\{ \langle \mathbf{r} | \hat{H} | \mathbf{r}'' \rangle \langle \mathbf{r}'' | \hat{\varrho} | \mathbf{r}' \rangle - \langle \mathbf{r} | \hat{\varrho} | \mathbf{r}'' \rangle \langle \mathbf{r}'' | \hat{H} | \mathbf{r}' \rangle \right\}
\]

where \(\hat{H} = \langle \mathcal{H} \rangle \) is the single particle Hamiltonian, being [\dagger]

\[
\mathcal{H} = \left[-\frac{\hbar^2}{2m} \nabla^2 + U(\mathbf{r}) \right] + \\
\sum_{k=1}^{L-1} \frac{1}{k!} \int d^D r_1 \cdots \int d^D r_k \psi^\dagger(r_1) \cdots \psi^\dagger(r_k) V_k(r, r_1, \ldots, r_k) \psi(r_k) \cdots \psi(r_1)
\]
Reduced Wigner function (Klimontovich [2] 1958)

\[\mathcal{F}_W = \frac{1}{(2\pi \hbar)^D} \int d^D \tau e^{\frac{i}{\hbar} \tau \cdot \mathbf{p}} \langle \Psi^\dagger (\mathbf{r} - \tau/2) \Psi (\mathbf{r} + \tau/2) \rangle \]

Weyl-Wigner transform and **Inverse Weyl-Wigner transform**

To \(\hat{A}(\hat{\mathbf{r}}, \hat{\mathbf{p}}) \) correspond \(\Leftrightarrow \) the Phase-Space Function \(\tilde{A}(\mathbf{r}, \mathbf{p}) \)

\[\mathcal{W}(\hat{A}) = \tilde{A}(\mathbf{r}, \mathbf{p}) \quad \text{and} \quad \mathcal{W}^{-1}(\tilde{A}) = \langle \mathbf{r} | \hat{A} | \mathbf{r}' \rangle \]

\[\tilde{\varrho}(\mathbf{r}, \mathbf{p}) = \mathcal{W}(\hat{\varrho}) = (2\pi \hbar)^D \mathcal{F}_W(\mathbf{r}, \mathbf{p}) \quad \langle \mathbf{r} | \hat{\varrho} | \mathbf{r}' \rangle = \mathcal{W}^{-1}(\tilde{\varrho}) \]

Equation of Evolution in the Hartree approximation

\[i\hbar \frac{\partial}{\partial t} \langle \mathbf{r} | \hat{\varrho} | \mathbf{r}' \rangle = \int d^D r'' \left\{ \langle \mathbf{r} | \hat{\mathcal{H}} | r'' \rangle \langle r'' | \hat{\varrho} | \mathbf{r}' \rangle - \langle \mathbf{r} | \hat{\varrho} | r'' \rangle \langle r'' | \hat{\mathcal{H}} | \mathbf{r}' \rangle \right\} \]

where \(\hat{\mathcal{H}} = \langle \mathcal{H} \rangle \) is the single particle Hamiltonian, being [1]

\[\mathcal{H} = \left[-\frac{\hbar^2}{2m} \nabla^2 + U(\mathbf{r}) \right] + \sum_{k=1}^{L-1} \frac{1}{k!} \int d^D r_1 \cdots \int d^D r_k \psi^\dagger(r_1) \cdots \psi^\dagger(r_k) V_k(r, r_1, \ldots, r_k) \psi(r_k) \cdots \psi(r_1) \]
Reduced Wigner function (Klimontovich [2] 1958)

\[\mathcal{F}_\mathcal{W} = \frac{1}{(2\pi\hbar)^D} \int d^D \tau e^{-i \frac{\tau}{\hbar} \cdot \mathbf{p}} \langle \Psi^\dagger(r - \tau/2) \Psi(r + \tau/2) \rangle \]

Weyl-Wigner transform and Inverse Weyl-Wigner transform

To \(\hat{A}(\mathbf{r}, \mathbf{p}) \) correspond \(\Leftrightarrow \) the Phase-Space Function \(\tilde{\mathcal{A}}(\mathbf{r}, \mathbf{p}) \)

\[\mathcal{W}(\hat{A}) = \tilde{\mathcal{A}}(\mathbf{r}, \mathbf{p}) \quad \text{and} \quad \mathcal{W}^{-1}(\tilde{\mathcal{A}}) = \langle \mathbf{r} | \hat{A} | \mathbf{r}' \rangle \]

\[\tilde{\varrho}(\mathbf{r}, \mathbf{p}) = \mathcal{W}(\tilde{\varrho}) = (2\pi\hbar)^D \mathcal{F}_\mathcal{W}(\mathbf{r}, \mathbf{p}) \quad \langle \mathbf{r} | \tilde{\varrho} | \mathbf{r}' \rangle = \mathcal{W}^{-1}(\tilde{\varrho}) \]

Equation of Evolution in the Hartree approximation

\[i\hbar \frac{\partial}{\partial t} \langle \mathbf{r} | \tilde{\varrho} | \mathbf{r}' \rangle = \int d^D \mathbf{r}'' \left\{ \langle \mathbf{r} | \hat{\mathcal{H}} | \mathbf{r}'' \rangle \langle \mathbf{r}'' | \tilde{\varrho} | \mathbf{r}' \rangle - \langle \mathbf{r} | \tilde{\varrho} | \mathbf{r}'' \rangle \langle \mathbf{r}'' | \hat{\mathcal{H}} | \mathbf{r}' \rangle \right\} \]

where \(\hat{\mathcal{H}} = \langle \mathcal{H} \rangle \) is the single particle Hamiltonian, being [†]

\[\mathcal{H} = \left[-\frac{\hbar^2}{2m} \nabla^2 + U(\mathbf{r})\right] + \sum_{k=1}^{L-1} \frac{1}{k!} \int d^D \mathbf{r}_1 \cdots \int d^D \mathbf{r}_k \psi^\dagger(\mathbf{r}_1) \cdots \psi^\dagger(\mathbf{r}_k) V_k(\mathbf{r}, \mathbf{r}_1, \ldots, \mathbf{r}_k) \psi(\mathbf{r}_k) \cdots \psi(\mathbf{r}_1) \]
By applying Weyl-Wigner and its inverse Weyl-Wigner transform to different terms of equation for $\langle r|\hat{Q}|r'\rangle$ we obtain

Equation of Evolution for the Reduced Wigner function

\[
i\hbar \frac{\partial}{\partial t} F_W = \frac{1}{(2\pi \hbar)^{2D}} \int \int \int \int d^D r' d^D p' d^D \tau d^D \phi e^{\frac{i}{\hbar} \tau \cdot (p' - p)} e^{\frac{i}{\hbar} \phi \cdot (r - r')} \\
\times \left\{ \tilde{H} \left(r' + \frac{\tau}{2}, p' + \frac{\phi}{2} \right) - \tilde{H} \left(r' - \frac{\tau}{2}, p' - \frac{\phi}{2} \right) \right\} F_W(r', p')
\]

$\tilde{H}(r, p) = \text{phase function of single particle operator } \hat{H} = \langle \hat{H} \rangle$.

Gradient expansion of kinetic equation

By expanding $\tilde{H}(r' + \tau/2, p' + \phi/2) - \tilde{H}(r' - \tau/2, p' - \phi/2)$ around $\tau = 0$ and by using the Fourier integral theorem

\[
\frac{\partial F_W}{\partial t} + \frac{p_k}{m} \frac{\partial F_W}{\partial x_k} = \sum_{l=0}^{\infty} \frac{(i \hbar/2)^{2l}}{(2l + 1)!} \left[\frac{\partial^{2l+1} V_{\text{eff}}}{\partial x_{k_1} \cdots \partial x_{k_{2l+1}}} \right] \left[\frac{\partial^{2l+1} F_W}{\partial p_{k_1} \cdots \partial p_{k_{2l+1}}} \right]
\]
The Quantum Kinetic equation

By applying Weyl-Wigner and its inverse Weyl-Wigner transform to different terms of equation for $\langle r | \hat{Q} | r' \rangle$ we obtain

Equation of Evolution for the Reduced Wigner function

$$i\hbar \frac{\partial}{\partial t} F_W = \frac{1}{(2\pi\hbar)^2D} \int \int \int \int d^D r' d^D p' d^D \tau d^D \phi e^{i\hbar \tau \cdot (p' - p)} e^{i\hbar \phi \cdot (r - r')}$$

$$\times \left\{ \tilde{H} \left(r' + \frac{\tau}{2}, p' + \frac{\phi}{2} \right) - \tilde{H} \left(r' - \frac{\tau}{2}, p' - \frac{\phi}{2} \right) \right\} F_W(r', p')$$

$\tilde{H}(r, p) =$ phase function of single particle operator $\hat{H} = \langle \hat{H} \rangle$.

Gradient Expansion of Kinetic Equation

By expanding $\tilde{H}(r' + \tau/2, p' + \phi/2) - \tilde{H}(r' - \tau/2, p' - \phi/2)$ around $\tau = 0$ and by using the Fourier integral theorem

$$\frac{\partial F_W}{\partial t} + \frac{p_k}{m} \frac{\partial F_W}{\partial x_k} = \sum_{l=0}^{\infty} \frac{(i \hbar/2)^{2l}}{(2l + 1)!} \left[\frac{\partial^{2l+1} V_{\text{eff}}}{\partial x_{k_1} \cdots \partial x_{k_{2l+1}}} \right] \left[\frac{\partial^{2l+1} F_W}{\partial p_{k_1} \cdots \partial p_{k_{2l+1}}} \right]$$
The Quantum Kinetic equation

By applying Weyl-Wigner and its inverse Weyl-Wigner transform to different terms of equation for $\langle \boldsymbol{r} | \hat{\varrho} | \boldsymbol{r}' \rangle$ we obtain

- **Equation of Evolution for the Reduced Wigner function**

 $$i\hbar \frac{\partial}{\partial t} \mathcal{F}_W = \frac{1}{(2\pi\hbar)^{2D}} \int \int \int \int d^D \boldsymbol{r}' d^D \boldsymbol{p}' d^D \tau d^D \phi e^{i\frac{\hbar}{\hbar} \tau \cdot (\boldsymbol{p}' - \boldsymbol{p})} e^{i\frac{\hbar}{\hbar} \phi \cdot (\boldsymbol{r}' - \boldsymbol{r})}$$

 $$\times \left\{ \tilde{\mathcal{H}} \left(\boldsymbol{r}' + \frac{\tau}{2}, \boldsymbol{p}' + \frac{\phi}{2} \right) - \tilde{\mathcal{H}} \left(\boldsymbol{r}' - \frac{\tau}{2}, \boldsymbol{p}' - \frac{\phi}{2} \right) \right\} \mathcal{F}_W (\boldsymbol{r}', \boldsymbol{p}')$$

 $\tilde{\mathcal{H}}(\boldsymbol{r}, \boldsymbol{p}) = \text{phase function of single particle operator } \hat{\mathcal{H}} = \langle \mathcal{H} \rangle$.

Gradient expansion of kinetic equation

By expanding $\tilde{\mathcal{H}} (\boldsymbol{r}' + \tau/2, \boldsymbol{p}' + \phi/2) - \tilde{\mathcal{H}} (\boldsymbol{r}' - \tau/2, \boldsymbol{p}' - \phi/2)$ around $\tau = 0$ and by using the Fourier integral theorem

$$\frac{\partial \mathcal{F}_W}{\partial t} + \frac{p_k}{m} \frac{\partial \mathcal{F}_W}{\partial x_k} = \sum_{l=0}^{\infty} \frac{(i\hbar/2)^{2l}}{(2l+1)!} \left[\frac{\partial^{2l+1} V_{\text{eff}}}{\partial x_{k_1} \cdots \partial x_{k_{2l+1}}} \right] \left[\frac{\partial^{2l+1} \mathcal{F}_W}{\partial p_{k_1} \cdots \partial p_{k_{2l+1}}} \right]$$
The effects of interactions are entirely contained in $V_{\text{eff}}(r)$

\[
V_{\text{eff}}(r) = U(r) + \sum_{k=1}^{L-1} \frac{1}{k!} \int d^D r_1 \cdots \int d^D r_k \, g^{(k)}(r_1, \ldots, r_k)
\]

\[
\times n(r_1) \cdots n(r_k) \, V_{k+1}(r, r_1, \ldots, r_k)
\]

being $g^{(k)}(r_1, \ldots r_k)$ the k-order correlation function

\[
g^{(k)}(r_1, \ldots r_k) = \frac{\langle \psi^\dagger(r_1) \cdots \psi^\dagger(r_k) \psi(r_k) \cdots \psi(r_1) \rangle}{n(r_1) \cdots n(r_k)}
\]

- For $L = 2$ we obtain the usual Hartree approximation with two-body interactions $V_{\text{eff}}(r) = U(r) + \int d^D r_1 \, n(r_1) \, V_2(r, r_1)$
- For $L > 2$ we obtain the Hartree approximation plus some corrections due to Fermion-Boson-Exclusion correlations

We remark that, these results can be generalized by including explicitly the spin degrees of freedom. By including others interaction terms [3, 4]
The effects of interactions are entirely contained in $V_{\text{eff}}(\mathbf{r})$

$$V_{\text{eff}}(\mathbf{r}) = U(\mathbf{r}) + \sum_{k=1}^{L-1} \frac{1}{k!} \int d^D r_1 \cdots \int d^D r_k \ g^{(k)}(r_1, \cdots, r_k)$$

$$\times n(r_1) \cdots n(r_k) \ V_{k+1}(r, r_1, \cdots, r_k)$$

being $g^{(k)}(r_1, \cdots r_k)$ the k-order correlation function

$$g^{(k)}(r_1, \cdots r_k) = \frac{\langle \psi^\dagger(r_1) \cdots \psi^\dagger(r_k) \psi(r_k) \cdots \psi(r_1) \rangle}{n(r_1) \cdots n(r_k)}$$

- For $L = 2$ we obtain the usual Hartree approximation with Two-body interactions $V_{\text{eff}}(\mathbf{r}) = U(\mathbf{r}) + \int d^D r_1 \ n(r_1) \ V_2(\mathbf{r}, r_1)$
- For $L > 2$ we obtain the Hartree approximation plus some corrections due to Fermion-Boson-Exclusion correlations

We remark that, these results can be generalized

By including explicitly the spin degrees of freedom.
By including others interaction terms [3, 4]
The effects of interactions are entirely contained in $V_{\text{eff}}(r)$

$$V_{\text{eff}}(r) = U(r) + \sum_{k=1}^{L-1} \frac{1}{k!} \int d^D r_1 \cdots \int d^D r_k \ g^{(k)}(r_1, \ldots, r_k)$$

$$\times n(r_1) \cdots n(r_k) \ V_{k+1}(r, r_1, \ldots, r_k)$$

being $g^{(k)}(r_1, \ldots, r_k)$ the k-order correlation function

$$g^{(k)}(r_1, \ldots, r_k) = \frac{\langle \Psi^\dagger(r_1) \cdots \Psi^\dagger(r_k) \Psi(r_k) \cdots \Psi(r_1) \rangle}{n(r_1) \cdots n(r_k)}$$

For $L = 2$ we obtain the usual Hartree approximation with Two-body interactions $V_{\text{eff}}(r) = U(r) + \int d^D r_1 \ n(r_1) \ V_2(r, r_1)$

For $L > 2$ we obtain the Hartree approximation plus some corrections due to Fermion-Boson-Exclusion correlations

We remark that, these results can be generalized by including explicitly the spin degrees of freedom. By including others interaction terms [3, 4]
The effects of interactions are entirely contained in $V_{\text{eff}}(r)$:

$$V_{\text{eff}}(r) = U(r) + \sum_{k=1}^{L-1} \frac{1}{k!} \int d^D r_1 \cdots \int d^D r_k \ g^{(k)}(r_1, \cdots, r_k)$$

$$\times n(r_1) \cdots n(r_k) \ V_{k+1}(r, r_1, \cdots, r_k)$$

being $g^{(k)}(r_1, \cdots, r_k)$ the k-order correlation function

$$g^{(k)}(r_1, \cdots, r_k) = \frac{\langle \psi^\dagger(r_1) \cdots \psi^\dagger(r_k) \psi(r_k) \cdots \psi(r_1) \rangle}{n(r_1) \cdots n(r_k)}$$

For $L = 2$ we obtain the usual Hartree approximation with two-body interactions $V_{\text{eff}}(r) = U(r) + \int d^D r_1 \ n(r_1) \ V_2(r, r_1)$

For $L > 2$ we obtain the Hartree approximation plus some corrections due to Fermion-Boson-Exclusion correlations

We remark that, these results can be generalized by including explicitly the spin degrees of freedom. By including others interaction terms [3, 4]
The QMEP for a System of Identical Particles

- **Von Neumann strategy** [1]
 \[S = -k_B \text{Tr}(\rho \ln \rho) \]
 It does not contain the statistical information.

- **Statistical weight strategy** [2]
 S in terms of \(\langle N_\nu \rangle = \langle N_\nu \rangle/y \)

Fermi and Bose statistics
\[
S = -k_B \sum_y (\langle N_\nu \rangle \ln (\langle N_\nu \rangle) + (1 - \langle N_\nu \rangle) \ln (1 - \langle N_\nu \rangle))
\]

Anyonic systems satisfying Fractional Exclusion statistics
\[
S = -k_B \sum_y \left[\langle N_\nu \rangle \ln (\langle N_\nu \rangle) + (1 - \langle N_\nu \rangle) \ln (1 - \langle N_\nu \rangle) \right] - y \left[(1 - \langle N_\nu \rangle) \ln (1 - \langle N_\nu \rangle) - (1 - y) \langle N_\nu \rangle \right]
\]

For \(\kappa = 1 \) and \(\kappa = 0 \) we recover Fermi and Bose statistics.
The QMEP for a system of identical particles

- **Von Neumann strategy** [1] $S = -k_B \text{Tr}(\rho \ln \rho)$

 It does not contain the statistical information.

- **Statistical weight strategy** [2] S in terms of $\langle N_\nu \rangle = \langle \mathcal{N}_\nu \rangle / y$

 $S = -k_B \sum y [\langle N_\nu \rangle \ln \langle N_\nu \rangle \pm (1 \mp \langle N_\nu \rangle) \ln (1 \mp \langle N_\nu \rangle)]$

 Anyonic systems satisfying Fractional Exclusion statistics

 $S = -k_B \sum y \left\{ \langle N_\nu \rangle \ln \langle N_\nu \rangle + (1 - \kappa \langle N_\nu \rangle) \ln (1 - \kappa \langle N_\nu \rangle) -
 \right.$

 $\left. [1 + (1 - \kappa \langle N_\nu \rangle)] \ln [1 + (1 - \kappa \langle N_\nu \rangle)] \right\}$

 For $\kappa = 1$ and $\kappa = 0$ we recover Fermi and Bose statistics

- **Present strategy** [3] Reduced Density Operator approach

 $S = -k_B \text{Tr} \{ \hat{\Phi} (\hat{\rho}) \}$
The QMEP for a system of identical particles

- **Von Neumann strategy** [1]
 \[S = -k_B \text{Tr}(\rho \ln \rho) \]

 It does not contain the statistical information.

- **Statistical weight strategy** [2] \(S \) in terms of \(\langle N_\nu \rangle = \langle N_\nu \rangle / y \)
 \[S = -k_B \sum y \left[\langle N_\nu \rangle \ln \langle N_\nu \rangle \pm (1 \mp \langle N_\nu \rangle) \ln (1 \mp \langle N_\nu \rangle) \right] \]

Anyonic systems satisfying Fractional Exclusion statistics

\[S = -k_B \sum y \left\{ \langle N_\nu \rangle \ln \langle N_\nu \rangle + (1 - \kappa \langle N_\nu \rangle) \ln (1 - \kappa \langle N_\nu \rangle) - [1 + (1 - \kappa \langle N_\nu \rangle)] \ln [1 + (1 - \kappa \langle N_\nu \rangle)] \right\} \]

For \(\kappa = 1 \) and \(\kappa = 0 \) we recover Fermi and Bose statistics

- **Present strategy** [3] \(\text{Reduced Density Operator approach} \)
 \[S = -k_B \text{Tr} (\hat{\Phi}(\hat{\varrho})) \]
The QMEP for a system of identical particles

- **Von Neumann strategy** [1] \(S = -k_B \text{Tr}(\rho \ln \rho) \)

 It does not contain the statistical information.

- **Statistical weight strategy** [2] \(S \) in terms of \(\langle \overline{N}_{\nu} \rangle = \langle N_{\nu} \rangle / y \)

 Fermi and Bose statistics

 \[
 S = -k_B \sum y \left[\langle \overline{N}_{\nu} \rangle \ln \langle \overline{N}_{\nu} \rangle \pm \left(1 \mp \langle \overline{N}_{\nu} \rangle \right) \ln \left(1 \mp \langle \overline{N}_{\nu} \rangle \right) \right]
 \]

 Anyonic systems satisfying Fractional Exclusion statistics

 \[
 S = -k_B \sum y \left\{ \langle \overline{N}_{\nu} \rangle \ln \langle \overline{N}_{\nu} \rangle + \left(1 - \kappa \langle \overline{N}_{\nu} \rangle \right) \ln \left(1 - \kappa \langle \overline{N}_{\nu} \rangle \right) - \left[1 + (1 - \kappa) \langle \overline{N}_{\nu} \rangle \right] \ln \left[1 + (1 - \kappa) \langle \overline{N}_{\nu} \rangle \right] \right\}
 \]

 For \(\kappa = 1 \) and \(\kappa = 0 \) we recover Fermi and Bose statistics

- **Present strategy** [3] Reduced Density Operator approach

 \(S = -k_B \text{Tr} \{ \hat{\Phi}(\hat{\rho}) \} \)
The QMEP for a system of identical particles

- **Von Neumann strategy** [1] \[S = -k_B \text{Tr}(\rho \ln \rho) \]

 It does not contain the statistical information.

- **Statistical weight strategy** [2] \[S \text{ in terms of } \langle N_\nu \rangle = \langle N_\nu \rangle / y \]

 Fermi and Bose statistics
 \[S = -k_B \sum y [\langle N_\nu \rangle \ln \langle N_\nu \rangle \pm (1 \mp \langle N_\nu \rangle) \ln (1 \mp \langle N_\nu \rangle)] \]

Anyonic systems satisfying Fractional Exclusion statistics

\[S = -k_B \sum y \left\{ \langle N_\nu \rangle \ln \langle N_\nu \rangle + (1 - \kappa \langle N_\nu \rangle) \ln (1 - \kappa \langle N_\nu \rangle) - \right. \]

\[\left. [1 + (1 - \kappa) \langle N_\nu \rangle] \ln [1 + (1 - \kappa) \langle N_\nu \rangle]\right\} \]

For \(\kappa = 1 \) and \(\kappa = 0 \) we recover Fermi and Bose statistics.

- **Present strategy** [3] Reduced Density Operator approach

 \[S = -k_B \text{Tr} \{ \hat{\Phi}(\hat{\rho}) \} \]
The QMEP for a system of identical particles

- **Von Neumann strategy** [1]
 \[S = -k_B \text{Tr}(\rho \ln \rho) \]
 It does not contain the statistical information.

- **Statistical weight strategy** [2] S in terms of \(\langle N_\nu \rangle = \langle N_\nu \rangle/y \)
 Fermi and Bose statistics
 \[S = -k_B \sum_y y[\langle N_\nu \rangle \ln \langle N_\nu \rangle \pm (1 \mp \langle N_\nu \rangle) \ln (1 \mp \langle N_\nu \rangle)] \]

 Anyonic systems satisfying Fractional Exclusion statistics
 \[S = -k_B \sum_y \{ \langle N_\nu \rangle \ln \langle N_\nu \rangle + (1 - \kappa \langle N_\nu \rangle) \ln (1 - \kappa \langle N_\nu \rangle) - \\
 [1 + (1 - \kappa \langle N_\nu \rangle)] \ln [1 + (1 - \kappa \langle N_\nu \rangle)] \} \]
 For \(\kappa = 1 \) and \(\kappa = 0 \) we recover Fermi and Bose statistics

- **Present strategy** [3] Reduced Density Operator approach
 \[S = -k_B \text{Tr}\{\hat{\Phi}(\Omega)\} \]
The QMEP for a System of Identical Particles

- Von Neumann strategy [1] \[S = -k_B \text{Tr}(\rho \ln \rho) \]

 It does not contain the statistical information.

- Statistical weight strategy [2] \[S \text{ in terms of } \langle N_\nu \rangle = \langle N_\nu \rangle/y \]

 Fermi and Bose statistics
 \[S = -k_B \sum y [\langle N_\nu \rangle \ln \langle N_\nu \rangle \pm (1 \mp \langle N_\nu \rangle) \ln (1 \mp \langle N_\nu \rangle)] \]

 Anyonic systems satisfying Fractional Exclusion statistics
 \[S = -k_B \sum y \{\langle N_\nu \rangle \ln \langle N_\nu \rangle + (1 - \kappa \langle N_\nu \rangle) \ln (1 - \kappa \langle N_\nu \rangle) - \]
 \[[1 + (1 - \kappa \langle N_\nu \rangle) \ln [1 + (1 - \kappa \langle N_\nu \rangle)]\} \]

 For \(\kappa = 1 \) and \(\kappa = 0 \) we recover Fermi and Bose statistics

- Present strategy [3] \[\text{Reduced Density Operator approach} \]
 \[S = -k_B \text{Tr} \left\{ \hat{\Phi}(\hat{\rho}) \right\} \]
We consider for the Bose and Fermi Statistics the function

\[\hat{\Phi}(\hat{\varrho}) = \hat{\varrho} \ln \left(\frac{\hat{\varrho}}{y} \right) \pm \left(\hat{I} \mp \frac{\hat{\varrho}}{y} \right) \ln \left(\hat{I} \mp \frac{\hat{\varrho}}{y} \right) \]

We consider for the Fractional Exclusion Statistics the function

\[\hat{\Phi}(\hat{\varrho}) = \hat{\varrho} \ln \left(\frac{\hat{\varrho}}{y} \right) + \left(\hat{I} - \kappa \frac{\hat{\varrho}}{y} \right) \ln \left(\hat{I} - \kappa \frac{\hat{\varrho}}{y} \right) - \left[\hat{I} + (1 - \kappa) \frac{\hat{\varrho}}{y} \right] \ln \left[\hat{I} + (1 - \kappa) \frac{\hat{\varrho}}{y} \right] \]

where for \(\kappa = 1 \) and \(\kappa = 0 \) we recover Fermi and Bose statistics.

- We prove that
 \[S = -k_B \text{Tr} \{ \hat{\Phi}(\hat{\varrho}) \} \]

- The macroscopic local moments

By considering an arbitrary set of single-particle observables \(\{\hat{M}_A\} \) and the corresponding space-phase functions \(\{\tilde{\psi}_A\} \)

\[M_A(r, t) = \int d^D p \, \tilde{\psi}_A(r, p) \mathcal{F}_W(r, p, t) \]

We use \(S = -k_B \text{Tr}\{ \hat{\Phi}(\hat{\varrho}) \} \) as informational entropy.
We consider for the Bose and Fermi Statistics the function

\[\hat{\Phi}(\hat{\varrho}) = \hat{\varrho} \ln \left(\frac{\hat{\varrho}}{y} \right) \pm \left(\hat{l} \mp \frac{\hat{\varrho}}{y} \right) \ln \left(\hat{l} \mp \frac{\hat{\varrho}}{y} \right) \]

We consider for the Fractional Exclusion Statistics the function \([\dagger]\)

\[\hat{\Phi}(\hat{\varrho}) = \hat{\varrho} \ln \left(\frac{\hat{\varrho}}{y} \right) + \left(\hat{l} - \kappa \frac{\hat{\varrho}}{y} \right) \ln \left(\hat{l} - \kappa \frac{\hat{\varrho}}{y} \right) - \left[\hat{l} + (1 - \kappa) \frac{\hat{\varrho}}{y} \right] \ln \left[\hat{l} + (1 - \kappa) \frac{\hat{\varrho}}{y} \right] \]

where for \(\kappa = 1 \) and \(\kappa = 0 \) we recover Fermi and Bose statistics.

We prove that

\[S = -k_B \text{Tr} \left\{ \hat{\Phi}(\hat{\varrho}) \right\} \]

The macroscopic local moments

By considering an arbitrary set of single-particle observables \(\{\hat{M}_A\} \) and the corresponding space-phase functions \(\{\tilde{\psi}_A\} \)

\[M_A(r, t) = \int d^Dp \, \tilde{\psi}_A(r, p) \, \mathcal{F}_W(r, p, t) \]

We use \(S = -k_B \text{Tr}\{\hat{\Phi}(\hat{\varrho})\} \) as informational entropy.
We consider for the Bose and Fermi Statistics the function
\[
\hat{\Phi}(\hat{\varrho}) = \hat{\varrho} \ln \left(\frac{\hat{\varrho}}{y} \right) \pm \left(\hat{I} \mp \frac{\hat{\varrho}}{y} \right) \ln \left(\hat{I} \mp \frac{\hat{\varrho}}{y} \right)
\]

We consider for the Fractional Exclusion Statistics the function [†]
\[
\hat{\Phi}(\hat{\varrho}) = \hat{\varrho} \ln \left(\frac{\hat{\varrho}}{y} \right) + \left(\hat{I} - \kappa \frac{\hat{\varrho}}{y} \right) \ln \left(\hat{I} - \kappa \frac{\hat{\varrho}}{y} \right) - \left[\hat{I} + (1 - \kappa) \frac{\hat{\varrho}}{y} \right] \ln \left[\hat{I} + (1 - \kappa) \frac{\hat{\varrho}}{y} \right]
\]

where for $\kappa = 1$ and $\kappa = 0$ we recover Fermi and Bose statistics.

• We prove that
\[
S = -k_B \text{Tr} \{\hat{\Phi}(\hat{\varrho})\}
\]

• The macroscopic local moments

By considering an arbitrary set of single-particle observables $\{\hat{M}_A\}$ and the corresponding space-phase functions $\{\tilde{\psi}_A\}$

\[
M_A(r, t) = \int d^Dp \, \tilde{\psi}_A(r, p) \mathcal{F}_W(r, p, t)
\]

We use
\[
S = -k_B \text{Tr}\{\hat{\Phi}(\hat{\varrho})\}
\]
as informational entropy.
• We consider for the Bose and Fermi Statistics the function
\[\hat{\Phi}(\hat{\varrho}) = \hat{\varrho} \ln \left(\frac{\hat{\varrho}}{y} \right) \pm \left(\hat{I} \mp \frac{\hat{\varrho}}{y} \right) \ln \left(\hat{I} \mp \frac{\hat{\varrho}}{y} \right) \]

We consider for the Fractional Exclusion Statistics the function [†]
\[\hat{\Phi}(\hat{\varrho}) = \hat{\varrho} \ln \left(\frac{\hat{\varrho}}{y} \right) + \left(\hat{I} - \kappa \frac{\hat{\varrho}}{y} \right) \ln \left(\hat{I} - \kappa \frac{\hat{\varrho}}{y} \right) - \left[\hat{I} + (1 - \kappa) \frac{\hat{\varrho}}{y} \right] \ln \left[\hat{I} + (1 - \kappa) \frac{\hat{\varrho}}{y} \right] \]

where for \(\kappa = 1 \) and \(\kappa = 0 \) we recover Fermi and Bose statistics.

• We prove that
\[S = -k_B \text{ Tr} \left\{ \hat{\Phi}(\hat{\varrho}) \right\} \]

The macroscopic local moments

By considering an arbitrary set of single-particle observables \(\{\hat{M}_A\} \) and the corresponding space-phase functions \(\{\tilde{\psi}_A\} \)
\[M_A(r, t) = \int d^D p \, \tilde{\psi}_A(r, p) \, \mathcal{F}(r, p, t) \]

We use \(S = -k_B \text{ Tr} \{\hat{\Phi}(\hat{\varrho})\} \) as informational entropy.
We consider for the Bose and Fermi Statistics the function

$$\Phi(\rho) = \rho \ln \left(\frac{\rho}{y} \right) \pm \left(I \mp \frac{\rho}{y} \right) \ln \left(I \mp \frac{\rho}{y} \right)$$

We consider for the Fractional Exclusion Statistics the function \[†\]

$$\Phi(\rho) = \rho \ln \left(\frac{\rho}{y} \right) + \left(I - \kappa \frac{\rho}{y} \right) \ln \left(I - \kappa \frac{\rho}{y} \right) - \left[I + (1 - \kappa) \frac{\rho}{y} \right] \ln \left[I + (1 - \kappa) \frac{\rho}{y} \right]$$

where for \(\kappa = 1\) and \(\kappa = 0\) we recover Fermi and Bose statistics.

We prove that

$$S = -k_B \text{Tr} \left\{ \Phi(\rho) \right\}$$

The macroscopic local moments

By considering an arbitrary set of single-particle observables \(\{\hat{M}_A\}\) and the corresponding space-phase functions \(\{\tilde{\psi}_A\}\)

$$M_A(r, t) = \int d^Dp \, \tilde{\psi}_A(r, p) \, F_{\mathcal{W}}(r, p, t)$$

We use \(S = -k_B \text{Tr}\{\hat{\Phi}(\hat{\rho})\}\) as informational entropy.
We search the extremal value of entropy subject to the constrain that the information of the physical system is described by $M_A(r, t)$

$$\tilde{S} = S - \int d^D r \left\{ \sum_{A=1}^{N} \tilde{\lambda}_A(r, t) \left[\int d^D p \tilde{\psi}_A F_W - M_A(r, t) \right] \right\}$$

For the Fractional Exclusion statistics we obtain

$$\hat{\rho} = y \left\{ \hat{w}(\hat{\xi}) + \kappa \hat{I} \right\}^{-1} [\hat{w}(\hat{\xi})]^\kappa \hat{I} + \hat{w}(\hat{\xi})]^{1-\kappa} = \hat{\xi}$$

$$\hat{\xi} = \exp \left[W^{-1} \left(\sum_{A=1}^{N} \lambda_A \tilde{\psi}_A \right) \right]$$

For $\kappa = 1, 0$ we obtain the Fermi and Bose statistics

$$\hat{\rho} = y \left\{ \exp \left[W^{-1} \left(\sum_{A=1}^{N} \lambda_A(r, t) \tilde{\psi}_A \right) \right] \pm \hat{I} \right\}^{-1}$$

Boltzmann statistics

$$\hat{\rho} = y \exp \left\{ W^{-1} \left(- \sum_{A=1}^{N} \lambda_A(r, t) \tilde{M}_A \right) \right\}$$
We search the extremal value of entropy subject to the constrain that the information of the physical system is described by $M_A(r, t)$

$$\widetilde{S} = S - \int d^D r \left\{ \sum_{A=1}^{N} \tilde{\lambda}_A(r, t) \left[\int d^D p \tilde{\psi}_A F_W - M_A(r, t) \right] \right\}$$

For the Fractional Exclusion statistics we obtain

$$\hat{\varrho} = y \left\{ \hat{w}(\hat{\xi}) + \kappa \hat{l} \right\}^{-1}$$

$$[\hat{w}(\hat{\xi})]^\kappa [\hat{l} + \hat{w}(\hat{\xi})]^{1-\kappa} = \hat{\xi}$$

$$\hat{\xi} = \exp \left[\gamma^{-1} \left(\sum_{A=1}^{N} \lambda_A \tilde{\psi}_A \right) \right]$$

For $\kappa = 1, 0$ we obtain the Fermi and Bose statistics

$$\hat{\varrho} = y \left\{ \exp \left[\gamma^{-1} \left(\sum_{A=1}^{N} \lambda_A(r, t) \tilde{\psi}_A \right) \right] \pm \hat{l} \right\}^{-1}$$

Boltzmann statistics

$$\hat{\varrho} = y \exp \left\{ \gamma^{-1} \left(- \sum_{A=1}^{N} \lambda_A(r, t) \tilde{M}_A \right) \right\}$$
We search the extremal value of entropy subject to the constrain that the information of the physical system is described by $M_A(r, t)$

$$\tilde{S} = S - \int d^D r \left\{ \sum_{A=1}^{N} \tilde{\lambda}_A(r, t) \left[\int d^D p \tilde{\psi}_A F_W - M_A(r, t) \right] \right\}$$

For the Fractional Exclusion statistics we obtain

$$\hat{\varrho} = y \left\{ \hat{w}(\hat{\xi}) + \kappa \hat{I} \right\}^{-1} \quad [\hat{w}(\hat{\xi})]^\kappa [\hat{I} + \hat{w}(\hat{\xi})]^{1-\kappa} = \hat{\xi}$$

$$\hat{\xi} = \exp \left[\gamma W^{-1} \left(\sum_{A=1}^{N} \lambda_A \tilde{\psi}_A \right) \right]$$

For $\kappa = 1, 0$ we obtain the Fermi and Bose statistics

$$\hat{\varrho} = y \left\{ \exp \left[\gamma W^{-1} \left(\sum_{A=1}^{N} \lambda_A(r, t) \tilde{\psi}_A \right) \right] \pm \hat{I} \right\}^{-1}$$

Boltzmann statistics

$$\hat{\varrho} = y \exp \left\{ \gamma W^{-1} \left(- \sum_{A=1}^{N} \lambda_A(r, t) \tilde{M}_A \right) \right\}$$
We search the extremal value of entropy subject to the constrain that the information of the physical system is described by $M_A(r, t)$

$$\tilde{S} = S - \int d^D r \left\{ \sum_{A=1}^{N} \tilde{\lambda}_A(r, t) \left[\int d^D p \tilde{\psi}_A \mathcal{F}_W - M_A(r, t) \right] \right\}$$

For the Fractional Exclusion statistics we obtain

$$\hat{\varrho} = y \left\{ \hat{w}(\hat{\xi}) + \kappa \hat{l} \right\}^{-1}$$

$$\hat{\xi} = \exp \left[\mathcal{W}^{-1} \left(\sum_{A=1}^{N} \lambda_A \tilde{\psi}_A \right) \right]$$

For $\kappa = 1, 0$ we obtain the Fermi and Bose statistics

$$\hat{\varrho} = y \left\{ \exp \left[\mathcal{W}^{-1} \left(\sum_{A=1}^{N} \lambda_A(r, t) \tilde{\psi}_A \right) \right] \pm \hat{l} \right\}^{-1}$$

Boltzmann statistics

$$\hat{\varrho} = y \exp \left\{ \mathcal{W}^{-1} \left(- \sum_{A=1}^{N} \lambda_A(r, t) \tilde{M}_A \right) \right\}$$
We search the extremal value of entropy subject to the constrain that the information of the physical system is described by $M_A(r, t)$:

$$\tilde{S} = S - \int d^Dr \left\{ \sum_{A=1}^{N} \tilde{\lambda}_A(r, t) \left[\int d^Dp \tilde{\psi}_A F_W - M_A(r, t) \right] \right\}$$

For the Fractional Exclusion statistics we obtain

$$\hat{\varrho} = y \left\{ \hat{w}(\hat{\xi}) + \kappa \hat{l} \right\}^{-1} \left[\hat{w}(\hat{\xi})^\kappa [\hat{l} + \hat{w}(\hat{\xi})]^{1-\kappa} = \hat{\xi} \right.$$

$$\hat{\xi} = \exp \left[W^{-1} \left(\sum_{A=1}^{N} \lambda_A \tilde{\psi}_A \right) \right]$$

For $\kappa = 1, 0$ we obtain the Fermi and Bose statistics

$$\hat{\varrho} = y \left\{ \exp \left[W^{-1} \left(\sum_{A=1}^{N} \lambda_A(r, t) \tilde{\psi}_A \right) \right] \pm \hat{l} \right\}^{-1}$$

Boltzmann statistics

$$\hat{\varrho} = y \exp \left\{ W^{-1} \left(- \sum_{A=1}^{N} \lambda_A(r, t) \tilde{M}_A \right) \right\}$$
We search the extremal value of entropy subject to the constraint that the information of the physical system is described by $M_A(r, t)$

$$\tilde{S} = S - \int d^D r \left\{ \sum_{A=1}^{N} \tilde{\lambda}_A(r, t) \left[\int d^D p \tilde{\psi}_A \mathcal{F}_W - M_A(r, t) \right] \right\}$$

For the Fractional Exclusion statistics we obtain

$$\hat{\varrho} = y \left\{ \hat{w}(\hat{\xi}) + \kappa \hat{l} \right\}^{-1} \left[\hat{w}(\hat{\xi})^\kappa \hat{l} + \hat{w}(\hat{\xi})^{1-\kappa} \right] = \hat{\xi}$$

$$\hat{\xi} = \exp \left[\mathcal{W}^{-1} \left(\sum_{A=1}^{N} \lambda_A \tilde{\psi}_A \right) \right]$$

For $\kappa = 1, 0$ we obtain the Fermi and Bose statistics

$$\hat{\varrho} = y \left\{ \exp \left[\mathcal{W}^{-1} \left(\sum_{A=1}^{N} \lambda_A(r, t) \tilde{\psi}_A \right) \right] \pm \hat{l} \right\}^{-1}$$

Boltzmann statistics

$$\hat{\varrho} = y \exp \left\{ \mathcal{W}^{-1} \left(- \sum_{A=1}^{N} \lambda_A(r, t) \tilde{M}_A \right) \right\}$$
Bosons (−) and Fermions (+) for $D = 1, 2, 3$

$[\Psi(r), \Psi(r')]_\mp = [\Psi^\dagger(r), \Psi^\dagger(r')]_\mp = 0 \quad [\Psi(r), \Psi^\dagger(r')]_\mp = \delta^D(r-r')$

Anyons for $D = 1, 2 \Rightarrow q$-deformed bracket $[A, B]_q = AB - q BA$

$[\Psi(r), \Psi(r')]_q = [\Psi^\dagger(r), \Psi^\dagger(r')]_q = 0 \quad [\Psi(r), \Psi^\dagger(r')]_{q-1} = \delta^D(r-r')$

- $q(r, r') = q^{-1}(r', r)$ with $q(r, r) = \pm 1$
- $q(r, r')$ correspond to a phase factor that denotes the statistics
 \[q(r, r') = \pm e^{i\nu \pi S(r, r')} \]
 - $(\pm \Rightarrow$ bosonic and fermionic representations$)$
 - $S(r, r')$ the anyonic phase
 - ν denotes the exchange statistics (for $\nu = 0, 1 \Rightarrow$ Fermi, Bose)

For $D = 2 \Rightarrow S(r, r) = 0$ and $S(r, r') = \pm 1$ (Braid group)

[Braid group

For $D = 1 \Rightarrow S(r, r') = \text{sgn}(r-r') = \begin{cases} 1 & \text{if } r > r' \\ 0 & \text{if } r = r' \\ -1 & \text{if } r < r' \end{cases}$]
[\star] Bosons (-) and Fermions (+) for \(D = 1, 2, 3 \)

\[
[\psi(r), \psi(r')]_\mp = [\psi^\dagger(r), \psi^{\dagger}(r')]_\mp = 0 \quad [\psi(r), \psi^{\dagger}(r')]_\mp = \delta^D(r - r')
\]

Anyons for \(D = 1, 2 \) \(\Rightarrow \) q-deformed bracket \([A, B]_q = AB - q BA\)

\[
[\psi(r), \psi(r')]_q = [\psi^{\dagger}(r), \psi^{\dagger}(r')]_q = 0 \quad [\psi(r), \psi^{\dagger}(r')]_{q-1} = \delta^D(r - r')
\]

- \(q(r, r') = q^{-1}(r', r) \) with \(q(r, r) = \pm 1 \)
- \(q(r, r') \) correspond to a phase factor that denotes the statistics

\[
q(r, r') = \pm e^{i\nu \pi S(r, r')}
\]

- \((\pm \Rightarrow \) bosonic and fermionic representations\)
- \(S(r, r') \) the anyonic phase
- \(\nu \) denotes the exchange statistics (for \(\nu = 0, 1 \) \(\Rightarrow \) Fermi, Bose)
- For \(D = 2 \) \(\Rightarrow S(r, r) = 0 \) and \(S(r, r') = \pm 1 \) (Braid group) [+1 (-1) if \(r' \) is moved counterclockwise (clockwise) around \(r \)]
- For \(D = 1 \) \(\Rightarrow S(r, r') = \text{sgn}(r-r') = \left\{ \begin{array}{cl} 1 & \text{if } r > r' \\ 0 & \text{if } r = r' \\ -1 & \text{if } r < r' \end{array} \right. \)
Bosons \((-\rangle\) and Fermions \((+\rangle\) for \(D = 1, 2, 3\)

\[[\psi(r), \psi(r')]_\mp = [\psi^\dagger(r), \psi^\dagger(r')]_\mp = 0 \quad [\psi(r), \psi^\dagger(r')]_\mp = \delta^D(r - r') \]

Anyons for \(D = 1, 2 \Rightarrow q\)-deformed bracket \([A, B]_q = AB - q BA\)

\[[\psi(r), \psi(r')]_q = [\psi^\dagger(r), \psi^\dagger(r')]_q = 0 \quad [\psi(r), \psi^\dagger(r')]_{q-1} = \delta^D(r - r') \]

- \(q(r, r') = q^{-1}(r', r)\) with \(q(r, r) = \pm 1\)

- \(q(r, r')\) correspond to a phase factor that denotes the statistics

\[q(r, r') = \pm e^{i\nu\pi S(r, r')} \]

- \((\pm \Rightarrow \text{bosonic and fermionic representations})\)

- \(S(r, r')\) the anyonic phase

- \(\nu\) denotes the exchange statistics (for \(\nu = 0, 1 \Rightarrow \text{Fermi, Bose}\))

- For \(D = 2 \Rightarrow S(r, r) = 0 \quad \text{and} \quad S(r, r') = \pm 1 \quad (\text{Braid group})\]

- \([+1 (-1) \text{ if } r' \text{ is moved counterclockwise (clockwise) around } r]\)

- For \(D = 1 \Rightarrow S(r, r') = \text{sgn}(r-r') = \begin{cases} 1 & \text{if } r > r' \\ 0 & \text{if } r = r' \\ -1 & \text{if } r < r' \end{cases} \)
Bosons (−) and Fermions (+) for $D = 1, 2, 3$

$$[\psi(r), \psi(r')]_\mp = [\psi^\dagger(r), \psi^\dagger(r')]_\mp = 0 \quad [\psi(r), \psi^\dagger(r')]_\mp = \delta^D(r - r')$$

Anyons for $D = 1, 2 \Rightarrow q$-deformed bracket $[A, B]_q = AB - q BA$

$$[\psi(r), \psi(r')]_q = [\psi^\dagger(r), \psi^\dagger(r')]_q = 0 \quad [\psi(r), \psi^\dagger(r')]_q^{-1} = \delta^D(r - r')$$

- $q(r, r') = q^{-1}(r', r)$ with $q(r, r) = \pm 1$
- $q(r, r')$ correspond to a phase factor that denotes the statistics

$$q(r, r') = \pm e^{i\nu\pi S(r, r')}$$

- \pm ⇒ bosonic and fermionic representations
- $S(r, r')$ the anyonic phase
- ν denotes the exchange statistics (for $\nu = 0, 1 \Rightarrow$ Fermi, Bose)

- For $D = 2 \Rightarrow S(r, r) = 0$ and $S(r, r') = \pm 1$ (Braid group) $[+1 (-1)$ if r' is moved counterclockwise (clockwise) around $r)$]

- For $D = 1 \Rightarrow S(r, r') = \text{sgn}(r - r') = \begin{cases} 1 & \text{if } r > r' \\ 0 & \text{if } r = r' \\ -1 & \text{if } r < r' \end{cases}$
Bosons (−) and Fermions (+) for $D = 1, 2, 3$

\[
[\Psi(r), \Psi(r')]_\mp = [\Psi^\dagger(r), \Psi^\dagger(r')]_\mp = 0 \quad [\Psi(r), \Psi^\dagger(r')]_\mp = \delta^D(r - r')
\]

Anyons for $D = 1, 2 \Rightarrow q$-deformed bracket $[A, B]_q = AB - q BA$

\[
[\Psi(r), \Psi(r')]_q = [\Psi^\dagger(r), \Psi^\dagger(r')]_q = 0 \quad [\Psi(r), \Psi^\dagger(r')]_{q-1} = \delta^D(r - r')
\]

- $q(r, r') = q^{-1}(r', r)$ with $q(r, r) = \pm 1$
- $q(r, r')$ correspond to a phase factor that denotes the statistics

$$q(r, r') = \pm e^{i\nu\pi S(r, r')}$$

- ($\pm \Rightarrow$ bosonic and fermionic representations)
- $S(r, r')$ the anyonic phase
- ν denotes the exchange statistics (for $\nu = 0, 1 \Rightarrow$ Fermi, Bose)
- For $D = 2 \Rightarrow S(r, r) = 0$ and $S(r, r') = \pm 1$ (Braid group)
 $[+1 (-1)$ if r' is moved counterclockwise (clockwise) around r]
- For $D = 1 \Rightarrow S(r, r') = \text{sgn}(r - r') = \begin{cases} 1 & \text{if } r > r' \\ 0 & \text{if } r = r' \\ -1 & \text{if } r < r' \end{cases}$
Anyons for $D = 2$

- we consider the Bose or Fermi fields $\tilde{\Psi}(r)$ and $\tilde{\Psi}^\dagger(r)$
- we introduce the new Anyonic (global) fields $\Psi(r)$ and $\Psi^\dagger(r)$

\[
\Psi(r) = e^{-i\frac{e}{\hbar}\Lambda(r)}\tilde{\Psi}(r) \quad \quad \Psi^\dagger(r) = \tilde{\Psi}^\dagger(r) e^{i\frac{e}{\hbar}\Lambda(r)}
\]

\[
\Lambda(r) = \gamma \int d^2 r' \varphi(r - r') \tilde{\Psi}^\dagger(r) \tilde{\Psi}(r')
\]

$\varphi(r - r') \Rightarrow$ azimuthal angle of the vector from r' to r in the plane.

- By defining the (Chern-Simons) gauge potential $A(r) = \nabla \Lambda(r)$ and the corresponding Chern-Simons Magnetic field $B = \nabla \wedge A$

\[
H = \frac{1}{2m} \int d^2 r \left(\left(-i\hbar \frac{\partial}{\partial x_j} - \frac{e}{c} A_j \right) \tilde{\Psi}(r) \right)^\dagger \left(\left(-i\hbar \frac{\partial}{\partial x_j} - \frac{e}{c} A_j \right) \tilde{\Psi}(r) \right) + \\
\sum_{k=1}^{L} \frac{1}{k!} \int d^2 r_1 \cdots \int d^2 r_k \tilde{\Psi}^\dagger(r_1) \cdots \tilde{\Psi}^\dagger(r_k) V_k(r_1, \ldots, r_k) \tilde{\Psi}(r_k) \cdots \tilde{\Psi}(r_1)
\]

\[
H = \int d^2 r \left(-\frac{\hbar^2}{2m} \nabla^2 + V_1(r) \right) \Psi(r) + \\
\sum_{k=2}^{L} \frac{1}{k!} \int d^2 r_1 \cdots \int d^2 r_k \Psi^\dagger(r_1) \cdots \Psi^\dagger(r_k) V_k(r_1, \ldots, r_k) \Psi(r_k) \cdots \Psi(r_1)
\]
Anyons for $D = 2$

• we consider the Bose or Fermi fields $\tilde{\psi}(r)$ and $\tilde{\psi}^\dagger(r)$
• we introduce the new Anyonic (global) fields $\psi(r)$ and $\psi^\dagger(r)$

\[
\psi(r) = e^{-i \frac{e}{\hbar} \Lambda(r)} \tilde{\psi}(r) \quad \quad \psi^\dagger(r) = \tilde{\psi}^\dagger(r) e^{i \frac{e}{\hbar} \Lambda(r)}
\]

\[
\Lambda(r) = \gamma \int d^2 r' \varphi(r - r') \tilde{\psi}^\dagger(r) \tilde{\psi}(r')
\]

$\varphi(r - r') \Rightarrow$ azimutal angle of the vector from r' to r in the plane.

• By defining the (Chern-Simons) gauge potential $A(r) = \nabla \Lambda(r)$ and the corresponding Chern-Simons Magnetic field $B = \nabla \wedge A$

\[
H = \frac{1}{2m} \int d^2 r \left[\left(-i \hbar \frac{\partial}{\partial x_j} - \frac{e}{c} A_j \right) \tilde{\psi}(r) \right]^\dagger \left[\left(-i \hbar \frac{\partial}{\partial x_j} - \frac{e}{c} A_j \right) \tilde{\psi}(r) \right] + \\
\sum_{k=1}^{L} \frac{1}{k!} \int d^2 r_1 \cdots \int d^2 r_k \tilde{\psi}^\dagger(r_1) \cdots \tilde{\psi}^\dagger(r_k) V_k(r_1, \ldots, r_k) \tilde{\psi}(r_k) \cdots \tilde{\psi}(r_1)
\]

\[
H = \int d^2 r \psi^\dagger(r) \left[-\frac{\hbar^2}{2m} \nabla^2 + V_1(r) \right] \psi(r) + \\
\sum_{k=2}^{L} \frac{1}{k!} \int d^2 r_1 \cdots \int d^2 r_k \psi^\dagger(r_1) \cdots \psi^\dagger(r_k) V_k(r_1, \ldots, r_k) \psi(r_k) \cdots \psi(r_1)
\]
• we consider the Bose or Fermi fields $\tilde{\Psi}(r)$ and $\tilde{\Psi}^\dagger(r)$
• we introduce the new Anyonic (global) fields $\Psi(r)$ and $\Psi^\dagger(r)$

$$\Psi(r) = e^{-i \frac{e}{\hbar} \Lambda(r)} \tilde{\Psi}(r) \quad \Psi^\dagger(r) = \tilde{\Psi}^\dagger(r) e^{i \frac{e}{\hbar} \Lambda(r)}$$

$$\Lambda(r) = \gamma \int d^2 r' \varphi(r - r') \tilde{\Psi}^\dagger(r) \tilde{\Psi}(r')$$

$\varphi(r - r') \Rightarrow$ azimuthal angle of the vector from r' to r in the plane.

• By defining the (Chern-Simons) gauge potential $\bf{A}(r) = \nabla \Lambda(r)$ and the corresponding Chern-Simons Magnetic field $\bf{B} = \nabla \wedge \bf{A}$

$$H = \frac{1}{2m} \int d^2 r \left[-i \hbar \frac{\partial}{\partial x_j} - \frac{e}{c} A_j \right] \tilde{\Psi}(r) \right]^\dagger \left[-i \hbar \frac{\partial}{\partial x_j} - \frac{e}{c} A_j \right] \tilde{\Psi}(r) + \sum_{k=1}^L \frac{1}{k!} \int d^2 r_1 \cdots \int d^2 r_k \tilde{\Psi}^\dagger(r_1) \cdots \tilde{\Psi}^\dagger(r_k) V_k(r_1, \ldots, r_k) \tilde{\Psi}(r_k) \cdots \tilde{\Psi}(r_1)$$

$$H = \int d^2 r \psi^\dagger(r) \left[-\frac{\hbar^2}{2m} \nabla^2 + V_1(r) \right] \psi(r) + \sum_{k=2}^L \frac{1}{k!} \int d^2 r_1 \cdots \int d^2 r_k \psi^\dagger(r_1) \cdots \psi^\dagger(r_k) V_k(r_1, \ldots, r_k) \psi(r_k) \cdots \psi(r_1)$$
• we consider the Bose or Fermi fields $\tilde{\Psi}(r)$ and $\tilde{\Psi}^\dagger(r)$
• we introduce the new Anyonic (global) fields $\Psi(r)$ and $\Psi^\dagger(r)$

$$
\Psi(r) = e^{-i \frac{e}{\hbar} \Lambda(r)} \tilde{\Psi}(r)
$$

$$
\Psi^\dagger(r) = \tilde{\Psi}^\dagger(r) e^{i \frac{e}{\hbar} \Lambda(r)}
$$

$$
\Lambda(r) = \gamma \int d^2 r' \varphi(r - r') \tilde{\Psi}^\dagger(r) \tilde{\Psi}(r')
$$

$\varphi(r - r') \Rightarrow$ azimuthal angle of the vector from r' to r in the plane.

• By defining the (Chern-Simons) gauge potential $A(r) = \nabla \Lambda(r)$ and the corresponding Chern-Simons Magnetic field $B = \nabla \wedge A$

$$
H = \frac{1}{2m} \int d^2 r \left[\left(-i \hbar \frac{\partial}{\partial x_j} - \frac{e}{c} A_j \right) \tilde{\Psi}(r) \right]^\dagger \left[\left(-i \hbar \frac{\partial}{\partial x_j} - \frac{e}{c} A_j \right) \tilde{\Psi}(r) \right] +
\sum_{k=1}^L \frac{1}{k!} \int d^2 r_1 \cdots \int d^2 r_k \tilde{\Psi}^\dagger(r_1) \cdots \tilde{\Psi}^\dagger(r_k) V_k(r_1, \ldots, r_k) \tilde{\Psi}(r_k) \cdots \tilde{\Psi}(r_1)
$$

$$
H = \int d^2 r \Psi^\dagger(r) \left[-\frac{\hbar^2}{2m} \nabla^2 + V_1(r) \right] \Psi(r) +
\sum_{k=2}^L \frac{1}{k!} \int d^2 r_1 \cdots \int d^2 r_k \Psi^\dagger(r_1) \cdots \Psi^\dagger(r_k) V_k(r_1, \ldots, r_k) \Psi(r_k) \cdots \Psi(r_1)
$$
\[[\tilde{\Psi}(r), \tilde{\Psi}(r')]_\mp = [\tilde{\Psi}^\dagger(r), \tilde{\Psi}^\dagger(r')]_\mp = 0 \quad [\tilde{\Psi}(r), \tilde{\Psi}^\dagger(r')]_\mp = \delta^2(r - r') \]

\[
\begin{align*}
[\Psi(r), \Psi(r')]_q &= [\Psi^\dagger(r), \Psi^\dagger(r')]_q = 0 \\
[\Psi(r), \Psi^\dagger(r')]_{q-1} &= \delta^2(r - r')
\end{align*}
\]

\[q(r, r') = \pm e^{i\nu \pi S(r,r')} \]

Conclusions

- The net effect of the Chern-Simons dynamics is to produce a nonlocal vector potential \(A \) for each particle. This determines a magnetic field \(B \) which vanishes everywhere except at the particle locations. Therefore, the particles effectively carry both a charge \(e \) and a magnetic flux \(\Phi \).
- (Braid group structure) The exotic statistics are then produced by the Aharonov-Bohm effect: when two particles are exchanged, they pick up a phase because the charge of one particle moves around the flux of the other and **vice-versa**.
\[
\left[\tilde{\Psi}(r), \tilde{\Psi}(r') \right]_\mp = \left[\tilde{\Psi}^\dagger(r), \tilde{\Psi}^\dagger(r') \right]_\mp = 0
\]

\[
\left[\tilde{\Psi}(r), \tilde{\Psi}^\dagger(r') \right]_\mp = \delta^2(r - r')
\]

\[
\left[\Psi(r), \Psi(r') \right]_q = \left[\Psi^\dagger(r), \Psi^\dagger(r') \right]_q = 0
\]

\[
\left[\Psi(r), \Psi^\dagger(r') \right]_{q^{-1}} = \delta^2(r - r')
\]

\[
q(r, r') = \pm e^{i\nu\pi S(r, r')}
\]

Conclusions

- The net effect of the Chern-Simons dynamics is to produce a nonlocal vector potential \(A \) for each particle. This determines a magnetic field \(B \) which vanishes everywhere except at the particle locations. Therefore, the particles effectively carry both a charge \(e \) and a magnetic flux \(\Phi \).

- (Braid group structure) The exotic statistics are then produced by the Aharonov-Bohm effect: when two particles are exchanged, they pick up a phase because the charge of one particle moves around the flux of the other and vice-versa.
\[
\begin{align*}
[\tilde{\Psi}(r), \tilde{\Psi}(r')]_+ &= [\tilde{\Psi}^+(r), \tilde{\Psi}^+(r')]_+ = 0 & [\tilde{\Psi}(r), \tilde{\Psi}^+(r')]_+ &= \delta^2(r - r') \\
&\uparrow & &\uparrow & &\uparrow \\
[\Psi(r), \Psi(r')]_q &= [\psi^+(r), \psi^+(r')]_q = 0 & [\psi(r), \psi^+(r')]_{q-1} &= \delta^2(r - r') \\
q(r, r') &= \pm e^{i\nu \pi S(r, r')}
\end{align*}
\]

Conclusions

- The net effect of the Chern-Simons dynamics is to produce a nonlocal vector potential \(A \) for each particles. This determines a magnetic field \(B \) which vanishes everywhere except at the particle locations. Therefore, the particles effectively carry both a charge \(e \) and a magnetic flux \(\Phi \).
- (Braid group structure) The exotic statistics are then produced by the Aharonov-Bohm effect: when two particles are exchanged, they pick up a phase because the charge of one particle moves around the flux of the other and vice-versa.
\[
\left[\widetilde{\Psi}(r), \widetilde{\Psi}(r') \right]_\mp = \left[\widetilde{\Psi}^\dagger(r), \widetilde{\Psi}^\dagger(r') \right]_\mp = 0 \quad \text{and} \quad \left[\Psi(r), \Psi^\dagger(r') \right]_\mp = \delta^2(r - r')
\]

\[
\left[\Psi(r), \Psi(r') \right]_q = \left[\Psi^\dagger(r), \Psi^\dagger(r') \right]_q = 0 \quad \text{and} \quad \left[\Psi(r), \Psi^\dagger(r') \right]_{q-1} = \delta^2(r - r')
\]

\[
q(r, r') = \pm e^{i\nu\pi S(r, r')}
\]

Conclusions

- The net effect of the Chern-Simons dynamics is to produce a nonlocal vector potential \(A \) for each particle. This determines a magnetic field \(B \) which vanishes everywhere except at the particle locations. Therefore, the particles effectively carry both a charge \(e \) and a magnetic flux \(\Phi \).
- (Braid group structure) The exotic statistics are then produced by the Aharonov-Bohm effect: when two particles are exchanged, they pick up a phase because the charge of one particle moves around the flux of the other and *vice-versa*.
Bosons (−) and Fermions (+) for $D = 1, 2, 3$

$$[\Psi(r), \Psi(r')]_\mp = [\Psi^\dagger(r), \Psi^\dagger(r')]_\mp = 0 \quad [\Psi(r), \Psi^\dagger(r')]_\mp = \delta^D(r - r')$$

Anyons for $D = 1, 2 \Rightarrow q$-deformed bracket $[A, B]_q = AB - q BA$

$$[\Psi(r), \Psi(r')]_q = [\Psi^\dagger(r), \Psi^\dagger(r')]_q = 0 \quad [\Psi(r), \Psi^\dagger(r')]_{q-1} = \delta^D(r - r')$$

- By considering the equation of motion for the operator $\Psi(r)$

$$i\hbar \frac{\partial}{\partial t} \Psi(r) = \mathcal{H}(r)\Psi(r), \quad -i\hbar \frac{\partial}{\partial t} \Psi^\dagger(r) = \Psi^\dagger(r)\mathcal{H}(r)$$

$$\mathcal{H}(r) = -\frac{\hbar^2}{2m} \nabla^2 + U(r) + \sum_{k=1}^{L-1} \frac{1}{k!} \int d^3 r_1 \cdots \int d^3 r_k \Psi^\dagger(r_1) \cdots \Psi^\dagger(r_k) \times V_{k+1}(r, r_1, \ldots, r_k)\Psi(r_k) \cdots \Psi(r_1)$$

- We determine the equation of motion for the quantity $\Psi^\dagger(r')\Psi(r)$

$$i\hbar \frac{\partial}{\partial t} \Psi^\dagger(r')\Psi(r) = [\mathcal{H}(r), \Psi^\dagger(r')\Psi(r)]$$

By performing its statistical average in the Hartree approximation $[]$
Bosons (−) and Fermions (+) for $D = 1, 2, 3$

\[[\psi(r), \psi(r')]_{\mp} = [\psi^\dagger(r), \psi^\dagger(r')]_{\mp} = 0 \quad [\psi(r), \psi^\dagger(r')]_{\mp} = \delta^D(r - r')\]

Anyons for $D = 1, 2 \Rightarrow q$-deformed bracket $[A, B]_q = AB - q BA$

\[[\psi(r), \psi(r')]_q = [\psi^\dagger(r), \psi^\dagger(r')]_q = 0 \quad [\psi(r), \psi^\dagger(r')]_q^{-1} = \delta^D(r - r')\]

By considering the equation of motion for the operator $\psi(r)$

$$i\hbar \frac{\partial}{\partial t} \psi(r) = \mathcal{H}(r) \psi(r), \quad -i\hbar \frac{\partial}{\partial t} \psi^\dagger(r) = \psi^\dagger(r) \mathcal{H}(r)$$

$$\mathcal{H}(r) = -\frac{\hbar^2}{2m} \nabla^2 + U(r) + \sum_{k=1}^{L-1} \frac{1}{k!} \int d^3r_1 \cdots \int d^3r_k \psi^\dagger(r_1) \cdots \psi^\dagger(r_k) \times V_{k+1}(r, r_1, \ldots, r_k) \psi(r_k) \cdots \psi(r_1)$$

By performing its statistical average in the Hartree approximation
• **Bosons (−) and Fermions (+) for** \(D = 1, 2, 3 \)

\[
[\psi(r), \psi(r')]_\mp = [\psi^\dagger(r), \psi^\dagger(r')]_\mp = 0 \quad [\psi(r), \psi^\dagger(r')]_\mp = \delta^D(r - r')
\]

Anyons for \(D = 1, 2 \) \(\Rightarrow \) \(q \)-deformed bracket \([A, B]_q = AB - q BA\)

\[
[\psi(r), \psi(r')]_q = [\psi^\dagger(r), \psi^\dagger(r')]_q = 0 \quad [\psi(r), \psi^\dagger(r')]_{q-1} = \delta^D(r - r')
\]

• By considering the equation of motion for the operator \(\psi(r) \)

\[
i\hbar \frac{\partial}{\partial t} \psi(r) = \mathcal{H}(r)\psi(r), \quad -i\hbar \frac{\partial}{\partial t} \psi^\dagger(r) = \psi^\dagger(r)\mathcal{H}(r)
\]

\[
\mathcal{H}(r) = -\frac{\hbar^2}{2m} \nabla^2 + U(r) + \sum_{k=1}^{L-1} \frac{1}{k!} \int d^3r_1 \cdots \int d^3r_k \psi^\dagger(r_1) \cdots \psi^\dagger(r_k) \times V_{k+1}(r, r_1, \ldots, r_k) \psi(r_k) \cdots \psi(r_1)
\]

• We determine the equation of motion for the quantity \(\psi^\dagger(r')\psi(r) \)

\[
i\hbar \frac{\partial}{\partial t} \psi^\dagger(r')\psi(r) = [\mathcal{H}(r), \psi^\dagger(r')\psi(r)]
\]

By performing its statistical average in the Hartree approximation \([\dagger]\)
Bosons (−) and Fermions (+) for \(D = 1, 2, 3 \)

\[
[\psi(r), \psi(r')]_\mp = [\psi^\dagger(r), \psi^\dagger(r')]_\mp = 0 \quad [\psi(r), \psi^\dagger(r')]_\mp = \delta^D(r - r')
\]

Anyons for \(D = 1, 2 \Rightarrow q\text{-deformed bracket} \quad [A, B]_q = AB - q BA \)

\[
[\psi(r), \psi(r')]_q = [\psi^\dagger(r), \psi^\dagger(r')]_q = 0 \quad [\psi(r), \psi^\dagger(r')]_q^{-1} = \delta^D(r - r')
\]

• By considering the equation of motion for the operator \(\psi(r) \)

\[
\frac{i\hbar}{\partial t} \psi(r) = \mathcal{H}(r) \psi(r), \quad -i\hbar \frac{\partial}{\partial t} \psi^\dagger(r) = \psi^\dagger(r) \mathcal{H}(r)
\]

\[
\mathcal{H}(r) = -\frac{\hbar^2}{2m} \nabla^2 + U(r) + \sum_{k=1}^{L-1} \frac{1}{k!} \int d^3r_1 \cdots \int d^3r_k \psi^\dagger(r_1) \cdots \psi^\dagger(r_k) \times V_{k+1}(r, r_1, \ldots, r_k) \psi(r_k) \cdots \psi(r_1)
\]

• We determine the equation of motion for the quantity \(\psi^\dagger(r') \psi(r) \)

\[
\frac{i\hbar}{\partial t} \psi^\dagger(r') \psi(r) = [\mathcal{H}(r), \psi^\dagger(r') \psi(r)]
\]

By performing its statistical average in the Hartree approximation [\text{\textendash}]
Bosons (−) and Fermions (+) for $D = 1, 2, 3$

$$[\psi(r), \psi(r')]_{\mp} = [\psi^\dagger(r), \psi^\dagger(r')]_{\mp} = 0 \quad [\psi(r), \psi^\dagger(r')]_{\mp} = \delta^D(r - r')$$

Anyons for $D = 1, 2 \Rightarrow q$-deformed bracket $[A, B]_q = AB - q BA$

$$[\psi(r), \psi(r')]_q = [\psi^\dagger(r), \psi^\dagger(r')]_q = 0 \quad [\psi(r), \psi^\dagger(r')]_{q^{-1}} = \delta^D(r - r')$$

• By considering the equation of motion for the operator $\psi(r)$

$$i\hbar \frac{\partial}{\partial t} \psi(r) = \mathcal{H}(r) \psi(r), \quad -i\hbar \frac{\partial}{\partial t} \psi^\dagger(r) = \psi^\dagger(r) \mathcal{H}(r)$$

$$\mathcal{H}(r) = -\frac{\hbar^2}{2m} \nabla^2 + U(r) + \sum_{k=1}^{L-1} \frac{1}{k!} \int d^3r_1 \cdots \int d^3r_k \psi^\dagger(r_1) \cdots \psi^\dagger(r_k) \times V_{k+1}(r, r_1, \ldots, r_k) \psi(r_k) \cdots \psi(r_1)$$

• We determine the equation of motion for the quantity $\psi^\dagger(r')\psi(r)$

$$i\hbar \frac{\partial}{\partial t} \psi^\dagger(r')\psi(r) = [\mathcal{H}(r), \psi^\dagger(r')\psi(r)]$$

By performing its statistical average in the Hartree approximation \[\dagger\]

