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the 3x+1 Problem

misty origins:
Collatz (1932) proposed another problem (of similar nature, still open), yet ...
proposed by Thwaites (1952), with a 1000-pound prize
“rediscovered” several times, whereby it is known under several names: Collatz,
Syracuse, Kakutani, Hasse, Ulam, 3x+1, ...

“official” statement of the Problem: let f : N+ → N+ be defined by the following rules:
fx = 3x + 1   if x is odd
fx = x/2      if x is even

is it true that repeated iteration of f always converges to 1 ?

or, in other words, that f* has the 1 → 4 → 2 → 1 cycle as (unique) attractor?

“Mathematics is not yet ready for such problems” (Erdös)
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3x+1 trajectories and records

this work does not aim at solving the 3x+1 Problem
a positive answer is conjectured

subject of interest here is the dynamical behaviour of f*

basic concepts relating to the f* dynamics:

trajectory at (origin) x : the infinite sequence x, fx, f2x, ...

delay of (trajectory at) x : the smallest n such that fnx = 1
delay class d : the set of those x which have delay d

remark : every delay class is populated (2d has delay d )

class record (CR): the smallest member of a delay class
delay record (DR): an x such that every y < x has a lower delay

fact : every DR is a CR (but the converse does not hold)



4     

distributed search of class records

the assessment that an x is a CR requires certainty that no lower y has the same delay
→ computation of delay(y) for all y < x ?

not really, since several laws relate delays of joining trajectories
e.g. for all x : delay(2x) = delay(x) + 1,
and: delay(2x + 1) = delay(6x + 4) + 1 = delay(3x + 2) + 2

such laws may speed-up delay computation, yet CR finding does need exhaustive search

this is easily parallelized by partitioning the search space into disjoint intervals, explored by
independent jobs, each producing its own set of CR candidates

smallests members, in the given interval, of each delay class

the final merge of distributed search results thus amounts to select the “best”, i.e.
smallest, candidate for each delay class
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motivation for the search on the Cometa 
grid

a distributed search effort, to find 3x+1 class records, is active since quite a few years

it has found 2014 CRs so far, exploring the search space up to 57780.1012

so, why taking the search to the COMETA grid?

4 good reasons:
(proprietary) OS dependence
machine architecture dependence (32-bit, vendor-specific)
design of novel optimization mechanisms, afforded by 64-bit architecture
simple parallelization structure (DAG partitioning), easy space-time tradeoff

and, last but not least:
educational use: parallel programming methodology, grid job control &
monitoring
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a basic parallel algorithm

assume all CRs below M are known

goal: find all new CRs below N > M
partition the search space [M, N [ into k pairwise disjoint intervals
for each interval, find the best CR candidates, relatively to that interval

that is, regardless of known CRs and of candidates from other intervals

after all intervals are searched out, merge the parallel search outcomes
also taking known CRs into account
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optimization (1): Sieving

the heart of CR finding is the delay computation function
its execution speed is performance critical

the fastest execution is that which... need not start :)

coalescence of trajectories entails that
CRs fall outside certain congruence classes

for example, 5 is the only CR in the congruence class 5 (mod 8)... why?

for n>0, the trajectories of 8n+5 and 8n+4 coalesce at 6n+4 after the same number of
steps (3), so delay(8n+5) = delay(8n+4) → 8n+5 cannot be a CR

this generalizes to congruence classes (2k-2 + (k mod 2)2k-1 - 1) (mod 2k), for k > 2
checking the general case? hardly efficient...

better off with a finite approximation (e.g. k=18), efficiently implemented by a sieve
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optimization (2): Tail cut-off

all trajectories leading to 1 (veritably all, thus) sooner or later fall below 2t, for any given,
fixed t

delay computation may thus get quicker by storing all delay(n) for n < 2t, and then adding
delay(n) to the partially computed delay of x as soon as the trajectory starting at x reaches
such an n

how to choose the tail cut-off threshold parameter t ?

by similar, architecture-dependent data as for the sieve size:
available RAM size ?

a surely lower threshold proves optimal (t between 12 and 16, usually), that depends on
cache size !

9     

optimization (3): Head cut-off

two DRs are consecutive if there is no DR in between them
if x1 < x2 is a pair of consecutive DRs, then x < x2 → delay(x) ≤ delay(x1)

one can use this to stop the delay computation of “hopeless” trajectories ahead of time:
assume all CRs below M are known
let u be the smallest delay class whose CR is not below M

x ≥ M may only be a CR if its delay is at least u
if the trajectory of x falls below x2 after d steps, then delay(x) ≤ d + delay(x1)
hence, if d + delay(x1) < u, then x cannot be a CR

virtue of this technique: “self-optimizing”! CR search progress eventually leads to
raise u → higher cut-off rate
get higher pairs of consecutive DRs → earlier head cut-off
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Head and Tail cut-off in a picture
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optimization (4): Acceleration

a small acceleration of delay computation comes from replacing the function f with T,
defined as f on the even numbers, whereas for odd x one has

Tx = (3x + 1)/2 = x + ⌈x/2⌉

clearly, if the T-trajectory from x to 1 has D applications of this rule and E applications 
of the halving rule, then delay(x) = 2D + E

the interest in T comes from the existence of a permutation of the residues (mod 2k),
defined by the k-prefix of the so-called parity vector of T-trajectories, viz. the binary
sequence, dependent on x, defined by vi(x) = (T ix) mod 2

the k-prefix of vi(x) only depends on x (mod 2k)

thus one may define 2k distinct k-step composites of T, and decide which applies to x by
only looking at x (mod 2k) : not so small acceleration, by clever programming techniques
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interference and smoothening of 
Acceleration

optimal k for Acceleration depends on cache size, but:
unconstrained Acceleration reduces the effectiveness of Head cut-off!

solution: smoothening of Acceleration, that is, shorten Acceleration extent
for those composites which may cause interference
below appropriate, Head cut-off dependent thresholds
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performance figures

approximate average CPU time h (in hours) to search an interval of size 244, in the
neighbourhood of 256:

    u               h
1925         160
1951         150
1964         148
1985         124

remark: the latest performance gain is also due to the introduction of a new pair of
consecutive DRs, which has nearly doubled the highest Head cut-off threshold
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state of the search and results

search started on 25/09/2007, from 255 + 72 * 248

as of today, all CRs below 256 + 14 * 248 have been found, which means:
18 new CRs, including R2000: challenge candidate confirmed
one of them “truly new”, that is, lower than the best known candidate until its
discovery:
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questions?


