Logic Circuits and Signals
Hardware/Software Connection

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy
santoro@dmi.unict.it

L.S.M. Course
Logic circuits are characterized by the fact that voltage of wires can assume only two values:

- $0\ V$, corresponding to Logic/bit-value “0”
- $+V_{DD}$, corresponding to Logic/bit-value “1”

where V_{DD} is the power supply of the whole circuit, it may be $5\ V$, $3.3\ V$, $1.8\ V$
Logic Circuits Classification

Combinatorial Circuits

- They are logic circuits where the output is dependent only on the **current state** of the inputs.
- **Logic gates** (AND, OR, NOT, etc.) are kind of combinatorial circuits.
- Their behaviour is represented by a **truth table**.

![Logic Gates Diagram](image)
Multiplexers

- **Multiplexers** are combinatorial circuits that act as signal switches.
- One data input at time is routed to the output on the basis of the values of control input bits.
Logic Circuits Classification

Sequential Circuits

- They are logic circuits where the output is dependent only on the **current and past state** of the inputs.
- They are sensible to **variations** of the inputs.
- They are logic circuits that have a **memory**.
- **Flip-Flops** and their derivatives are kind of combinatorial circuits.
- Their behaviour is represented by a **finite-state machine**.
- In general, a **clock signal** drives their behaviour.
Logic Circuits Classification

Kind of Sequential Circuits

- Flip-flops
- Counters
- Registers

D-Type
JK-Type
SR-Latch
SR-Synchr-Latch

Counter
overflow
n-bits

Write
n-bits-in

Register
n-bits-out
Logic Signals
Logic Signals

Constant Signals
- They are logic states that does not vary in time

Variable Signals
- They are logic states that may vary in time
- They are featured by edges
 - **Falling Edge**: variation from “1” to “0”
 - **Rising Edge**: variation from “0” to “1”

![Graphs of Constant, Variable Signals with edges](image)
Edges and Sequential Circuits

- Sequential Circuits are sensible to **edges**
- Edge inputs are represented in circuits by “triangles”
- **simple triangle**: *rising edge*
- **circle + triangle**: *falling edge*

State change on **rising** edge
State change on **falling** edge
Periodic Signals

- They are kind of *variable signals* where the *time distance* between *two edges of the same time* is *constant*.
- This distance is called *Period, P* and measured in seconds.
- The *frequency*, computed as $f = \frac{1}{P}$, is the *number of “periods” per second* and is measured in *Hertz, Hz*.
Periodic Signals

- Periodic signals can be:
 - **symmetric**: the time durations of state “0” and state “1” is the same and equal to $T_0 = T_1 = \frac{P}{2}$
 - **asymmetric**: the time durations of state “0” and state “1” is different $T_0 \neq T_1$

- The “asymmetry” is called **duty cycle** and is the percentage of period in which the signal is “1”

$$DC = \frac{T_1}{T_0 + T_1} \times 100 = \frac{T_1}{P} \times 100$$
Time Measures

- **milliseconds:** $1 \text{ms} = 10^{-3} \text{s}$
- **microseconds:** $1 \mu \text{s} = 10^{-6} \text{s}$
- **nanoseconds:** $1 \text{ns} = 10^{-9} \text{s}$
- **picoseconds:** $1 \text{ps} = 10^{-12} \text{s}$

Frequency Measures

- **KiloHertz:** $1 \text{KHz} = 10^3 \text{Hz}$
- **MegaHertz:** $1 \text{MHz} = 10^6 \text{Hz}$
- **GigaHertz:** $1 \text{GHz} = 10^9 \text{Hz}$
- **TeraHertz:** $1 \text{THz} = 10^{12} \text{Hz}$
Hardware/Software Connection
Circuits of a MCU are “connected” to the software through registers/counters.

A register is mapped in memory at a known memory address.

Hardware/software interaction is performed by reading/writing at that memory address.
An Example: Piece Counter

- A “presence sensor” generates a pulse each time a “piece” is identified.
- The pulse is connected to an **external counter** MCU input.
- Each time the sensor generates a pulse, the counter increments (in hardware).
Reading/Writing the Counter

```c
... int32_t * counter_ptr = (int32_t *)0x80c000;
...

/* clearing the counter */
*counter_ptr = 0;
...

/* printing the counter */
printf("Counter value \%d\n", *counter_ptr);
```
Configuring the Counter

```c
int32_t * config_ptr = (int32_t *)0x80c004;

/* counter input from Internal Oscillator */
*config_ptr = 0;

/* counter input from External Counter Input */
*config_ptr = 0x40;
```
Logic Circuits and Signals
Hardware/Software Connection

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy
santoro@dmi.unict.it

L.S.M. Course