The Serial Peripheral Interface (SPI)

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy
santoro@dmi.unict.it

L.S.M. 1 Course
What is SPI?

The **SPI—Serial Peripheral Interface** is a communication hardware designed to interconnect *integrated circuits* to a MCU belonging to the same board.

It has been introduced by Motorola in the '80s.

Now, it is a standard interface supported by any MCU and many devices like sensors, memories (EEPROM, SD Cards, etc.), power drivers, etc.
SPI is a Master-Slave interface:

- **Master**, is the “head” of the communication and is - in general - a MCU;
- **Slave**, all the other devices which “respond” to master solicitations.

It has (at least) 4 **point-to-point unidirectional wires**:

- **SCK**—Master to Slave, the serial clock, generated by the Master;
- **MOSI**—Master to Slave, *Master-Out-Slave-In*, the serial data transmitted by the Master and sent to a Slave;
- **MISO**—Slave to Master, *Master-In-Slave-Out*, the serial data transmitted by a Slave and sent to the Master;
- **SS**—Slave to Master, *Slave Select*, a logic signal that is used to “wake-up” and select a slave device.
A SPI Transaction is always started by the Master by setting the SS Line to Logic “0”.

The Master then starts to generating the clock signal in the SCK Line.

At each clock tick:
- The Master puts a data-bit in the MOSI Line
- The Slave puts a data-bit in the MISO Line

When the transaction terminates, the Master sets the SS Line to Logic “1”
Meaning of Data Bits

- Conceptually, communication is packet-based.

- A packet is a set of bits, whose meaning is defined by the slave device addressed.

- The number of bits of a packet may be multiple of 8, but this is not a mandatory requirement.
The MCP4921/MCP4922 chip are Digital-to-Analog Converters (DAC).

A DAC is a circuit that receives a digital data and is able to generate a voltage signal proportional to the received data.

The MCP4921 has only one output channel, the MCP4922 has two output channels.

The SPI interface of MCP4921 is made of the following signals:
- **CS**, Chip Select, alternative name for **SS**
- **SCK**, the Serial Clock (from master)
- **SDI**, Serial Data Input, alternative name for **MOSI**
The SPI packet, sent by the Master, is made of 16 bit:

- The first 4 bits represent a configuration of the chip:
 - $\overline{A/B}$, channel select (for the MCP4922)
 - GA, gain (proportionality factor) control
 - $SHDN$, shutdown bit (turns off the output)
- The other 12 bits represent the DAC value

The chip does not generate data, so it does not have a MISO line.
When more than a single SPI device is present, *parallel connection* may be employed.

- SCK, MOSI and MISO are wired together.
- A **SS line per addressed device** is present.
- When a specific slave needs to be addressed, the relevant **SS line** is activated.
The *daisy-chain* connection implies a MOSI/MISO cascade connection of all SPI slave devices.

- **MOSI and MISO** lines are connected in sequence.
- A **single SS line for all devices** is present.
- The devices must support this kind of connection.
- Since all slaves are involved in each transaction, the SPI packet must contain the **address** of the device to interact with.
The clock of the SPI interface can be programmed in order to set its behaviour.

There are two kinds of settings:

- **CPOL = Clock Polarity**: specifies the initial logic state of the clock.
- **CPHA = Clock Phase**: specifies the clock transition used to sample data (thus data changes in the other transition).
The clock of the SPI interface can be programmed in order to set its behaviour.

There are two kinds of settings:

- **CPOL = Clock Polarity**: specifies the initial logic state of the clock
- **CPHA = Clock Phase**: specifies the clock transition used to sample data (thus data changes in the other transition)

CPHA = 0, data is sampled in the first edge of the clock.
The clock of the SPI interface can be programmed in order to set its behaviour.

There are two kinds of setting:

- **CPOL = Clock Polarity**: specifies the initial logic state of the clock
- **CPHA = Clock Phase**: specifies the clock transition used to sample data (thus data changes in the other transition)

CPHA = 1, data is sampled in the second edge of the clock.
SPI and I\(^2\)C: Comparison

- **Wiring:**
 - I\(^2\)C has only two lines
 - SPI has at least four lines

- **Electrical Aspects:**
 - I\(^2\)C is a bus and has also a bidirectional line, therefore is more critical (from the electrical point of view) with respect to SPI
 - SPI has point-to-point unidirectional lines

- **Speed:**
 - Due to electrical characteristics, I\(^2\)C is designed for a max speed of 400 Kbps
 - SPI has no theoretical speed limit, even if the “rule-of-thumb” suggests 1 Mbps
Protocol and Addressing:
- I²C specifies a standard for device addressing and functionalities are mapped to device registers
- SPI does not define a standard data frame, each device has its own data format

Number of supported devices:
- I²C is a bus and thus it has no theoretical limit on the number of devices that can be interconnected
- Limits on SPI are defined by the number of SS wires (in case of parallel connection) or latency (in case of daisy-chain connection)
The Serial Peripheral Interface (SPI)

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy
santoro@dmi.unict.it

L.S.M. 1 Course